A case study on Apache HBase

Abstract

Introduction:

Apache HBase is an open-source, non-relational and a distributed data base system built
on top of HDFS (Hadoop Distributed File system). HBase was designed post Google*s Big table
and it is written in Java. It was developed as a part of Apache™s Hadoop Project. It provides a
kind of fault — tolerant mechanism to store minor amounts of non-zero items caught within large
amounts of empty items. HBase is used when we require real-time read/write access to huge data

bases. HBase project was started by the end of 2006 by Chad Walters and Jim Kellerman at

[2]

Powerset." -~ The main purpose of HBase is to process large amounts of data. Mike Cafarella

worked on code of the working system initially and later Jim Kellerman carried it to the next

(2]
stage. HBase was first released as a part of Hadoop 0.15.0 in October 2007 . The project goal

was holding of very large tables like billions of rows X millions of columns. In May 2010, HBase
advanced to a major project and it became an Apache Top Level Project. Several applications like
Adobe, Twitter, Yahoo, Trend Micro etc. use this data base. Social networking sites like Facebook
have implemented its messenger application using HBase. This document helps us to understand
how HBase works and how is it different from other data bases. This document highlights about
the current challenges in data security and a couple of models have been proposed towards the
security and levels of data access to overcome the challenges. This document also discusses the
workload challenges and techniques to overcome. Also an overview has been given on how HBase

has been implemented in real time application Facebook messenger app.

Acknowledg ment

I, Rohit Reddy Nalla want to express my gratitude to Dr. Sam Sengupta, the advisor of this
project has been a constant inspiration and has offered guidance in every possible way one could

imagine. [would also like to thank my family and friends for their encouragement and support.

Table of Contents

1. Introduction to Database SYSIEMIS...........cc.coveveiurveiieeieeecee e 8
LT INEEOAUCHION. ...ttt ettt ettt et et esbeenbesaeens 8
2. Introduction t0 HBASE.........cc.cooiuiiiiiie e 11
2.1 BACKEIOUNG.c.uiiiiieiiiciieiie ettt ettt ettt e e e e et esaaeesbeeesseensaeeeseenns 11
2.2 Data MOACL.....couieiiiiiieiieiecee ettt 11
2.3 HBase Implementation and Operation.............ceereeeruierieeiiienieeieesie e eiee s 14
2.4 RUNNING HBASE.....cuuiiiiiiiiiieiee ettt ettt ettt et ens 17
2.4.1 Understanding of basic queries for table creation and updates... 17
2.4.2 Connecting HBase With Java...........cccceeviiiiiiiiiiiniiciicee e 21
3. Current Data Vulnerability and Workload challenges..........c.ccocoovnininininncnnnneecrs 27
3.1 Current issues N Data SECUTILY.......cccueiiiiiiiiiiiieiiee e 27
3.2 Security model based on Kerberos Authentication and Access Control Lists............. 27
3.2.1 INtrOAUCTION.eeiiiieiie ettt et e 27
3.2.2 Kerberos ProtoCOL........cccuiieiiieeiiiieeiieeeiee ettt eeave e esrae e enee e 28
3.3 HBase cell level security model...........cooouieiiiiiiiiiiiniiiee e 32
3301 CRll tAES..uiiuiieniieeiieeiiece ettt et ettt e nae e 32

3.3 2 Cll ACLI Sttt 33

3.3.3 Visibility labels (cell 1abels).......cccoeouieiiiiiiiiiiiiiee e 33
3.3.4 HFIle VETSION 3. . ettt et e e e enee 37
3.4Running multiple workloads on a single HBase Cluster.............cccooovoeieieivrieinicien. 37
B TTRIOTIC. ...t 38
3.4.2Decreasing the priority of long running requests........cc.cooevrveieieeririerenennn. 39
3.5Data Backup and Disaster RECOVETY..........cocoiimiiiiiieieececee e 40
3.5.1SNAPSROLS. ... 40
3.5.2HBase RePIICAtION.........o.coviieiiiiiieie e 41
3.5.3HBASE EXPOTt.....oiiiiiiiiieiee s 41
3.5.4C0DY TaDIC......ooo s 42

4. HBas@ 1N REAL LIME@........couuiiuiiiiciii s 43
4.1 BACKZIOUNA. ...ttt ettt ettt ettt et e e et aee e 43
4.2 Workload Challen@es........cccueecvieruiieiieiieeieeeite ettt ettt e ssbe et e eaveesseeeenas 43
4.3 Implementation of HDEFS.......c.ooiiiiii e 46
4.3.1 Name Node (Master) and Data n0des..........ccceeevuiieiiiieiiieeciie e 46
4.3.2 AVALAr NOGE. ..ottt sttt st 48
4.3.3 HDFS Transaction loZZING.........ccceriiriiniiniiniieienienieeieeecsreee et 49
4.3.4 Distributed Avatar File SYStem........ccceecuieriiiriiieiieeiieieecie et 50

4.3.5 Enhancements for Real time Work Load.........coeeeeeeveeeeieeeeeeeeeeceeeeeee e, 50

4.4 Implementation of HBase at FAaceboOK...........cccovveeiiiiiiiiiieiiieeecee e 52
4.4.1 ACID PrOPEITIES. . .cccvieriieeieetieeieeitieeteeteesteesseessteeseessseesaessseeseessseenseessseans 52
4.4.2 Availability ENhancements............ccceeiieriiiiiieniieiiesecese e 53
4.4.3 Performance IMProvements.cccueerueeeirerrienieenieeeieerieeeereeseesneesseessneennees 54

4.5 Production Deployment and challenges............cccceeviiiiiiiniiiiiiniiieeiceee e 56
A.5.1 TSN, c..vieuiieiieeiieeiee et et e et ete e et e et e ssaeesaeesbeesbeeesaeesaessseenseessseenseennseenseensns 56
4.5.2 Region Splitting (Manual v/s AUtOMALIC)........ccvervrerrierieeriieeieeieeeieesieeeneens 57
4.5.3 Schema Changes..........couevuiiiiriiniiieceee e 57
4.5.4 Data IMPOTLS...ccueieeiieiieeieeeiie ettt rte et e et e e e e s teesseesseeesseesseeenseesnseesssens 58

4.6 Future implementations at Facebook............ccevvieiiiiriiiiiieniiciecieeeece e 58
5. HBAsE VS RDBMS ...t 60
5.1 BaCKEIOUNG........oiiiiieiiicii ettt ettt sttt e sabe et essaeesaeesbeenseennnas 61
5.2 ANALYSIS. . eiitieiiiiieieeie ettt ettt ettt e e et e et e ta e te e b e enbeenbeeateestenteeseenes 61
6 FULUIE WOTK ..ot 63
RETETEICES.eeieiii ettt e e et e e e ta e e e teeeestaeessseeesseeessseeensseesnsaeennseeas 64

Chapter 1

Introduction to Database systems

1.1 Introduction

A Data base is a place where data is stored in an organized way. The stored data is used
across various aspects of an application which helps in processing the requests efficiently. In the
recent times, usage of internet has brought some revolutionary changes across the world and
many online websites and applications have been developed to give users more benefit. While
developing an application (or website) maintaining a data base has become relatively important.
Maintaining the customer™s data and catalogue has become a challenging task since then. That is

when Database management systems (DBMS) came into picture.

Database management systems (DBMS) are kind of software applications which allow
implementing CURD operations i.e. create, update, read and delete the data in tables. It interacts
with end users, third party applications, and internal applications within the system and with the
database itself to capture and process the data efficiently. MySQL, PostgreSQL, NoSQL, Oracle
etc. are some of the famous data bases. Generally depending on the database models they support
DBMSs are classified. Most of the well-known data bases have supported relational model which
has been represented by SQL since 1980%s. Initially in 1960s some General-purpose DBMSs
have typically served the needs of many applications and they were cost effective too. However
sometimes it has introduced some unnecessary overhead and later there was a realization that it
was not a favorable one to use. Then special-purpose DBMSs came into picture which served the
purposes. To make use of email system in the most effective way, special-purpose DBMS were
used to handle email systems. As days passed on there were lots of advancements in terms of

8

technology perspective. In the areas of computer storage, networks and memory the performance
expectations of the DBMS have been started growing. In mid 1960“s “Data Base Task Group”
has come up with an navigational approach (CODASYL approach) where records in the data
base can be found by navigating relationships from one set of records to another set of records
and they were searched in a sequential order. However in further validations, it was proved to be

a difficult procedure and it requires rigorous workout in order to serve applications.

There was a growing concern on handling large data banks. An efficient service should
be given to the users in such a way that their activities should not be affected though there is any
change in the internal or external representations of their data. In this context, in 1970*s Edgar

Codd wrote numerous papers that outlined a new approach to the database construction that

found a break through by A Relational Model of Data for Large Shared Data Bank[S/ . He

described a new approach for maintaining large data bases and for storing data in it. Unlike
navigational approach where records are stored in linked lists, he came up with storing records in
tables of fixed length, where each table is considered as one unit. For example, to create a table
with user account information such as user ID, password, contact no., date of birth etc., user ID
should be unique so that all the other fields are stored by putting the user ID as reference key or
primary key. Whenever if we want to collect this information, we can search for it with the help
of a primary key so that information stored in the optional tables can be found with the help of
this key. With the help of Tuple Calculus (branch of mathematics) he has developed a system
which can maintain the operations of a regular database like CURD operations and also it can
sort the datasets in one single operation. Based on the Codd™s theory IBM had started working
on a modal named System R. Their idea was to develop multi-table systems, in which all the data

which is stored for record could be split instead of storing the whole data at one large place.

They implemented Codd*s concepts successfully and they have created a product of System R
known as SQL or DS. Later it became Database 2(DB2). In later 1970%s based on IBM"s
research Larry Ellison also came up with Oracle database. These Relational Database systems
(RDBMS) have become popular and were used for a small scale to medium scale applications.
SQL language is used for writing queries in order to implement the basic CURD operations. It
has powerful features and query languages like MySQL and PostgreSQL. Secondary indexes can
be easily created and it performs several inner and outer joins, count, sorting across the rows and
columns in data base tables. However if we need to measure or scale up with large amounts of
data and random read/write access, then we“ll find difficulty in performing these actions with

RDBMS. It makes distribution of data complex with ACID properties and Codd*s 12 rules.

To overcome these drawbacks then came the next generation databases known as NoSQL
databases. These databases are kind of document-oriented databases depend upon data attributes
in the XML document while querying. XMLs are primarily used to for interacting with multiple
systems. NoSQL databases don“t have any fixed table schemas and they scale horizontally.
HBase is one of the NoSQL database which is an open source database with a distributed
column-oriented built on top of HDFS. It is mainly used to for large data sets to give read/write
access in real time. Though it has not been a direct alternative for traditional databases it
performance has been deliberately improved in the recent times and it has been playing a key
role in number of data-driven websites and web applications like face book messenger etc. In the

coming section I have discussed about HBase and how it works.

10

Chapter 2

Introduction to HBase

2.1 Background

HBase was developed as a part of Apache™s Hadoop project. It was designed post

Google“s Big Table and it was written in Java. HBase project was started by the end of 2006 by

(2]
Chad Walters and Jim Kellerman at Powerset. . The main purpose of this project is to process

large amounts of data and provide a kind of fault-tolerant mechanism to store minor amounts of
non-zero items caught within large amounts of empty items. HBase is primarily used when real-
time read/write access is required for huge data bases. Mike Cafarella worked on code of the

working system initially and later Jim Kellerman carried it to the next stage. HBase was first

released as a part of Hadoop 0.15.0 in October 2007. [2] The project goal was holding of very

large tables like billions of rows X millions of columns. In May 2010, HBase advanced to a
major project and it became an Apache Top Level Project. Several applications like Adobe,
Twitter, Yahoo, Trend Micro etc., use this database. Social networking sites like Facebook have

implemented its messenger application using HBase.
2.2 Data Model

In this section a brief overview has been given on HBase data model for a better
understanding. Generally an application (or a web application) stores all its content or data in the
form of tables in data base. Here in HBase the table cells i.e. the intersection of rows and column
coordinates are timestamp versioned which are assigned automatically by HBase at the time of

inserting the cell into the table. Thus each cell has a time stamp version and the content of the

11

cell is an array of bytes. Each row in the table has row key and the rows keys are represented by
byte arrays. Thus anything from string to serialized data structures can represent the row keys
and the sorting is done based upon these row keys. In the same way each table has a primary key

which is used to access all the information in that table.

In HBase Rows and columns are congregated into column families. Columns belonging
to the same family will have a common prefix so that they can easily be recognized and sorted.
For suppose, assume there are two columns with names sport: cricket and sport: soccer. These
two columns comes under the sport column family since both of the columns belongs to common
group sport. In the similar way if we have another column like product: dell then this will come
under the product column family. These column family names can be made of any random bytes.
These columns families are designed as a part of table schema in the beginning itself. Thus if any
client wants to add another column sport: baseball then can be added to column family sport,
provided column family sport is already persisted in the table. All these column family members
are stored on the file system. As we discussed earlier that HBase is a column-oriented store, we
can also call it has a column-family-oriented store since all the storage specification and
modifications are done at the column family level and it"s better to have the general

characteristics and accesses for all the column families.

Tables are auto-separated by HBase into regions. Each region has a subgroup of table
rows. Thus a region is denoted by the table name and its first row and last row. Initially a table
consists of single region but when the size of the region grows and after a specific increase of
size then it will be split into two new regions of equal size. Until the split whole load of the
region will be handled by only one server hosting the original region. Regions are the units that

get circulated over the HBase cluster of servers. Thus whenever a table size increases then the

12

region size will be increased and that results in distribution of the data load across the cluster of
servers with each node carrying the part of the total tables region. In this way the excessive load

of the table gets distributed.

The below 4dimensional data model will give an understanding of the above concepts.

Row
ROWKEY Column Family Column Family
Column Column Column
Version 2
Version 1 \L
Data
Data

Figure 1 — Four Dimensional Data Model

As we discussed earlier in the above figure we can see each row is represented with a unique row
key and it is treated as a byte array. The data in the row is structured into a column family and

each row has the same set of column families. The column families have to be defined upfront

13

while designing the schema so that later we can update an extra field of the same column family
easily. Column families describe the actual columns and they are also called as column qualifiers.
Each column has versions so that one can access data based upon the specific version for a
column qualifier. Thus in order to access a data we need to give its row key, column family,

column qualifier and version.

2.3 HBase Implementation and Operation

Client Zookeeper HMaster

A 4
3

Cluster

e [/

Region Server 1 Region Server 2

Hadoop File

system

Figure 2 — HBase Model [2]

14

HBase is fabricated on clients, slaves and a master node (known as HBase master node)
which coordinates with the region server slaves. The architecture of HBase is similar to HDFS
and Map Reduce. The HBase master node usually assigns regions to the region servers which are
the registered ones and are also responsible to recover the failed region servers due to load issues.
The region servers carry the regions from one to many depending upon the data load and they are
also taking care of the read/write requests from the client. Whenever there is an excess load on a
region then it will be split into new two region and the region servers informs the master node
about this split and the new daughter regions so that the assignment of the replacement daughter

regions would be easy.

HBase depends upon Zookeeper which is an open-source server and acts as centralized
service for maintaining configured information, group synchronization and provides group
services. Zookeeper deal with an instance of it and it acts as an authority on the whole cluster
state. HBase deals with the fundamentals such as hosting the location of the root catalogue table
and address of the current cluster master. Usually assignment of regions are taken care by the
participating servers and at some instances it is done via zookeeper when these servers got failed
in the middle way. The advantage with the Zookeeper is it has the ability to pick up (or recover)
the assignment transaction from the state where it has been left by the crashed server. At least if
you want to bootstrap a client side connection to the HBase cluster, then the location of the
Zookeeper band should be provided to the client so that the client can navigate through the
zookeeper hierarchy to get to know about the servers and others attributes. In HBase the region
server slave nodes are listed or programmed in HBase configuration/regionservers. SSH based
remote commands are used to run the start and stop scripts. Cluster based specific configuration

are listed in the HBase configuration/ hbase-site files with .xml or .sh extension. Usually HBase

15

preserves data via hadoop file system API. Though there are multiple file systems to preserve
data it goes with the HDFS. However sometimes it writes to the local file system too by default.
With the initial installation of HBase we can go with the local file system but later on it*s better

to use the HDFS cluster.

HBase usually has two catalog tables internally to uphold the current data, location and
state of all the regions present in that particular cluster. These tables are called as —-ROOT and
.META. 21 The ROOT table holds all the information of the table regions of the .META and
META table holds all the list of user-space regions. Data entry into the tables is classified or
keyed by the region name which is the table name the regions belongs to, start row of the regions,
timestamp (time of creation), and the cryptographic hash function MD5 of all the former values.
If there are any changes in the regions like the disabling or enabling, splitting, redeploying the
region due to the server crash all these changes will be updated in the catalog tables so that they

can maintain the current state of all the regions in a cluster.

The process is that clients who are hitting the HBase for the first time connect to the
Zookeeper cluster initially to get the location of the catalog table -ROOT and then will obtain
the location of the .META region from the root table. Then the client searches for the location of
the hosting user-space region which is in the scope of .META region. In this way the client who
visits for the first time interacts directly with the regional server. Instead of following all these
repeated process for the new clients, caching the entire learnt pass through -ROOT and .META
locations and the start stop rows of the user-space regions will be good enough so that they can
easily get to know the hosting regional servers. In this way they can avoid the process of going to
the .META table every time to get the information. Thus they can easily know it from the cache

and this process can be continued until there is an error. When there is an error or a region has

16

been moved then the client consults the .META to learn about the new location and if that is also
been changed then it consults the —ROOT to figure out the location and this all information will

be cached so that it will be helpful for the other upcoming clients.

The writings (also known as logs) which we get at the region server are primarily
attached to the commit log which in turn is added to an in-memory known as memstore. If the
memstore is full then its content is pushed into the file system. This commit log will be hosted on
the HDFS so that it will be available at the time when the region server crashes too. When the
master node is unable to reach out the region server as it got crashed, then it just divides the
commit logs of the dead server by its regions. While reassigning, the regions which were on the
dead server range will pick these commit logs and runs them to get back to their original state
which was like before the failure. This helps them to work more efficiently in instances like

server failure.

2.4 Running HBase:

2.4.1 Understanding of basic queries for table creation and updates:

In this section we are going to discuss briefly about the running HBase and creating

tables and updating them.

HBase is an open source which can be downloaded from the Apache website which has
multiple mirror sites to download (6. Usually the HBase team recommends all the
uses/developers to install the HBase on Linux or Unix platforms. If it has to be run on the
windows platform then they recommend to install Cygwin. It provides the integration of the
windows based applications, tools with the Unix based applications and tools. It provides a Unix
like environment and a command line interface for windows.

17

http://www.apache.org/dyn/closer.cgi/hbase/

We can interact with HBase by launching the HBase shell by typing ,,./hbase shell” in

the directory. The output more or less looks in the similar way as shown below

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.98.5-hadoop2, rUnknown, Sun Tues Apr 4 23:58:06 PDT 2015

hbase (main) : 001:0>

Now let us create a table called “Songs List” in HBase with a column family “name”.

hbase (main) : 002:0> create 'SongsList', 'Songdetails'

0 row(s) in 4.2150 seconds

=> Hbase::Table - SongsList

The above statement has created a table “SongsList” and as I said earlier we need to create

a column-family for each table and we have named it as “Songdetails” for the above table.

If we want to look at the table info we can use “list” to fetch the details of the table as

shown below

hbase (main) : 002:0> list
TABLE

SongsList

1 row(s) in 0.0350 seconds
=> ["SongsList"]

If we want to know more information about the tables like the versions, size, block cache, list

of column families etc., we can use “describe” command.

18

To add some data into the table we use “put” command in HBase as shown below

hbase (main) : 004:0> put 'SongsList', 'rowkeyl', 'Songdetails:name',

'Itsyourlife'

0 row(s) in 0.0850 seconds

Here we have added data into a new row with rowkey as “rowkey1”. Here the “Songdetails”

is the column family in which we add a column “name” with value “Itsyourlife”.

As discussed earlier, we can pull out the entire row details using the “get” command and

rowkey attribute “rowkeyl” as shown beloww

hbase (main) :005:0> get 'SongsList', 'rowkeyl'
COLUMN CELL
Songdetails:name timestamp=1410374788088, value=Itsyourlife

1 row(s) in 0.0250 seconds
We can see that under column we have the columnfamily “Songdetails” with “name” as

column and its value as “Itsyourlife” with timestamp when the data was entered.

We use “Scan” command in order to fetch all the rows in the table. For that first let us add

one more row to the table “Songdetails” as shown below:

hbase (main) :006:0> put 'SongsList', 'rowkey2', ' Songdetails:name',

'"We will rock'

0 row(s) in 0.0050 seconds

Since we have two rows now we can use “scan” command in order to retrieve all the rows from

the table

19

hbase (main) :007:0> scan ' SongsList'

ROW COLUMN+CELL

rowkeyl column=Songdetails:name, timestamp=1410374788088, value=Itsyourlife

rowkey2 column=Songdetails:name, timestamp=1410374823590, value=We will rock

2 row(s) in 0.0350 seconds

We can observe that using “scan” we got all the rows present in the table. But if we want to
retrieve a particular row from the table then we need to add a condition such as start row and end
row in order to retrieve details of certain rows. To observe the difference let us add another row

key which has a rowkey and it starts with letter ,,t™ as shown below

hbase (main) :012:0> put 'sSongsList', 'trowkey3', 'Songdetails:name’,

'never together'

Now we will add a condition like we want all the rows with a rowkey greater than r and
less than,,t™ as shown below
hbase (main) :014:0> scan 'SongsList' , { STARTROW => 'r', ENDROW => 't' }

ROW COLUMN+CELL

rowkeyl column= Songdetails:name, timestamp=1410374788088, value=
Itsyourlife rowkey2 column= Songdetails:name, timestamp=1410374823590,value=

We will rock 2 row(s) in 0.0080 seconds

By running the above command it returned all the rows which started with r but not the row which
has started with t. The comparison is based upon the complete row key and since the rowkeyland
rowkey?2 are greater than r they have displayed these 2 rows. In the statement we have given the end

row as ,,t*. Thus it excludes all the rows which starts with row key ,,t“. Thus if

20

we want all the rows then we can exclude the end statement and it displays all the rows which

are greater than ,t".

In this way we can create tables with column families and update the data. The important
point to be noted is that we need to create column families before itself in order to add the
columns to the families later. If not the table has to be offline in order to add the column families

first which shows severe impact on the work load in real time environment.

2.4.2 Connecting HBase with Java

In this section we are going to discuss about the creation of tables and data manipulation using
Java. Before that I just want to discuss some of the predefined Java classes provided by HBase

which are used while connecting with HBase and for data manipulation.

In Java to manage HBase i.e. to create, list and drop the tables we use HBaseAdmin class. This

class is a pre-defined class provided by the HBase. The syntax is given below:

public class HBaseAdmin

extends object implements Abortable, AutoCloseable , Closeable[4]
HBaseAdmin implements these interfaces in order to perform the operations like create, enable,
disable, list and drop the tables. Abortable is used to terminate the server or client whereas the
Closable is used to close the data source. When we implement the closable interface, close()
method is invoked which closes the stream of the data and releases the resources which are

associated with the object.

In order to update, add and delete data HTable class is used and it is provided by HBase. The

syntax is given below:

21

public class HTable extends Object

implements HTableInterface [4]

It implements HTable interface which has methods like put, delete in order to add or delete
methods.

In order to access a table in HBase we can do it by creating an instance of the HTable as shown

below:
Configuration config = HBaseConfiguration.create();

HTablelInterface songsListTable = new HTable (conf, “SongsList”); [4]
HBaseConfiguration has a method create() which creates a configuration with the HBase
resources with the help of a config object. If we want to change the connection parameters in
order to run the HBase on a remote machine then set() method can be used. This config object
and table name are passed to the constructor by instantiating the HTable object in order to
access the table. In order to perform all these operations in java using the pre-defined classes
provided by HBase we need to download and add the hbase-0.94.8.jar to the class path. Also we
need to add some of the jars related to Zookeeper and Hadoop to the class path. Now let us

write a java program for creating a table:

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.HColumnDescriptor;

import org.apache.hadoop.hbase.HTableDescriptor;

22

import org.apache.hadoop.hbase.client.HBaseAdmin;

public class HbaseConnection

{

public static void main(String[] args) throws IOException
{
HBaseConfiguration hbc = new HBaseConfiguration (new Configuration()):;

HTableDescriptor htd = new HTableDescriptor ("Songslist");

htd.addFamily (new HColumnDescriptor ("Id")):;

htd.addFamily (new

HColumnDescriptor ("songName")); //adding colums
HBaseAdmin hba = new HBaseAdmin (hbc); //connecting
hba.createTable(htd); //done with table creation

} e

When we run the above program “Songslist” table has been created by invoking the constructor

of HTableDescriptor class. We have two added two columns i.e. “Id” and “songName”. Here ID

acts as a row key.

23

Now let us add some data to the “SongsList” table using the put constructor and display the

columns using the scan as shown below:

import java.io.IOException;

import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Get;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.client.Result;

import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;

import org.apache.hadoop.hbase.util.Bytes;

public class HTableExample

{

public static void main(String[] args) throws

IOException {

/* When we invoke the create method in HBaseConfiguration, it reads
the resources which are present in the hbase-site.xml and in hbase-
default.xml, and we need to make sure that these xmls are present in
the class path.*/

org.apache.hadoop.conf.Configuration config =
HBaseConfiguration.create();

/*This instantiates an HTable object that connects you to the table*/
HTable table = new HTable (config, "Songslist");

/* We are calling the put constructor in order to add a row by
instantiating the put object. The constructor converts the string into
byte array. */

Put p = new Put (Bytes.toBytes ("rowl"));

/* Now 1in order to set the data in the row we need to specify the
column family, qualifier and value by calling the add method.

Note: In order to add the columns, the related column families should
be present already in the table. */

24

p.add (Bytes.toBytes ("Id"),Bytes.toBytes ("coll"),Bytes.toBytes("1"));

p.add (Bytes.toBytes ("songName") ,Bytes.toBytes ("col2"),Bytes.toBytes ("I
tsyourlife"));

table.put (p) ;

// To retrieve data

Get g = new Get (Bytes.toBytes ("rowl"));
Result r = table.get (qg);

byte [] valuel =
r.getValue (Bytes.toBytes ("Id"),Bytes.toBytes ("coll"));

byte [] valuel =
r.getValue (Bytes.toBytes ("songName") ,Bytes.toBytes ("col2"));

String Strl Bytes.toString (value) ;
String Str2 = Bytes.toString(valuel);
System.out.println("Id: "+ valueStr+"Name: "+valueStrl);
Scan s = new Scan();
s.addColumn (Bytes.toBytes ("Id"), Bytes.toBytes("coll"));
s.addColumn (Bytes.toBytes ("songName"), Bytes.toBytes("col2"));
ResultScanner scanner = table.getScanner(s);
try
{
for (Result rr = scanner.next(); rr != null; rr = scanner.next())
{
System.out.println ("row exists" + rr);
}

} finally

{

// Closing the scannner

scanner.close () ;

25

} el

After running this program in eclipse IDE as java application, we can see the output by typing

the scan command

hbase (main) :007:0> scan 'Songslist'
ROW COLUMN+CELL
rowl column=Id:coll, timestamp=1378897861521, wvalue=l

rowl column=songName:col2, timestamp=1378897861521, value=
Itsyourlife row(s) in 0.0875 seconds

In this way we can connect to HBase with Java and its better to write such programs in maven to

manage the dependencies.

26

Chapter 3

Current Data Vulnerability and Workload challenges

3.1 Current issues in Data Security

As per the features of HBase, it has gained lot of interest from data management solution
companies with new perspectives, requirements and challenges. The default HBase
Configuration allows everyone to read and write data to all the tables in the database which is not
a good aspect for the companies who are implementing HBase. It has been a major concern for
various users like the health care providers who don*“t want to share their patient™s information
with everyone. In the same way there are many government organizations who want to give
access to sensitive data only to a certain section of employees within their organization. To
overcome this, firewalls can be setup by the admin in order to decide which machine has to be
given access to communicate with HBase. But once these machines got access to communicate it
can write and read data from all the tables. These machines are not restricted to use a section of
tables. Thus in this section we will discuss some of the security features which HBase has
provided for authentication and access to a certain data only and also a brief over view has been

given on some of the research work done in companies like Intel on these data security issues.

3.2 Security model based on Kerberos Authentication and Access Control

Lists (ACLs)

3.2.1 Introduction:

In the initial HBase releases it had the ability to protect the data against the unauthorized
users, hackers and sniffers. However it didn*t have the ability to stop the authorized users from

27

accessing the data from all the tables in the system who can accidentally or intentionally delete
or modify all the data. HBase configuration allows only authenticated users to communicate with
HBase systems. This authorization is achieved with the Simple Authentication and Security layer
(SASL) which takes care of authentication and message encryption on the basis of per
connection and is based upon the Kerberos protocol. We will discuss about Kerberos in the
coming section. This authorization is based upon the Remote Procedure call protocol (RPC).
Once the user authentication is done then the next target is to allow the user to access only
certain sets of data tables. For this purpose HBase has brought in Access Control List (ACL)
which describes set of rules for user to authorize a particular set of data. In ACL each entry
describes the user and the data to which he has the access. Thus whenever a user requests for an
access it uses the authentication mechanism which is based on Kerberos protocol to identify the
user identity and then it checks in ACL for its appropriate entry in order to give the access to the
data. It defines the authorization rules with a table or a column family or a qualifier. Users can

have this ACL from HBase 0.92 jar API.

3.2.2 Kerberos protocol

Kerberos is a protocol which authenticates the identity of user and server across a non-secure
network. This is a kind of client-server model. It uses cryptography keys like AES for a client to
prove its identity to server and the same way for a server to prove its identity to client across a
non-secure network. The whole process happens in the form of tickets and once their identities
have been proved the communication between them is also encrypted in order to safeguard their
data and business. Let us see how a client proves its identity and get an access to a service in

below steps:

28

e Initially the client sends an authentication request to Kerberos Authentication center

and proves its identity by receiving a Ticket Granting Ticket (TGT).

e Now in order to communicate with the server the clients sends a service request to
Kerberos Authentication center and if the service request is valid then it sends the

response via ticket and a session key.

e Then the client with the help of this service ticket contacts server for service.

Kerberos Distribution center

Sends Authentication request

A4

Receives TGT Authentication Ticket Granting

server Server

- Gets service ticket -
Client E, |

Service ticket

Server (HBase)

\4

Sends service request

Figure 3 — Kerberos model [§]

Moreover for HBase in order to communicate with HDFS and Zookeeper, a service session
has to be created which has to be more secure. The files which are written by HBase are stored in
HDFS. HDFS provides access based upon the users and permissions. Thus the files which are
written by HBase will have user as “hbase”. However the access control is based upon the user
name and thus every user who wants to access the system for service has to get the security

privileges as the user “hbase”. Thus HDFS will create some authentication steps which give

29

assurance that the user “hbase” is a trusted one. In the same way Zookeeper also has an Access

Control List (ACL) which gives access to users based upon the user name.

Since the users have successfully authenticated via Kerberos protocol, now the users should
be restricted to use only a certain sets of data for which he has access but not for all the tables in
the system. For that HBase came up with an Authorization mechanism where it has enabled the
Access Controller coprocessor (ACC) by adding it to the HBase configuration files for the
coprocessor classes of master and the region server. Coprocessor runs random code and executes
it before and after the operations like put, deletes and get. Thus using this random code ACC
stops all the operations (like put, get and delete) and it checks whether the user has access or
rights to this data and then it allows executing the operations. If the user does not have the rights
then it won"t allow performing all these operations. In this way it restricts the user to certain sets

of data based upon the rights and access he has. The below flow diagram explains the process.

30

Client

Y

Pre operations | Access Controller
(runs random "
code)

Access Denied No

Yes (User allowed to access)

Operations

A4

Post Operations
(runs random
code)

Figure 4 — Flow diagram

The admin can manage the user rights by using some commands which are present in

HBase shell:

Grant [table] [family] [qualifier] 4]

Revoke [table] [family] [qualifier] 4]

For instance admin can restrict user to a certain sets of data in a table named “Songslist” using

a grant command as shown below:

grant [User-X] [R] [Table-Songslist] [Family-Artist]

31

The above grant command tells that the admin has given rights to user X to read table

“Songslist” and also the column family “Artist”.

By then this was still a basic security feature proposed by HBase and they were trying to

contribute more to this model. This was tracked under ticket HBASE-6096 in JIRA [5].

Though the primary goal of giving the access to a user for only certain sets of data was
achieved with this security model, there were some concerns on the levels of access. With this
model, a user can be granted access to a table or a particular column family. As discussed earlier,
all the data which is written into HBase systems are stored into cells. If a user has been granted
access to a column family then he can access all the cells in the column family. However this
model does not support the feature of giving access to a particular cell in the column family.
There were some other researches also going in Yahoo and in 2009 they have proposed a
Hadoop security model which supports the user authentication but it didn*“t meet the cell security
requirement. Then at Intel, developers were inspired by the HBase security model based on
Kerberos and they started working on a model which offers cell level access and security. In the

next section we are going to discuss about this model.

3.3 HBase cell level security model

3.3.1 Cell Tags:

All values which are written to HBase are stored in cells. These values are stored in the form of
key/value pairs. Additionally a tag has been introduced which is associated with the cell. These
tags can store the metadata for a cell. In order to persist this information a new HFile version 3

has been created.

32

3.3.2 Cell ACL’s:

A new security feature can be added on top of cell tags which are the cell ACL*s and Visibility
expressions. Previously we have used Kerberos protocol and Coprocessor mechanism to give
access to the user in order to access a table or a column family level. In this security model,
access will be given to the user only to a particular cell in which he wants to read or write the
data. He won"t get access to all the other cells in the column family. It is Backwards compatible
with existing installs and code and that is an additional feature. It uses the existing operations
like put in order to add the cell ACL to the tag. It uses existing facilities i.e. for suppose if we use
the ACL tag feature and hit the HBase previous version server it won"t crash. It just ignores it.
Cell ACLs are scoped to the same point in time as the cell itself which means Cell ACL just
becomes another piece of the cell and it allows simple and straight forward evolution of security
policy over time without any expensive updates. And if we want to revoke access to a user at a
specific point of time a new ACL is created and stored back exactly at the coordinates in HBase

and it will override the value which is present over there.

3.3.3 Visibility labels (cell labels):

Initially the HBase team at Intel has started adding tags to the cell which can store the meta data

for a cell. The detail implementation and support of tags can be seen in HBASE-8496_and

HBASE-7897. Then they have made enhancements in such a way that the Access Control List

(ACL) is applied on the cell level so that if a user has met the ACL entries then access should be
granted to that user. Then the visibility labels are added to the tags which provide security on the

cell level.

33

https://issues.apache.org/jira/browse/HBASE-8496
https://issues.apache.org/jira/browse/HBASE-7897

E

acl table 43\ (Operations have
0| 2 ACLs 35 {optional)
\1 o attributes

Table or CF
i B mwmms-h AccessController eoprocessor
\EL
Authunzes o
._ v
ta s
Region

RegionServer
? 7/

Figure 5 [12]

When we store a cell we can create these visibility expressions which are Boolean and
store it along with the cell. These visibility labels are added in the form of label expressions tags
and it has a logical expression at the end like &,| and !. In order to create these visibility labels or
expressions they have designed a new Visibility Controller coprocessor which verifies the user
authorization based upon the meta data label stored in the cell and the label associated with the
user. The labels which are associated with the user are handled by some new shell commands
getauths and setauthss;. The visibility expressions can be added to the cells by using the

below command

Mutation#setCellVisibility(new CellVisibility(String labelExpession)) ;s

This is done by using an HBase API and it takes care that the older servers does not take this

metadata for cells by throwing an error.

34

As discussed earlier the visibility labels are added with logical expressions and for
instance let™s take a label set which has stored with the cell as SECRET & !PUBLIC. Now any
user who has a label which is associated with secret and not public will have access to see that
particular cell. Thus any user who has only secret label also will not have any access to the cell
since there is nothing mentioned like whether he is private or public. In this way by adding the
visibility expressions access can be granted to user on the cell level. They also have a thought of
adding some extra plug-ins while building or making extra changes to the label. Also some
inputs regarding the encryption have been given towards the server side in order to avoid the
leakage of data if there is any. This cell based security model is in experimental phase in HBase

and in a year or so it could be implemented on a full fledge.

For instance take an example where we need to define labels corresponding to the roles

as per the company security policy which is shown below:

Column Family: X

No No No Yes

Global No

Table No No No Yes Yes

Column No No Yes Yes Yes

family

Cell No Yes Yes Yes Yes
Table 1

35

In the above table we have defined the labels in such a way that an employee doesn“t
have access to any of the data base tables. Whereas the developer has been given access only to
cell level in order to make any changes in that particular cell. Similarly the test and service
accounts have been given access to different levels. Only Admin has been gives access to all the

levels of the data base to make changes.

Now we can assign one or more roles (or labels) to each user by associating their principle with a

label set as shown below:

hbase> set auths 'service', ['service']

hbase> set auths 'testuser’, ['test' |

hbase> set_auths 'manager’, ['admin’ |

hbase> set_auths 'dev', ['developer' |

hbase>set auths“emp™,[,,employee]

hbase> set auths 'qa’, ['test', 'developer']

In the above statements we can observe that a manager should have access to all the levels in the
data base and thus he has been associated with the label ,,admin®. Similarly QA has been
associated with developer and test role in order to access all the column families and all the cells

associated with it.

Now based upon the labels defined in the table above we can apply appropriate visibility

expressions to cells as shown below:

hbase> set _visibility 'user', 'admin|service', \ { COLUMNS => X' }

36

The above statement says that in user table access has been given to the column family X and its
cells to the users who are associated with the roles admin or service. Since we have applied the
labels to the user, now if an employee wants to access the column family X in the user table he
will not be able to do because the visibility expressions has been set to admin and service roles
but not for employee in the user table. Thus, in this way the users can be restricted and can be

given access to only a particular cell or a column family based upon his role.

3.3.4 HFile version 3:

In order to reflect these latest changes they have created a new HFile version 3 which
stores all the newly written files in it. They have created this new version by making changes to
the HBase config xml files. The HFile version 3 has all the new features like the visibility
expressions and storing and retrieving of those expressions. It also as the server side encryption
features too. Since all the existing files were of version 2, these new features will be present only
to the newly written files as they are of version 3. They have planned to push the version 3 file

for HBase 0.98 release.

3.4 Running multiple workloads on a single HBase cluster

HBase gives equal priority to all the requests, workloads and this works well with the
single workloads on a cluster. However due to this huge scale of data i.e. in petabytes sometimes
multiple requests or workloads have to be run on a single cluster. These workloads are planned
based upon their access patterns and resources they need. However if there are multiple
workloads or requests on a single cluster then this can cause a serious inconsistency. Thus to
overcome this multi-tenancy issue HBase team and researchers outside have started looking into

some approaches.

37

3.4.1 Throttle

In order to achieve the consistency in multi-tenant environment we can use insist on some
limits and instructions to users so that all the workloads won*t bother the system at a time. This
technique is called Throttling. In general, Throttle is a kind of device (valve) used to adjust the
fuel flow and power. Similarly, here we impose some manual rules for specific user and
workloads to wait till certain requests i.e. till X requests/sec in order to move the other workloads

which needs to address first. For example consider the below statement
Throttle User X to Y req/min

The above statement imposes limit on the requests of User X for a certain time i.e. till Y
requests/min. Once this time limit has been met then the requests of User X are allowed to

interact with HBase in the backend. The throttle can be changed at the run time too.

Throttle

B Useri
A VA s AR e M User2

ar

recy’s

Time

Figure 6 - Throttle results [12]

38

From the above graph we can observe that user 1 and user 2 have started simultaneously
without any priority. Later on once the admin has decided that user 1 should get more preference
then he has throttled back the User 2 for ,,n* req/sec and thus it came down compared to User 1.
These throttles can be written in hbase shell and the throttling can be dropped by using “NONE”
command in shell. We can also exempt one of the workloads from throttle by using setting the
“GLOBAL BYPASS” to true. Thus we can exempt some of the workloads in production in

order to reduce the impact of Throttle.

3.4.2 Decreasing the priority of long running requests

At present there is no technique to guess the estimated time each long request can take.
So we can“t separate the long requests from the short requests based on the time estimations. De-
prioritizing affects only the scans in the table. Thus if there are any simultaneous events we can
delay the scans up to some time by setting up the hbase.ipc.server.queue.max.call.delay property

in HBase.

Another approach to de-prioritize the long requests is by using the handlers and queues.
For each queue a hander is dedicated to handle the requests. Thus all the scan requests which are
long enough can be separated into one single queue and one single handler is dedicated for that.
Where as in for all the other short scan requests can be pushed into different queues which are

available to accommodate.

Apart from the above techniques there are some other approaches which are still in
development phase. One approach is prioritizing the requests as per the user interest. Previously
in Throttle technique we used to prioritize the all the requests irrespective of the table and user.

But here a user can have his own scheduling policy where he can decide his own priorities for

39

each table and the table can decide the priorities of each workload requests. Another approach is
if the admin has an idea about the workload in each table, and then he can distribute the
workloads into different machines. Thus based upon the priority the workloads on those
machines can be executed. However these techniques are still in early stages of development. For
now Throttle technique is widely recommended and it has been included in the latest release of

HBase.

3.5 Data Backup and Disaster Recovery

As many data-driven companies started implementing HBase, Data backup and also
restoring the huge data (as big as petabytes) after a disaster has become a major concern. There
are some mechanisms which can assist with data backup and restoring the same when there is
any disaster. Moreover these backup mechanisms should be suitable for the business

requirements. An over view has been given on some of these mechanisms.

3.5.1 Snapshots

All the data which is written into HBase is stored into HFiles and log files in HDFS and
also into the memory of the region servers. Within HBase we have a feature named snapshot
which captures the region which has all the data stored in HFiles. There is no performance issue
with this process since it takes place only in seconds. It captures the data by creating an unix
kind of link to Hfiles stored in HDFS. The captured data is stored in the form of meta data in
Memstore and that block is stored in HFiles itself so that the system can roll back to the snapshot

easily within seconds.

40

Snapshot

Region A Region A
HFile Memstore HFile HFile
HFile HFile HFile

Figure 7 — Snapshot of Region A

In the above figure we can see that the data which is stored in HFiles in Region A is captured and
catalogued in the form of meta data in Memstore. This can be used at any time to restore the data

from the snap shot provided the system should be offline while restoring.

3.5.2 HBase Replication

HBase is a process where the data is captured all the rows from one data center and it is
replicated across all the other data centers. Thus due to any disaster if there is any data center
failure then all the users are redirected to the other data center which has all its data. This
replication has a minor draw back where sometimes the current edits to a table may not be
available across all the other data centers at that point of time. However it is available at a later

stage.

3.5.3 HBase Export

Export tool has been provided by HBase to export the data from the tables into the
directories in HDFS. To export data it implements map reduce jobs and makes a call to hit the
cluster using HBase API and fetches the data from each row in the tables and it writes to the

directory in HDFS. This tool is very high in performance. It also provides the convenience of

41

copying the data to anywhere like onto the remote cluster too by setting up a valid remote
connection. Similarly to restore the data we have a tool named Import which can capture the data

which has previously copied by the Export table.

3.5.4 Copy Table

Copy table is also used to copy the data from the tables. Similar to Export, Copy table also uses
Map Reduce jobs and makes a call using the HBase API. However the difference is in Copy
Table the data is directly copied into another table which is present in the same cluster so that it
can be used as a local to the cluster. There is a performance backdrop with this table since it
copies every individual row into the destination file using put requests which could lead to fill up

the memstore in destination folders.

42

Chapter 4

HBase in Real time

4.1 Background

In the above section we have discussed the advantages of the HBase over the traditional
RDBMS for large data-driven applications. In real time HBase has been widely used in for
various applications like facebook, Twitter, Adobe, Yahoo etc. All these applications handle
numerous data read/write requests. In this section we shall present in detail about one of these

applications i.e. Facebook and why HBase has been used for it.
4.2 Workload challenges

In 2009, Facebook has decided to build its messenger app which is a single system which
supports multiple messages from different platforms like email, text messages, Facebook account
messages etc. In order to store all these different modes of communication it should also
maintain a single archive and to handle such large data Facebook needed new database
infrastructure. It was the largest engineering project which Facebook has handled till then and it
had a team of around 15 engineers. Till then Hadoop was using MySQL for user data, the
Cassandra data base for the inbox search and the Haystack for photos. They have been using
Hadoop in combination with Hive for analytics and data storage. However for some of the latest
applications those have been arisen at Facebook required very high write throughputs, low
latency and random performance to read. In terms of random read performance, MySQL storage
engines were performing well but they were not performing well in terms of the latency and

random write outputs. It was a difficult task for the MySQL engines to scale up in order to

43

balance the load and time efficiency. MySQL engines were also seemed to be an overhead for

the organization since the hardware was expensive.

Apart from the performance issues, there were some work load challenges and

requirements which engineers at Facebook had to think while developing the messenger

application. They were as follows:

Undoubtedly the moment this application has gone live in production around hundreds of
million people will be using it and large amounts of data which might scale up to many
petabytes should be handled with rigid uptime. Thus Elasticity plays a key role and the
capacity of the storage systems should be increased enormously in order to balance the

load and utilization.

The primary goal of the messenger app was to persist all the messages from multiple
platforms like email, text messages and Facebook chat messages under one tree. In order
to store these messages for each user separately a new threading modal has to be

designed.

The other major challenge for the engineers is the migration of the data where the
existing user messages have to be moved into the new data modal. For the quick

migration random access and ability to do large scans will be needy.

There will be a lot of messages in each user*s mail box and these messages should not be
deleted unless done by the user. Thus the messages will be increasing daily and large set
of database tables should be maintained with a schema that is indexed by the users with

their messages.

44

With these workloads as the number of rows increases, write performance will be
decreased deliberately for storage engines like MySQL and it also results in random I/O

operations.

There will be a high write throughput as there will be millions of messages exchanged
between the users every day and also the messages of each user will be stored in an
archive for reference. If a user wants to read those messages there might be a latency
issue while retrieving large number of messages from the database with the engines like

MySQL.

The other concern was the recovery from the disaster. The application should be in a
stable way so that it can provide efficient service with high uptime to the users in all
conditions like software or hardware failures and upgrades. The service should also be in
a position to manage the loss of data from a data center and to serve it from other data
centers within a short period of time. The developers were also thinking to stabilize the
service in such a way that if any individual center gets failed (though it happens very

rarely) there should be no downtime.

Thus after going through all these challenges and requirements, engineers at Facebook

decided to go with the HBase and Hadoop as the technologies which can lay strong foundation of

storage for these kinds of huge data-driven applications. The decision was made based upon the

performance of the HBase which has high write-throughput and had consistent key-value storage.

They have believed it and they were confident that it can address all the challenges which were

not solved till then. Though they had some draw backs with the HDFS Name Node failures, they

were confident to overcome this by developing a well-built name node whoch would be helpful

for their in-house operations too. Storage of data in large HBase/HDFS clusters

45

also lead to the failure of the system and it was not achieving the objective of fault isolation. To
overcome this they have come up with an idea of storing the data in small clusters. By that time
there was an HBase community which had lot of forums and blogs to discuss and helped lot of
developers who want to implement HBase in their applications. Thus the engineers at Facebook

were confident in achieving the goal.

4.3 Implementation of HDFS

HDEFS is a file system which can store large files which has massive amounts of data
which can scale up to terabytes. It has been designed in a specific pattern such as write-once,
read-many-times pattern. However as we discussed earlier, there were some issues with the
Name node failure. Name node acts as a master node inn HDFS and it is the one and only node
which acts as a master. Thus whenever the name node is failed, the whole HDFS cluster will be
down until the name node got recovered. This draw back bothered a lot of engineers in the
market who were dependent on the HDFS particularly for the applications whose uptime should
be all day. The engineers at Facebook too had this issue but it was only once since they have
started implementation of the HDFS. Since their hardware was reliable in most cases and
software had a good end to end testing before the deployment into production they have faced
only once where the Name node has crashed. However they have made some enhancements to

the HDFS architecture in order to overcome this single point of name node failure.

4.3.1 Name Node (Master) and Data nodes

In HDFS cluster there are two kinds of nodes which function in form of master-worker
where the name node is the master and the data nodes are acted as worker nodes. It manages the

filesystem namespace. It has all the file names and the meta data of all the files and directory in

46

HDFS. This information is stored insistently in name space file and all the transaction logs in the
edit log. Name node also has an idea of all the data nodes on which the blocks of a file are
location, though it does not store the locations since the information about the locations is
restored from the data nodes when the system has started. Data nodes acts as the worker nodes
where when a request has been made by the client via name node then they store or retrieve the
blocks of a file based upon the requirement and they update about the blocks they have stored to
the name node. Thus for a cold-start of NameNode has to deal with two things. First one is to
read the name space file (also known as file system image) and applying the transaction logs and
then it saves the new file system image to the disk. Second one is to processing of all information
of the blocks which they get from the data nodes so that they can recover all the block locations
present in the cluster. Thus the Biggest HDFS cluster they have has about 150 million files and
above mentioned two stages take equal time to complete their tasks.[3) On an average for a cold-

start it takes about 45 to 50 minutes.

As discussed earlier there was a growing concern on what if the master node (NameNode)
gets failed. To overcome this Hadoop has provided a secondary name node which acts as a kind
of backup name node. The secondary name node usually runs on the separate machine since it
requires lot of memory and CPU as the same the NameNode has. The backup node avoids
reading the name space file (file system image) from the disk again if the name node got failed
but still it has to process all the block location of the files which come from the data nodes. Thus
it takes around 20 minutes which is not at all good for an application which needs a 24/7 uptime.
Thus the engineers at Facebook were not happy with it as the recovery time was high. To

overcome this they came up with a new node which is called as Avatar Node.

47

lient interacts with Active and Standb

in order to retrieve the blocks.

. Write Read Transaction
Active Avatar Standby Avatar
Node (Name Transaction Node (Name
Node) \ -

NFS Filter

Getsithe block logati

Data Data
Nodes Nodes

Figure 8 — HDFS model [3]

4.3.2 Avatar Node

They came up with the new architecture where the HDFS cluster will have two nodes.
One is the Active Avatar Node and the other one is the Standby Avatar Node. Previously the
HDFS cluster used to have only one Name Node. In this case the Avatar Node acts as a wrapper.
Moreover it acts like a wrapper around the Name Node. At Facebook all HDFS clusters use
Network File system in order to store the copy of the fsimage and another copy of transaction

48

logs (also known as edit logs). As we discussed earlier, the Name Node (Avatar Node in this
case) writes all the transactions to the transaction log which is stored in the NFS file system.
Then the Stand by Avatar Node reads all these transaction logs from the NFS file system and it
starts storing these transaction logs into a separate name space. In this way it maintains a
separate namespace which is almost similar to the actual name space which is maintained by the
Active Avatar Node. It also takes care of check pointing the Active Avatar Name Node and
creates a new fsimage so that the stand by name node no more acts as the secondary NameNode.
Since it has all the information which the Active Avatar Node (Primary Name Node) had it takes

very less time (in seconds) to recover if the Active Avatar Node got failed.

Previously the data node used to interact only with the Name Node if there were any
request from the clients. But in this case it interacts with both Active Avatar and Stand by Avatar
as well. Thus the Stand by will have all the recent information about the blocks of the files so

that it can serve the application if the Active Node got failed by any instance.

4.3.3 HDFS Transaction logging

Usually HDFS accounts the newly allocated blocks with its id“s to the transaction log
only when the file is closed or flushed. Since the engineers at Facebook doesn“t want much
failover, they have written new transactions to the edit logs (transaction logs) about the block
allocation so that the Standby can get to know about the newly allocated blocks. Thus it allows
client to continue writing to the files from where it has stopped before the failover. Moreover
they have formatted the edit logs to have transaction length, id and checksum so that the stand by

Node can read the whole transaction.

49

4.3.4 Distributed Avatar File System

Engineers at Facebook were putting in lot of efforts to overcome the failover events and to
provide better efficiency. They have developed a Distributed avatar File system(DAFS) which
acts as a layer on the top of the client which provides clear access to the HDFS in the case of fail
over. It has been integrated with the Zookeeper distribution service which holds a zZNode which
has the physical address of the Avatar Node. Thus when a request has been made by the client,
DAFS file system checks with the respective zNode for the Avatar Node and it directs all its
calls/requests to it. If a request has went through any network error, then the DAFS requests the
Zookeeper for a change of primary node. Thus they have designed it in such a way that the
zNode will have the physical address of the new Avatar Node and the DAFS will make its all
requests/calls to this new Avatar Node. Thus they have made the fail over event more transparent

for an application.

4.3.5 Enhancements for Real time Work Load

HDFS usually has high throughput time but he response time was very low. In case of any errors
or failures, the response time was very high and this was a major challenge for HDFS. To

overcome this issue we have come up with some enhancements:

Remote Procedure Call (RPC) Timeout: To send RPC*s Hadoop generally uses tcp
connections. Whenever there is a tcp-socket timeout, instead of declaring a RPC time out the
client sends an alert to the RPC server and the client will wait for the response until the server is
dead. However this wait has sometimes been a continuous one and it is not a good thing for a
real-time application. Hence they have come up with a different strategy. Thus when client

makes a RPC to Data Node and if it gets failed instead of waiting for it it"s better to fail fast and

50

try for a different Data Node. Thus they have added an extra feature of specifying an RPC time

out whenever a server has started with an RPC session.

Recover Lease: Usually HDFS supports only a single writer for a file and a lease will be
handled by the NameNode to get adjusted with the semantic. There are many instances where an
application fails to open a file which was not closed properly earlier. In order to succeed in this
aspect HDFS-append has been called repeatedly on the log file. The append usually trigger*s a
soft lease to expire. Thus in order to withdraw the log file*s lease, the application has to wait for
the soft lease period which is almost for a minute by default. Thus it takes a lot of time and also
an additional cost is imposed because of the HDFS-append operation which usually takes times
for a write pipeline establishment and it will be more in the case of error and it includes more
than one Data Node for it. Thus to avoid this they came with an API called “Recover Lease”
which revoke®s a file lease clearly. When the Name Node receives the recover lease request it
starts the recovery process and before that it will change the lease holder of the file to itself. It
returns the status update to the application if it was success or not so that it can attempt to read

from that file.

Local Replicas: At some instances in order to improve the performance and efficiency
application stores data in the HDFS. However for reading and writing latency has been a major
concern in HDFS. If the reading and writing has been done to a local machine then the latency
was pretty less. To overcome this latency issue they have made a major enhancement to HDFS
client such that it identifies that there is a local replica of data and it uses that local replica for

reading instead of involving the Data Node. In this way they have enhanced the performance.

51

4.4 Implementation of HBase at Facebook

Developers at facebook had made some enhancements to HBase as per their requirements
of the application in order to achieve the performance efficiency and durability. Some of their

enhancements have been discussed briefly below:

4.4.1 ACID Properties:

As discussed earlier, HBase does not obey some of the ACID properties. However the
engineers at Facebook were expecting some of the ACID properties to be followed by their
database systems. The engineers had a strong belief in the consistency of HBase and moreover
its MVCC (like the Read Write Consistency Control (RWCC)) architecture which has provided
strong isolation and the HLog which has provided sufficient stability. However they still decided
to make some changes so that the HBase followed to some of the ACID properties like the

Atomicity, Consistency etc. which they needed.

Atomicity is capability of the database to ensure that in a transaction either all the tasks should
be performed or none of them should be performed. Thus a transaction is said to be atomic if it
follow the above rule. In HBase achieving the row level atomicity was the primary goal. Though
the RWCC structure had given some guarantee, this was not possible due to the Node failure. As
discussed earlier in HBase the Region servers are responsible for the read/write requests from the
client. Thus when there are numerous entries into a single row, while writing these transactions
to the HLog if the region server got failed then only partial writings will be made into the
transaction. Thus either the complete transaction will not be failed or performed successfully.

Thus it did not obey the Atomicity property. To overcome this they have come up with the new

52

concept of log transaction which is known as WALEdit where each transaction will be fully

completed or not at all written.

Consistency guarantees that only valid data which obeys all the rules and properties is written
into the data base. When a particular transaction fails which results in an invalid data to be
entered into the database, then it stops the invalid data and reverts back to the previous state in
order to follow the rules. As discussed earlier, in order to achieve performance and low latency
developers had made some enhancements to HDFS in order to identify the local replica of data
and use that instead of involving the data node. In the similar way, HDFS has provided some
replication to HBase in order to handle the consistency that HBase has guaranteed. While writing
the transactions, HDFS has set up a pipeline kind of connection in order to ensure that all the
replicas should send an ACK once they get the data. In this way when HBase does not get an
ACK or an ACK of data not being sent properly then it does not continue further. Since all the
write transaction logs are present in HLog, when HBase doesn“t get any positive ACK, it will

roll back the HLog and obtains new blocks. In this way it achieves consistency.

4.4.2 Availability Enhancements

Online Upgrades: One of the concerns was the cluster downtime. The downtime was too high
and one of the major reasons was due to the system maintenance. Initially they have identified
that Regionservers which are responsible to serve regions were taking minutes of time to stop
when a stop request has been issued to them. This is due to the long compaction (compressing
unused data) cycles. To overcome this, instead of these long compact cycles they have made
them interruptible so that they can favor region server downtime. This move has reduced the

downtime to seconds which indeed reduced the shutdown time of the cluster. Another concern

53

was with the complete Start and Stop of the cluster by HBase for software upgrades. Instead of
full start and stop, they have added some rolling restart scripts to perform the upgrades for one
server at a time. When a region server has been stopped, the master node again assigns regions to
a region server automatically and thus it reduces the downtime. Though many defects were
raised due to this rolling restart scripts which related to reassignment and region off lining, they

have overcome by rewriting the Master which integrated with Zookeeper.

Log Splits:

When a region server dies, usually the master node would split all its Hlogs and replayed them
before the region can be reopened for read and writes. Since there were HLogs per server this
was a very time consuming process. To overcome this they have started utilizing zookeeper for

splits across the region servers where the master organizes a distributed log split.

4.4.3 Performance Improvements

In order to enhance the data insertion in HBase they have started focusing on sequential writes.
As discussed earlier, a data transaction is applied to a MemStore which is an in-memory cache.
When this MemStore reaches a maximum point then then the transaction data is copied into an
existing HFile where these files are immutable and sorted based upon the key/value pairs
contained in it. However sometimes instead of writing into an existing HFile they are written into
new HFiles. A large number of read requests will be issued on these HFiles for results. Thus in
order to improve the read performance these HFiles have to be compacted (or compressing) these

HFiles by removing the unwanted data which has been created during updates.

Implementation of Compaction: Compaction is a process where we compress the unused data

in the database files which has been created during the updates in order to improve the

54

efficiency. Though the older versions are removed a metadata of these files is kept to use in case

of any conflict during replication.

Usually the read performance is based upon the amount of files present. This can be managed
well with the help of a proper compaction algorithm. If the compaction algorithm is not written
well, it might affect the network efficiency too. Thus the developers at Facebook had put in lot of
efforts in order to write an efficient compaction algorithm. Previously Data Compactions was
done in two different ways like Minor or major. Minor compactions were done for the files
which were smaller in magnitude but they do not delete process or get rid of the unused data.
This has resulted in HFiles with larger magnitude than necessary. However in the major
compaction used to delete the unused data and it used to compact all the major HFiles
unconditionally. Thus due to this draw back in the minor compaction iit had an impact on the
cache efficiency of the blocks and it had an impact on further compactions too. Thus they have
done some modifications by merging the two different approaches into one single code path to
make the files small in magnitude which resulted in getting rid of the unwanted data. Once this
problem got resolved the next concern was the latency. Due to the existing compaction algorithm
the latency was around 25 milliseconds which seemed to be high for the developers at Facebook.
This was happening due to the existing algorithm where the minor compaction was happening
unconditionally for the first 4 HFiles provided a prompt has been reached for the minor
compaction of the first three HFiles. Thus they have come up with a modification to the
algorithm by stopping the unconditional compaction for files which are above the certain size
and skip it completely if good enough files were not found. Thus, in this way they have dropped

the latency.

55

Improvisation of read performance: Read performances can be improved by keeping the files
very less in number with the help of compaction which results in reduced random I/O operations
too. Moreover developers at Facebook had an idea of skipping particular files for some queries
so that the I/O operations can be reduced in order to improve the read performance. They have
used Bloom Filters for this mechanism. They provide an efficient time-constant method to query
if a particular row or a column is present in HFile. Bloom filters are added to the end of the HFile
and through the process of folding the filters are cached in memory. Thus when we query for a
particular row or column it first looks in the cache bloom filter for the HFile and in this way it

skips some of the files.

4.5 Production Deployment and challenges

In this section we are going to discuss briefly about some of the operational experiences they

have faced during the testing and in production.

4.5.1 Testing

While designing the HBase as per their needs, they were primarily concerned about the
durability of the open source code of the HBase and also ensure the same if there are any future
changes. In order to fulfill this, they wrote an HBase testing program which generates data which
can be written into HBase. Thus the tester writes all this generated data into HBase and also read
the data in order to verify if the data has been added or not. They have also selected and killed
some of the processes in the cluster and verified the returned database transactions were

successfully written or not. This helped them to test a lot of issues.

56

4.5.2 Region Splitting (Manual v/s Automatic)

HBase offers a feature called automatic splitting where when the region size is increased
then the region is automatically split into 2 regions. However at Facebook they have developed
and implemented the manual splitting instead of the automatic one. While creating the table, they
manually presplit the table into certain regions of equal size. When the size of the region got
increased, they start rolling splits in these regions. The main reason to opt for manual splitting is
the data grows uniformly across all regions. With the auto splitting there might be a huge flow of
split and compactions on all the region servers at same time as the size of the data increases
uniformly in all regions at same time. Whereas with the manual splitting, they can control the
splits across the time thereby controlling the network 1O load across the regions which results in
decreasing the production load too. Thus as per their experience, they came to a conclusion that

automatic splitting is not appropriate for the applications which has uniform distribution of data.

4.5.3 Schema changes

One of the major drawbacks of HBase is it does not support online schema changes to an
existing table. If we want to add a new column family to an existing table we can“t do it right
away. For this we need to stop the access and disable the table, then add the new column families
and again give access to table for operations. In order to perform this operation, they have to stop
the workload and they were not in a position to do that. Thus in order to overcome this draw
back they have created and added some column-families to the table before going live itself so

that they can be used in future if there is any need.

57

4.5.4 Data Imports

Efficiently importing the existing legacy message data into the HBase without any
latency was one more concern. They have done this job by issuing data base put requests from
Hadoop Job. Since these put requests were sent across the servers it would saturate the 10 of the
network and it has also created severe latency issues in the initial release. The developers were
not happy with this kind of latency since it might show severe impact on production workload.
Thus they came up with a bulk import method where it partitions large amount of data into
several regions using the map job and then it used to compress the map job output by GZIP

compressing and the reducer job writes data directly to compressed HFiles.

4.5.5 Network 10 traffic

Once the HBase was launched live in production, after a couple of months they came to
know that the Network 1O traffic was increased. They have used some statistics tools and log
scraping to estimate the network IO on one region server for a 24 hour period. They came to
know that due to the major compactions and the minor compactions the network IO traffic was
increasing. The traffic across these two compactions was around 85%. They have increased the
compaction interval from daily basis to weekly basis in order to control the network 10 traffic
and they were successful. They also got benefitted by excluding some of the column families

from being logged to the HLog.

4.6 Future implementations at Facebook

HBase is still in early stages at Facebook and it was implemented only in messenger app
initially. Since it got successful in production they were plans to implement HBase in other areas
as well at Facebook. Some of the use cases were Operational Data Storage, Puma(Real time

58

analytics), search indexing etc. They were also focusing on some of the areas of HBase where
improvisation is need like for load balancing in the regions, capacity to recover quickly to
network partitions, rolling restarts for software upgrades etc. Also there has been some research
going on the cross data center replication since these applications serve the same data actively

across different data centers.

59

Chapter 5

HBase vs RDBMS

5.1 Background

Since long time “HBase vs RDBMS” has been a debatable topic for many of the
enthusiasts who are working in this area. In this paper I just tried to give a glance on both the

data bases and its implementations, performance for similar kind of issues.

As mentioned earlier, HBase is an open source data base with a distributed column-
oriented built on the top of HDFS. It is mainly used for large data sets to give read/write access
in real time applications. It has been mainly designed in such a way that it can handle scalability
issues. It can hold very large tables like billions of rows X millions of columns and it can be
horizontally segregated and replicated across thousands of product nodes habitually. Various
data structure serializations, storage and retrieval of the data have been showcased by the table
schemas in HBase. Whereas RDBMS is based upon the relational model of data and it follows
the Codd™s 12 rules which were proposed by E.F. Codd in 1970. It categorizes data into multiple
tables which has rows and columns and each row has a unique key so that querying can be done
using this primary key. The data base is totally concerned on rows and it strictly follows the Acid
properties. SQL language has been used for writing the queries to implement the CURD
operations. In terms of flexibility and features RDBMS is the perfect choice for small and
medium scale applications. It has efficient open source features like the PostgreSQL and MySQL.
However coming to the larger data base applications in terms of data, random access and

read/write operations RDBMS couldn“t fulfill its requirements. There was a lot of

60

performance deficiency and it eventually lead to the breaking of the ACID properties, Codd's

12 and some traditional data base properties for which the RDBMS was famous for.

5.2 Analysis

To have a better understanding a comparison let us compare both the databases in terms

of some features and characteristics:

Let us assume there is a service launched and we are using RDBMS for it. For launching of
this public service, will be hosted on a MySQL instance which has a well-defined schema and
operated remotely. As service starts getting widespread there will be a lot of reads hitting the data
base and we need to memcache (It is a distributed memory caching system used to enhance the
performance of the websites by caching the data so that maximum number of hits to an external API)
the queries. As there is lot of data to be cached and there are lot of hits coming in durability of the
transaction is tough to maintain with the vertical distribution. Thus if it does not obey the durability
and consistency then there is no point of following ACID properties for which the RDBMS is famous
for. As per the RDBMS characteristics the scaling is done in a vertical approach. Thus if there are too
many hits to the database we need to increase the power of CPU and RAM which is an expensive
thing. It is also not a good option to handle too much of data on one server just by increasing its
power. If there is any server crash due to the data load then that™s not good as the down time is not
acceptable in customer point of view. Thus to handle these sort of issues it”s better to go for multiple
nodes which is no longer a vertical approach in terms of scaling. In some instances there could be a
chance of writes getting slower and in order to avoid this we need to drop the secondary indexes and
go for the primary key look ups which no longer makes this RDBMS. Since we have larger hits we

need to denormalize the data in

61

order to enhance the performance of the data base and to reduce the complexity of querying the
joints. Thus there are lots of drawbacks in handling the large data on a single node with the

vertical approach.

Now let us assume launching a service which has large data to be read and write on a
NoSQL data base like HBase. To launch the service, it will be hosted on a shared, remote
NoSQL instance. Here the large data is stored more sequentially into rows and columns using the
primary indexes. As the data is increased it will be split across all the multiple nodes or regions
which are available. So there is dependency on a single node or a server. The scaling is done as a
process of automation. Thus when we add a node to the cluster which we point to and then run
the region server so that it automatically balances the load on all the regions. In RDBMS we used
to increase the power of CPU and RAM in order to distribute the data which was a costly affair.
But here in HBase data is distributed on multiple nodes which are a hardware which we can get
relatively for a lower price in the market. As the data is distributed on multiple nodes there is
nothing to worry if one of the nodes got crashed. Thus for more efficiency and to avoid the
tension of server crash or downtime it"s better to go for HBase in order to handle large sets of

data in terms of scalability, efficiency and speed.

62

Chapter 6

Future work

Most researches in HBase community are going on the data security and access levels as
it is a sensitive issue which can cost a huge loss for business and companies like Intel, Yahoo,
Facebook etc are also trying to make valuable contributions towards it. Every year in May all the
developers, researchers, speakers, business leaders who are a part of HBase committee will meet
at the HBase conference. Multiple presentations and discussions on current big data issues, new
use cases and features will take place. Also the backdrop of the schema design where the
column-families have to be pre-defined was one more concern and the members of HBase are
working towards a possible fix. This year the HBASECON 2015 is going to take place at
California where all the people who are connected with HBase will meet and discuss the
progress and contributions towards HBase. We can listen some user experiences of running
HBase in production. I assume HBase is going to play a key role in terms of big data and
analytics in coming days and it has been used in various fields like finance, bio informatics etc.
Also many top data-driven companies like twitter, Facebook, Mozilla, and Adobe etc have

already started using it.

63

65

