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Deep learning in business analytics: A clash of expectations and reality

a r t i c l e i n f o a b s t r a c t

Our fast-paced digital economy shaped by global competition requires increased data-driven decision-making based on
artificial intelligence (AI) and machine learning (ML). The benefits of deep learning (DL) are manifold, but it comes with
limitations that have – so far – interfered with widespread industry adoption. This paper explains why DL – despite its
popularity – has difficulties speeding up its adoption within business analytics. It is shown that the adoption of deep learning is
not only affected by computational complexity, lacking big data architecture, lack of transparency (black-box), skill shortage,
and leadership commitment, but also by the fact that DL does not outperform traditional ML models in the case of structured
datasets with fixed-length feature vectors. Deep learning should be regarded as a powerful addition to the existing body of ML
models instead of a “one size fits all” solution. The results strongly suggest that gradient boosting can be seen as the go-to
model for predictions on structured datasets within business analytics. In addition to the empirical study based on three
industry use cases, the paper offers a comprehensive discussion of those results, practical implications, and a roadmap for
future research.



1. Introduction

The last decade was shaped by huge improvements in data stor-age and analytics capabilities (Baesens, Bapna, Marsden, Vanthienen,
& Zhao, 2016; Henke et al., 2016). What started as the big-data (Kushwaha, Kar, & Dwivedi, 2021) revolution brought us the age of constant digital change,
accelerating globalization, and the continu-ous move toward a digital world economy (Davenport, 2018; Warner
& Wäger, 2019). Companies operating in today’s world have to deal with global competition in an ultra-fast marketplace (Davenport, 2018), and AI-enabled
information management (Borges, Laurindo, Spínola, Gonçalves, & Mattos, 2021; Collins, Dennehy, Conboy, & Mikalef, 2021; Duan, Edwards,
& Dwivedi, 2019; Verma, Sharma, Deb, & Maitra, 2021) is the key to navigating the digital storm of the 21st century.

Artificial intelligence (AI) and machine learning (ML) have been widely accepted as general-purpose technology for decision-making (Agrawal, Gans,
& Goldfarb, 2019) across a variety of domains, indus-tries, and functions including biotech, healthcare (Sounderajah et al., 2022; Young & Steele, 2022),
marketing (Verma et al., 2021), human resource management (Votto, Valecha, Najafirad, & Rao, 2021), finan-cial services (Schmitt, 2020; Singh, Chen,
Singhania, Nanavati, & Gupta, 2022), insurance (Rawat, Rawat, Kumar, & Sabitha, 2021), risk man-agement (Fujii, Sakaji, Masuyama, & Sasaki, 2022; Schmitt,
2022b), cy-bersecurity (Taddeo, McCutcheon, & Floridi, 2019; Thorat, Parekh, & Mangrulkar, 2021), and many others (Kumar, Kar, & Ilavarasan, 2021).
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2021); and (3) hardware improvements, especially GPU’s made it pos-sible to
train those highly power-hungry models with those huge data-sets. Accurate
performance for unstructured high-dimensional data sets became only
possible due to the advances of DL, which significantly en-hances the field of
machine learning (Jordan & Mitchell, 2015) to tackle further use cases and
take over tasks that were initially only reserved for humans (Agrawal et al.,
2019).

However, there seems to be a certain confusion when it comes to the
adoption of deep learning in business analytics and information man-agement.
Hence this paper is an attempt to bring clarity towards why DL might be used
or not used for certain business uses cases, and what the reasons are, and also
gives recommendations on where to apply DL in practice.

Most analytics departments across the corporate value chain have
traditionally been using predictive statistics and machine learning mod-els
such as GLMs, CART, and ensemble learning. Those models are vital tools to
help with several analytics tasks that directly impact the bottom line of firms
and organizations (Siebel, 2019). Also, we have moved from fundamental
progress in AI to the application of deep learning in vari-ous sciences,
businesses, and governments (Lee, 2018; Stadelmann et al., 2018). Despite
the huge success of DL, a closer investigation of the cur-rent literature reveals
that the adoption rate for DL in business functions for analytic purposes is
quite low.

Chui et al. (2018) analyzed 100 use cases to demonstrate the cur-rent
deployment of AI/DL-related models across industries and business functions
compared to other models referred to as traditional analyt-ics. The result is
that while the adoption of DL starts to increase, it seems most units remain
working with the older more established an-alytical models that have been
successful already years ago. McKinsey (Chui et al., 2018) also distinguishes
departments that have tradition-ally been using analytics as compared to
departments that are foreign to quantitative decision enablers. McKinsey
draws a clear picture that shows that the only areas where DL has been
utilized so far are tradi-tional analytics arms that have the natural capabilities
and skillsets in place to work with modern AI, while technology foreign
departments are reluctant to adopt DL models. But even in business units with
tradi-tionally strong links to analytics – like risk management and insurance

– the utilization of DL remains relatively low and traditional models are
still the go-to solution.

Deep learning is on the way to becoming the industry standard and is
broadly perceived as general-purpose technology for decision-making,
however, business analytics is still in its infancy when it comes to adopting
this technology. DL does not prevail within business analyt-ics functions as
perceived due to the current hype and job descriptions (Kraus, Feuerriegel, &
Oztekin, 2019).

The main issues why it is not easy to develop and deploy DL – espe-cially
for small to medium-sized corporations – can be partially mapped to the three
reasons why DL found its breakthrough in recent years. The following
bottlenecks could be identified when it comes to the adoption of DL in
business analytics functions:

(1) Computational Complexity: The hardware necessary to train and
validate DL models on large datasets is tremendous, which makes
infrastructure investments quite expensive. This stands in large con-trast
to the question of whether the development and implementa-tion of those
models will materialize and be reflected in a future value increase (Bughin
et al., 2017).

(2) Infrastructure: Companies need to be able to harvest a continu-ous flow
of unstructured data to capture the value from DL, which is difficult if the
necessary “big data” infrastructure is not in place (Bughin et al., 2017).

(3) Transparency: Another reason is the nature of DL itself. DL is mainly a
black box, which means it can predict correctly, but we lack a causal
explanation of why it arrives at a certain decision (Samek & Müller, 2019).
This makes it problematic for industries, which are subject to regulatory
supervision.



(4) Skill Shortage: Talent (Kar, Kar, & Gupta, 2021) is required to im-
plement those models as well as subject matter expertise to define use
cases (Henke et al., 2016). The current supply and demand gap for ML
experts makes it difficult for small- and medium-sized corpo-rations to
utilize advanced AI.

(5) Leadership Commitment: Full management support to establish and
drive a company-wide AI strategy is also a vital prerequisite for increased
adoption speed (Kar et al., 2021).

Many studies about the adoption of DL in business analytics seem to
ignore its general value contribution, which should come in the form of
improved prediction accuracy. DL must make a business case for itself to
justify its adoption, but this is not always given. Also, complexity and
infrastructure justifications cannot be the complete picture as resources are
increasing consistently, powerful processors and databases do exist, and once
a model is trained, the resource requirements are not that significant anymore.
Another reason why DL might be lacking in certain areas could be its ability
to outperform existing AI/ML models.

Several standalone studies comparing the predictive ability of deep
learning against traditional machine learning methods on structured data sets
have concluded that DL does not outperform tree-based en-sembles (Addo,
Guegan, & Hassani, 2018; Hamori, Kawai, Kume, Mu-rakami, & Watanabe,
2018). This stands in contrast to the claim that DL offers performance
improvements across the board as indicated by Kraus et al. (2019) and also to
the general assumption that DL needs to be adopted in every business
function (Chui et al., 2018). While the success of DL for unstructured data
problems such as image recognition and NLP is beyond doubt, the reality of
DL for structured data within companies’ business analytics functions is less
clear and is the focus of this article. Structured data with fixed-length feature
vectors are vastly present in relational databases and standard business uses
cases.

This paper investigates the following two research questions:

• RQ1: Does DL outperform traditional ML models for supervised learning
problems in the case of structured data with fixed-length feature vectors?

• RQ2: Is Deep Learning – despite its popularity – always the right AI/ML
model within business analytics and information manage-ment?

The core contribution of the paper is to paint a clear picture of deep
learning in business analytics and information management in terms of its
performance on structured datasets. Comments such as “DL can be a simple
replacement of traditional models” are too general and not al-ways true. For
structured data, tree-based ensembles as gradient boost-ing seem to be at least
on par with DL across different domains. In sup-port of this claim, an
empirical test using three case studies based on real-world data is presented.

Concrete, this paper will contribute to the current body of literature in the
following ways:

(1) DL is compared to traditional machine learning models such as GLMs,
random forest, and gradient boosting based on three real-world use cases
within the context of business analytics to verify the assumption that DL
does not outperform traditional methods on structured datasets.

(2) Comprehensive discussion based on the results of the empirical study
including practical implications for researchers and professionals.

(3) In the end, a roadmap for future research directions to further inte-grate
AI/ML with business analytics and information management is presented.

This article is structured as follows: Section 2 introduces the machine
learning models used in this study - logistic regression, random forest,
gradient boosting, and deep learning. Second, the experimental design is
presented, which includes an explanation of the dataset, preprocess-ing steps,
and the software setup. In Section 3, the numerical results from the three case
studies based on real-world data/business problems
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are presented. All three case studies show that in the case of structured data
(tabular data) DL does not have a performance advantage over the tree-based
ensembles random forest and gradient boosting machine. Section 4 discusses
the technical implications of these results, implica-tions for practice, and
future research directions, while Section 5 con-cludes with a summary.

2. Methods and materials

2.1. Machine learning

This part gives an overview of predictive analytics and the ML mod-els
used in the experiment. The ML models used and compared in this
experiment are Logistic Regression (LR), Random Forest (RF), Gradient
Boosting Machine (GBM), and Deep Learning (DL). For a comprehensive
treatment of the underlying theory, it is referred to (Hastie, Tibshirani,
& Friedman, 2017) and (Murphy, 2012) for ML and (Goodfellow et al., 2016)
for DL.

2.1.1. Logistic regression
The Logistic Regression (LR) belongs to the big family of general-ized

linear models (GLMs). GLMs are characterized by taking as input a linear
combination of features and linking them to the output with the help of a
function where the output has an underlying exponen-tial probability
distribution like the normal distribution or the binomial distribution (Murphy,
2012). The LR is the standard method for binary classification and is widely
used in academia and industry. A linear com-bination of inputs and weights is
calculated and applied by feeding into the logic or sigmoid function
represented by

)= 1 .
( = (1)

1 + − + 1
The sigmoid function restricts the range of the output to be in the interval

[0, 1].

2.1.2. Random forest
The recursive partitioning algorithms Random Forest (RF) is part of the

family of ensemble methods and operates very similar to decision trees with
bagging. Bagging (Breiman, 1996) chooses randomly differ-ent M subsets
from the training data with replacement and averages
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these estimates. The random forest creates different decision trees and
averages the results in the end to reduce the variance of the prediction model
(Murphy, 2012). It is one of the most potent ML algorithms for classification
and regression tasks out there.

2.1.3. Gradient boosting
Boosting is like bagging but builds models in a sequential order in-stead

of averaging different results. The idea of boosting is to start with a weak
learner that gradually improves by correcting the error of the previous model
at each step. This process improves the performance of the weak learner and
moves gradually towards higher accuracy. The most common model used for
boosting is a decision tree. There are sev-eral different Gradient Boosting
(GM) implementations out there. This paper uses the gradient boosting
version implemented by (Malohlava & Candel, 2019) which is based on
(Hastie et al., 2017). Gradient boosting is one of the strongest prediction
models for structured data currently available.

2.1.4. Deep learning
Deep Learning comes with many architectures such as feed-forward

artificial neural networks (ANN), Convolutional neural net-works (CNNs), as
well as Recurrent Neural Networks (RNNs). The best architecture for
transactional (tabular) data, which are not sequential
– as in this study – is a multi-layer feedforward artificial neural net-work.
Other, more complex architectures such as RNNs do not possess any
advantage in those cases (Candel & LeDell, 2019). The architectural graph of
a feed-forward neural network can be seen in Fig. 1. The first column
represents the input features and is called the input layer. The last single
neuron represents the output to where the final activation function is applied
to. The two layers in the middle are called hidden layers. In case the neural
network has more than one hidden layer it is called a deep neural network. A
deep learning model can consist of sev-eral hidden layers and is trained with
stochastic gradient descent and backpropagation (Goodfellow et al., 2016).

A standard neural network operation consists of multiplying the in-
put features by a weight matrix and applying a non-linearity (activation
function). Input variables = ( 1, 2, … , ) are fed into the neural network,
weights = ( 1, 2, … , ) are added to each of the inputs and a linear

∑
combination of = is calculated. This linear

Fig. 1. The deep learning model used in this experiment is called a feedforward artificial neural network as the signal flow through the network evolves only in a forward direction. It is
the most appropriate choice for problems based on structured datasets as used in this study. It contains one input as well as one output layer and various hidden layers. At each node, a
linear combination of input variables and weights is fed into an activation function to calculate a new set of values for the next layer.
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Table 1
Description of datasets.

Business Area Observations Description

Total y = 0 y = 1 Balanced
∗

Features
Credit Risk 30,000 23,364 6,636 6636/6636 23 Prediction whether a customer is going to default on their loan payment
Insurance Claims 595,212 573,518 21,694 21694/21694 57 Prediction whether a policy holder will initiate an auto insurance claim in the next year
Marketing/Sales 45,211 39,922 5,289 5289/5289 16 Prediction whether a targeted customer will open a deposit account after a direct marketing/sales effort

∗
For the purpose of this study random under-sampling was used to bring the datasets in a balanced state

combination plus the bias term or interceptor serves as input for the ac-
tivation function to calculate the output Y, which serves either as input for the
next layer or represents the final output/prediction. A neural net-work is
trained with stochastic gradient descent and backpropagation.

Applying a non-linearity in the form of an activation function is es-sential
for neural networks to be able to learn complex (non-linear) rep-resentations
of the input datasets. The activation function transforms the output at each
node into a nonlinear function.

This study will build two different DL classifiers using the following
activation functions for the hidden layers:

• The rectified linear unit (ReLU): ( ) = max(0, z) ∈ [0, ∞),
• The Maxout function: ( ) = max( + ) ∈ (−∞, ∞), ∈
{1, …, }.

As the scope of the research is binary classification of structured data the
output activation function used is the sigmoid function ( ) =

1

1+
− = z

+1 ∈ [0, 1] in line with the binary cross-entropy loss function.

2.2. Experimental design

2.2.1. Data and preprocessing
This experiment is based on three datasets. All three use cases require the

same ML method, which is supervised learning and binary classifica-tion, and
were used in earlier studies, which allows for easy comparison of classifier
strength regarding earlier studies. To facilitate reproducibil-ity and
comparability the chosen data sets are all publicly available and can either be
downloaded from the UCI machine learning repository or from the public
machine learning competition site “Kaggle”, which regularly offers access to
high-quality datasets for experimentation. See Table 1 for an overview of the
case studies/datasets used in this study.

Credit risk. The first dataset represents payment information from Tai-wanese
credit card clients. It consists of 30,000 observations, of which 23,364 are
good cases and 6,636 are bad cases (flagged as defaults). Each observation
contains 23 features including a binary response col-umn for the default
information of the credit cardholder. The features within the dataset contain
mainly historical payment information, but also demographic information

such as gender, age, marital status, and education. 1

Insurance claims. The second dataset represents information about au-
tomotive insurance policyholders. It consists of 595,212 observations, of
which 573,518 are non-filed and 21,694 are filed claims. Each ob-servation
contains 57 features including a binary response column that indicates

whether or not a particular policyholder has filed a claim. 2

Marketing and sales. The third dataset stems from a retail bank and rep-
resents customer information for a direct marketing campaign. It con-sists of
45,211 observations, of which 39,922 were unsuccessful and 5,289 were
successful (resulting in a sale). Each observation contains

1 The “Credit Risk” dataset can be accessed here:
https://archive.ics.uci.edu/ ml/datasets/default+of+credit+card+clients
2 The “Insurance Claims” dataset can be accessed here: https://www.kaggle.

com/c/porto-seguro-safe-driver-prediction/data

16 features including a binary response column indicating whether or not the
person ended up opening a deposit account with the bank fol-lowing the

direct marketing effort. 3
The experiment required several adjustments. All three datasets are highly

unbalanced. For this study, random under-sampling was used to bring the
good as well as the bad cases into a state of equilibrium. This can also be seen
in Table 1. Example: If highly unbalanced datasets with a ratio of 90:10 are
trained it is very easy for the classifier to reach an accuracy of 90% by simply
going for the positive observations in all cases. To counter this naturally
occurring gravitation towards the majority class resampling is used to better
gauge the predictive ability of the classifiers. One drawback of under-
sampling might be a loss of information, but can be neglected as the major
purpose of the dataset is to benchmark the introduced ML classifiers.

Before model construction can take place, several other common
preprocessing steps have been performed. A required procedure in ML during
preprocessing is to transform categorical values into a numeri-cal
representation. Especially the “Case Study 3 – Marketing and Sales” contains
predominately categorical strings. Where necessary categorical features were
transformed into factor variables with a method called one-hot encoding. H2O
has a parameter setting called one_hot_explicit, which creates N+1 new
columns for categorical features with N levels.

For this experimental study, all three datasets are separated into a training
set and a test set with a proportion of 80:20. To tune the model parameters,
the training set will be further divided into different training and validation
sets using a method called cross-validation during the construction of the
classifiers. Cross-validation is used to increase the generalization ability of
the classifiers to unknown data and to avoid overfitting. This study uses 5-
fold cross-validation.

Model tuning in ML is a highly empirical and interactive process and is
essentially based on trial and error. The methods commonly used to help with
automating the model tuning process are grid search and ran-dom search.
Grid search automatically trains several models with differ-ent parameter
settings over a predefined range of parameters. Overall, this does not change
the basic necessity of trying out different combi-nations of parameters that
allow the classifier to adjust adequately to the underlying dataset. This study
used a random search, selective grid search, and manual adjustments to arrive
at the final parameter settings.

The four performance evaluation measures (Flach, 2019) used in this
study are AUC, Accuracy, F-score, and LogLoss.

2.2.2. Software
Data preparation and handling are managed in RStudio, which is the

integrated development environment (IDE) for the statistical program-ming
language R. R is one of the go-to languages for Data Science re-search as well
as prototyping in practice. The machine learning models in this paper are
developed with H2O, which is an open-source machine learning platform
written in Java and supports a wide range of pre-dictive models (LeDell &
Gill, 2019). This makes experimentation and research easier. The high
abstraction level allows the idea and the data to become the central part of the
problem and helps to reduce the effort required to reach a solution. Also, H2O
has the advantage of speed as

3 The „Marketing/Sales dataset can be accessed here: https://archive.ics.uci.
edu/ml/datasets/Bank+Marketing
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it allows us to move from a desktop- or notebook-based environment to a
large-scale environment. This increases performance and makes it easier to
handle large data sets. R is connected to H2O by means of a REST API.

3. Numerical results

In this section, three different case studies: Credit risk, insurance claims,
and marketing and sales are presented to demonstrate that deep learning while
being promoted as a superior ML solution has difficul-ties beating traditional
machine learning methods in some cases. Con-crete, logistic regression,
random forest, gradient boosting machine, and two different deep learning
classifiers were trained on each dataset. The first DL model was built with the
ReLU activation function whereas the second DL model was built with the
Maxout activation function. The ReLU activation function is widely used and
has shown to be superior in terms of accuracy and computational speed. The
Maxout activation function has been developed to improve classification
accuracy in com-bination with dropout (Goodfellow, Warde-Farley, Mirza,
Courville, & Bengio, 2013; Srivastava, Hinton, Krizhevsky, Sutskever, &
Salakhutdi-nov, 2014) and is hence the second choice for this experiment.
Several hyper-parameters were adjusted during the model training process to
improve the performance measured by the evaluation metrics AUC, Ac-
curacy, F-score, and LogLoss.

3.1. Case study 1: credit risk

Numerical results for the credit risk business case to accurately pre-dict
the default category of an applicant. The performance of deep learn-ing is
compared to traditional machine learning classifiers via the four evaluation
matrices AUC, Accuracy, F-score, and LogLoss. The best per-formance is
highlighted in bold.

Table 2 shows clearly that GBM has the best overall performance with the
highest AUC, Accuracy, and F-score of 0.774, 0.712, and 0.691, respectively,
including a LogLoss of 0.572. RF comes as a close second with an AUC of
0.773 and the same LogLoss as GBM of 0.572. Both en-semble models
achieve a better performance in the case of the credit risk dataset than the two
DL models with an AUC of 0.760 and 0.762, respectively. The DL + Maxout
model has a slightly higher AUC com-pared to the DL + ReLU, whereas the
LogLoss is reversed, which results in a similar performance for the two DL
models.

A graphical presentation of the results of each model sorted by the
evaluation measure can be found in Fig. 2. The best-performing model
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Table 2
Numerical results for case study 1 - credit risk.

Method Out-of-Sample Performance

AUC Accuracy F-score Logloss

Logistig Regression 0.712 0.671 0.653 0.623
Random Forest 0.773 0.711 0.688 0.572
Gradient Boosting Machine 0.774 0.712 0.691 0.572
Deep Learning + ReLU 0.760 0.700 0.646 0.592
Deep Learning + Maxout 0.762 0.703 0.687 0.599

Table 3
Numerical results for case study 2 - insurance claims.

Method Out-of-Sample Performance

AUC Accuracy F-score Logloss

Logistig Regression 0.629 0.594 0.586 0.667
Random Forest 0.636 0.598 0.584 0.667
Gradient Boosting Machine 0.640 0.602 0.588 0.664
Deep Learning + ReLU 0.628 0.597 0.540 0.670
Deep Learning + Maxout 0.633 0.597 0.534 0.669

GBM is highlighted via a callout text field, which shows the performance of
each evaluation metric.

3.2. Case study 2: insurance claims

In Table 3 the numerical results for the insurance case study are presented.
The goal is to accurately predict whether a policyholder is going to file an
insurance claim within the next year. The performance of deep learning is
compared to traditional machine learning classifiers via the four evaluation
matrices AUC, Accuracy, F-score, and LogLoss. The best performance is
highlighted in bold.

The results of Table 3 are similar to the first case study. GBM is the clear
winner in terms of performance with the highest AUC, Accuracy, and F-score
of 0.640, 0.602, and 0.588, respectively, including the low-est LogLoss of
0.664. RF takes second place with an AUC of 0.773 and a LogLoss of 0.664.
Both ensemble models achieve a better performance in the insurance case
study than the two DL models. The DL + Maxout model with an AUC of
0.633 has a slightly higher AUC compared to the DL + ReLU with an AUC
of 0.628.

A graphical presentation of the results of each model sorted by the
evaluation measure can be found in Fig. 3. The best-performing model
(Gradient Boosting) is highlighted via a callout text field.

Fig. 2. Graphical representation of the performance of each classifier for all 4 performance evaluation metrics for case study 1 - credit risk. Gradient Boosting Machine (GBM) achieves
the highest accuracy according to those results.
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Fig. 3. Graphical representation of the performance of each classifier on all 4 performance measures for case study 2 - insurance claims. Also, in the second case study, Gradient
Boosting Machine (GBM) achieves the highest prediction accuracy.

Table 4
Numerical results for case study 3 - marketing and sales.

such as random forest and gradient boosting. GBM turns out to be the model
with the highest utility for the type of problems analyzed in this study.

Method Out-of-Sample Performance

AUC Accuracy F-score Logloss

Logistig Regression 0.918 0.839 0.845 0.377
Random Forest 0.940 0.879 0.888 0.320
Gradient Boosting Machine 0.940 0.878 0.886 0.299
Deep Learning + ReLU 0.930 0.861 0.877 0.328
Deep Learning + Maxout 0.930 0.857 0.865 0.336

3.3. Case study 3: marketing and sales

Table 4 shows the numerical results for the marketing and sales case study
to accurately predict successful conversions based on a direct mar-keting
effort. The performance of deep learning is compared to tradi-tional machine
learning classifiers via the four evaluation metrics AUC, Accuracy, F-score,
and LogLoss. The best performance is highlighted in bold.

Based on Table 4 the results for the third case study are slightly different
from case studies one and two. GBM shares the maximum AUC of 0.940 with
RF. The RF classifier has also a slightly higher Accuracy of 0.879, and also a
higher F-score of 0.888 while GBM has still the lowest LogLoss, which
indicates the highest prediction reliability across the models. In line with
previous results, both ensemble models achieve a better performance than the
two DL models, which have both an AUC of 0.930. LR underperforms all
classifiers by a significant amount.

A graphical presentation of the results of each model clustered by the
evaluation measure can be found in Fig. 4. GBM and RF perform better than
the two DL models across all performance measures while logistic regression
turns out the be the weakest classifier.

4. DL in business analytics: a reality check

4.1. Discussion of results

To better understand the utility of Deep Learning for Business Ana-lytics
it was benchmarked against traditional ML models such as GLMs, Random
Forest, and Gradient Boosting Machine. Based on the four eval-uation
measures AUC, Accuracy, F-score, and LogLoss.

The empirical results of all three case studies presented (Credit Risk,
Insurance Claims, Marketing and Sales) suggest that DL does not have a
performance advantage for classification problems based on structured data.
Instead, the results are strongly in favor of tree-based ensembles

Kraus et al. (2019) benchmarked several baseline models against their
proposed embedded DNN model, which resulted in superior per-formance for
DL. The authors recommend fostering the adoption of DL models within the
field of Business Analytics and operations research. While the paper of Kraus
et al. (2019) is an excellent overview of DL for Business Analytics and is
very insightful, the analysis does not include GBM as a baseline model in the
comparison, which is widely used and known to deliver strong and robust
predictions on structured datasets.

Case study two in this study uses the same dataset as Kraus et al. (2019)
and according to the empirical results is GBM at least on par with the
proposed deep architecture by Kraus et al. (2019). Other studies by Hamori et
al. (2018) and Addo et al. (2018) included tree-based ensembles as gradient
boosting and came to the same conclusions as this study. As the findings of
this study are in line with several papers comparing the performance of DL
against other ML models there is strong evidence that tree-based methods
(GBM as well as Random Forest) do indeed outperform DL models (different
configu-rations have been tested) on most problems containing structured data.
Also, DL has several weaknesses such as computational complexity, huge
data requirements, transparency issues, and needs highly skilled labor, which
makes it often difficult to develop and deploy those models at scale.
Especially the computational complexity issue results in significantly longer
training and validation times compared to all other ML models.

4.2. Contributions to literature

RQ1: Does DL outperform traditional ML models for supervised learning
problems in the case of structured data with fixed-length feature
vectors?

The empirical results suggest that deep learning does not have a
performance advantage for classification problems based on structured
datasets with fixed-length feature vectors. The results are strongly in fa-vor of
tree-based ensembles such as random forest and gradient boost-ing. These
results strengthen the findings of earlier studies (Addo et al., 2018; Hamori et
al., 2018; Schmitt, 2022b) which were predominately focusing on
applications within credit risk management. This paper has extended the
application domain with insurance, marketing, and sales use cases and it was
shown that the outperformance of GBM for struc-tured datasets is not an
isolated phenomenon restricted to a single do-
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Fig. 4. Graphical representation of the performance of each classifier on all 4 performance measures for case study 3 – marketing and sales. Gradient Boosting Machine (GBM) is again
the winner, but the results are less significant than before, and Random Forest (RF) achieves a very similar performance.

main – it is a fact that can be generalized across different fields that depend on
business analytics and information management for power-ful data-driven
decision-making.

RQ2: Is Deep Learning – despite its popularity – always the right AI/ML
model within business analytics and information manage-ment?

Deep learning should be regarded as a powerful addition to the ex-isting
body of ML models instead of a “one size fits all” solution. Earlier studies
(Chui et al., 2018; Grover, Kar, & Dwivedi, 2022; Kar et al., 2021; Samek &
Müller, 2019) have identified different barriers to AI adoption as
computational complexity, missing big data infrastructure, lacking
transparency, skill shortage, leadership commitment, and miss-ing strategic
guidance. All of those findings have the potential to im-pact the adoption
speed of DL across different domains. In addition, the findings in this paper
reveal that the prediction accuracy of DL is not always superior compared to
other ML models. The results strongly suggest that gradient boosting can be
seen as the go-to model for most business analytics problems. It is fast, not
too complex, and delivers for use cases based on structured data the best
performance currently avail-able. The results are clear, however, business
analytics experts should carefully consider the type, characteristics, and
volume of the data at hand to make a final decision about the correct model
choice. This is an important overall conclusion and an additional factor that
impacts the adoption of DL for data-driven decision-making in business
analytics and information management.

4.3. Implications for practice

It has been proven that data-driven or evidence-based decisions are
superior compared to pure intuitive business decisions and a compre-hensive
analytics strategy has become necessary for businesses across all industries to
capture value at the bottom line. One of the challenges associated with
becoming a digital enterprise is how exactly to leverage digital technologies
and especially advanced analytics and AI. Current discussions about AI and
digital strategy are strongly focused on the ap-plications of DL, but this is not
the best way to approach digital trans-formation. This focus resulted in the
problematic assumption that DL adoption in business by itself can be
regarded as a benchmark – thereby ignoring the question of utility that always
needs to be asked before the deployment of any new method or technology.

The main explanation why DL has not found its way into the differ-ent
business functions as expected is often explained by computational
complexity, lacking big-data infrastructure, the non-transparent nature

of DL (black-box), and a shortage of skills. But as was demonstrated in this
paper, an additional explanation for the lack of adoption in certain business
analytics functions is that DL does not have performance ad-vantages over
traditional analytics when it comes to structured data use cases.

For example, many departments that have been utilizing advanced
analytics as risk management are perfectly capable of developing and
deploying a DL model as the required skillset is identical. Also, the nec-
essary infrastructure to leverage DL in these departments should be in place.
The usually described problems are not the only reasons. The problem is that
DL does not offer any advantage over certain tree-based ensembles for the
data present in those departments. Also, the disad-vantages of speed and
transparency are still present, which makes it, in fact, unreasonable to use DL
instead of traditional analytics. DL should be viewed as a valuable addition to
the current body of ML that offers the possibility to create new use cases
based on its strength instead of forcefully replacing models that are equally
powerful and can easily co-exist within advanced analytics.

This realization triggers the second argument, which is related to the
nature of the underlying dataset. The kind of data present in prob-lems faced
within business analytics can largely be divided into three groups (Chen et al.,
2012): (1) Structured data from relational database management systems
(DBMS), (2) unstructured data, which stem mainly from web-based activities
(Social Media Analytics, etc.), and (3) sensor-and mobile-based content,
which is largely untouched when it comes to research activities. Many
problems in business analytics are indeed based on structured datasets and
given that most business functions uti-lize exactly those kinds of data it
should not come as a surprise that DL remains a rather scarce ML algorithm
to support their decision-making.

The era of big data has brought tremendous amounts of data within a
single data set across several domains, which fulfills the requirement of
empirical prediction based on deep learning. However, it is important to
differentiate and use DL models mainly in line with their strength, which is
the usage of vast unstructured datasets, which posed signifi-cant problems for
traditional analytics. ML overall has been recognized as a general-purpose
technology (GPT) for decision-making, which has just started to infuse our
economy with the ability to replace mental tasks that were traditionally only
reserved for humans (Agrawal et al., 2019). It has also the potential to create
completely new business mod-els (Siebel, 2019). Finding use cases that are in
line with the strength of DL would help to foster the adoption of DL in
business analytics. And the major strength is unprecedented accuracy on
unstructured datasets. Tra-ditional ML models reach a performance plateau
quite early and further data are not helpful to increase accuracy. DL has here
an advantage as it
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gains predictive power with every additional data point (Ng, 2019). This makes DL extremely scalable and future-proof, especially since hard-ware power and
the amount of available data will increase continuously over the years. Also, DL eliminates the need for extensive feature engi-neering as this was usually
present in the preprocessing stage of data mining and predictive analytics tasks (LeCun et al., 2015). The time re-quired for preparing data sets often amounts to
80% to 90% of overall task completion and is one of the major reasons why further advances in DL would indeed be welcoming news for all analytics functions.
Over-all, management and practitioners responsible for digital strategy and transformation should avoid seeing DL as a simple replacement or en-hancement of
existing tools for predictive analytics tasks, but as an op-portunity to develop new application areas and use cases for business analytics based on the strength of
DL – which are predictions based on vast amounts of unstructured data.

4.4. Future research

The following four key areas could be identified where further re-search is necessary to increase the utility and hence the adoption of DL in business
analytics.

(1) Future research in business analytics could focus on identifying cur-rently non-existing uses which are in line with the strength of DL. Due to its ability to
handle huge amounts of unstructured data DL is in terms of future possibilities and new use cases more interesting than traditional analytics. DL possesses
the ability to create com-pletely new business models and ways of value generation.

(2) Enhancing the prediction accuracy of DL for structured data would be a game-changing development for neural networks. DL has sev-eral advantages over
traditional methods but has in its current ca-pacity difficulties reaching the performance and accuracy levels of tree-based ensembles such as Random Forest
and GBM for predic-tions on structured data. A simple replacement makes hence no sense unless further research in this area realizes performance improve-
ments for DL on structured classification tasks. Developments such as dropout (Srivastava et al., 2014) and the Maxout activation func-tion (Goodfellow et
al., 2013), which were specifically developed to tackle classification problems are going in this direction, but as shown above, are not enough to reach
accuracy levels to justify the replacement of tree-based ensemble models as RF or GBM. Further research could focus on enhancing the ability of DL models
to con-sistently surpass traditional ML models. This would be a significant development, which could result in the extinction of all other ML models.

(3) Another issue – especially in light of the skill shortage – is that hyper-parameter tuning can be a quite complex undertaking requiring the right talent. A
recent development is automated machine learning or AutoML, which has started to gain traction and is an interesting field of research that can help to
further democratize the use of DL models (Schmitt, 2022a). Increasing the user-friendliness of AI by decreasing complexity, and aligning it with the end
user’s needs to increase job fit will help to foster adoption (Grover et al., 2022). AI needs to adapt to humans to enable a fully augmented workforce.

(4) This study was primarily concerned with binary classification, hence an extension towards multiclass classification and regression would make sense.
Especially regression is relevant for finance and insur-ance due to the presence of financial times series data in those fields. Several studies have shown that
deep learning architectures such as recurrent neural networks (RNN) and long short-term memory (LSTM) are strong candidates for time series data in
finance and of-fer superior performance (Fischer & Krauss, 2018).

(5) Other areas for investigation would be reinforcement learning appli-cations within business analytics (Singh et al., 2022), bio-inspired computation/ML
models (Jain, Batra, Kar, Agrawal, & Tikkiwal, 2022; Kudithipudi et al., 2022), and also research that would further
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enhance the explainability of AI/ML, which would enable additional use cases in regulatory environments that require transparency (Bücker, Szepannek,
Gosiewska, & Biecek, 2022; Sharma, Kumar,
& Chuah, 2021).

5. Conclusion

The progress and breakthroughs achieved by DL are undeniable as
can be witnessed by a vast array of new real-world applications all around us. Despite this fact, the adoption rate and hence diffusion across business analytics
functions has been lacking behind. This study helped to explain the current lack of adoption of DL in business analytics func-tions. The literature analysis
suggested that the lack of adoption across business functions is based on the five bottlenecks computational com-plexity, no existing big-data architecture, lack of
transparency/black-box nature of DL, skill shortage, and leadership commitment. However, the empirical study based on three real-world case studies revealed
that DL does not offer – as widely assumed – a performance advantage when it comes to predictions based on structured data sets. This has to be taken into
account when using deep learning for data-driven decisions within the context of business analytics and answers the question of why ana-lytics departments do
not deploy those models consistently. Overall, ML as a general-purpose technology for data-driven prediction will further find its way into business analytics and
shape the field of information management. Deep learning is a valuable addition to the ML ecosystem and enhanced our ability to generate insights from
unstructured data. But it is not yet possible to replace the other models. Especially tree-based models such as random forest and gradient boosting are power-ful
classifiers when it comes to structured datasets. Practitioners should concentrate on creating new use cases that leverage the strengths of DL instead of forcing the
replacement of traditional models.
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