
204

Vi
si
t
R
ef
ca
rd
z.
c
o
m

BROUGHT TO YOU
BY:

Apache Spark

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

G
e
t
M
o
r
e
R
e
f
c
a
r
d
z
!

A
p
a
c
h
e
S
p
a
r
k

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

Why Apache Spark?

We live in an era of “Big Data” where data of various types are being generated at an unprecedented pace, and this pace seems to be only accelerating astronomically.
This data can be categorized broadly into transactional data, social media content (such as text, images, audio, and video), and sensor feeds from instrumented devices.

But one may ask why it is important to pay any attention to it. The reason being: “Data is valuable because of the decisions it enables”.

Up until a few years ago, there were only a few companies with the technology and money to invest in storing and mining huge amounts of data to gain invaluable
insights. However, everything changed when Yahoo open sourced Apache Hadoop in 2009. It was a disruptive change that lowered the bar on Big Data processing
considerably. As a result, many industries, such as Health care, Infrastructure, Finance, Insurance, Telematics, Consumer, Retail, Marketing, E-commerce, Media,
Manufacturing, and Entertainment, have since tremendously benefited from practical applications built on Hadoop.

Apache Hadoop provides two major capabilities:

1. HDFS, a fault tolerant way to store vast amounts of data inexpensively using horizontally scalable commodity hardware.

2. Map-Reduce computing paradigm, which provide programming constructs to mine data and derive insights.

Figure 1 illustrates how data are processed through a series of Map-Reduce steps where output of a Map-Reduce step is input to the next in a typical Hadoop job.

Figure 1

The intermediate results are stored on the disk, which means that most Map-Reduce jobs are I/O bound, as opposed to being computationally bound. This is not an
issue for use cases such as ETLs, data consolidation, and cleansing, where processing times are not much of a concern, but there are other types of Big Data use
cases where processing time matters. These use cases are listed below:

1. Streaming data processing to perform near real-time analysis. For example, clickstream data analysis to make video recommendations, which enhances user
engagement. We have to trade-off between accuracy and processing time.

2. Interactive querying of large datasets so a data scientist may run ad-hoc queries on a data set.

2 apache Spark

These are the challenges that Apache Spark solves! Spark is a lightning fast
in-memory cluster-computing platform, which has unified approach to solve
Batch, Streaming, and Interactive use cases as shown in Figure 3

About Apache Spark

Apache Spark is an open source, Hadoop-compatible, fast and expressive
cluster-computing platform. It was created at AMPLabs in UC Berkeley as
part of Berkeley Data Analytics Stack (BDAS). It has emerged as a top
level Apache project. Figure 4 shows the various components of the
current Apache Spark stack.

Figure 4

It provides five major benefits:

1. Lightning speed of computation because data are loaded in
distributed memory (RAM) over a cluster of machines. Data can be
quickly transformed iteratively and cached on demand for subsequent
usage. It has been noted that Apache Spark processes data 100x faster
than Hadoop Map Reduce when all the data fits in memory and 10x
faster when some data spills over onto disk because of insufficient
memory.

Figure 5

2. Highly accessible through standard APIs built in Java, Scala, Python,
or SQL (for interactive queries), and a rich set of machine learning
libraries available out of the box.

3. Compatibility with the existing Hadoop v1 (SIMR) and 2.x (YARN)
ecosystems so companies can leverage their existing infrastructure.

Figure 6

4. Convenient download and installation processes. Convenient shell
(REPL: Read-Eval-Print-Loop) to interactively learn the APIs.

5. Enhanced productivity due to high level constructs that keep the
focus on content of computation.

Also, Spark is implemented in Scala, which means that the code is very
succinct.

How to Install Apache Spark

The following table lists a few important links and prerequisites:

Current Release 1.0.1 @ http://d3kbcqa49mib13.cloudfront.
net/spark-1.0.1.tgz

Downloads Page https://spark.apache.org/downloads.html

JDK Version (Required) 1.6 or higher

Scala Version (Required) 2.10 or higher

Python (Optional) [2.6, 3.0)

Simple Build Tool (Required) http://www.scala-sbt.org

Development Version git clone git://github.com/apache/
spark.git

Building Instructions https://spark.apache.org/docs/latest/
building-with-maven.html

Maven 3.0 or higher

As shown in Figure 6, Apache Spark can be configured to run standalone,
or on Hadoop V1 SIMR, or on Hadoop 2 YARN/Mesos. Apache Spark
requires moderate skills in Java, Scala or Python. Here we will see how to
install and run Apache Spark in the standalone configuration.

1. Install JDK 1.6+, Scala 2.10+, Python [2.6,3) and sbt

2. Download Apache Spark 1.0.1 Release

3. Untar & Unzip spark-1.0.1.tgz in a specified directory

akuntamukkala@localhost~/Downloads$ pwd
/Users/akuntamukkala/Downloads
akuntamukkala@localhost~/Downloads$ tar -zxvf spark-1.0.1.tgz -C
/Users/akuntamukkala/spark

4. Go to the directory from #4 and run sbt to build Apache Spark

akuntamukkala@localhost~/spark/spark-1.0.1$ pwd
/Users/akuntamukkala/spark/spark-1.0.1
akuntamukkala@localhost~/spark/spark-1.0.1$ sbt/sbt assembly

5. Launch Apache Spark standalone REPL

For Scala, use:
/Users/akuntamukkala/spark/spark-1.0.1/bin/spark-shell

For Python, use: /Users/akuntamukkala/spark/spark-1.0.1/bin/ pyspark

6. Go to SparkUI @ http://localhost:4040

How Apache Spark works

Spark engine provides a way to process data in distributed memory over a
cluster of machines. Figure 7 shows a logical diagram of how a typical Spark
job processes information.

Figure 7

© DZone, Inc. | dzone.com

http://d3kbcqa49mib13.cloudfront.net/spark-1.0.1.tgz
http://d3kbcqa49mib13.cloudfront.net/spark-1.0.1.tgz
https://spark.apache.org/downloads.html
http://www.scala-sbt.org
https://spark.apache.org/docs/latest/building-with-maven.html
https://spark.apache.org/docs/latest/building-with-maven.html
http://localhost:4040
http://www.dzone.com?refcardz
http://www.dzone.com?refcardz

3 apache Spark

Figure 8 shows how Apache Spark executes a job on a cluster

Figure 8

The Master controls how data is partitioned, and it takes advantage of data
locality while keeping track of all the distributed data computation on the Slave
machines. If a certain Slave machine is unavailable, the data on that machine
is reconstructed on other available machine(s). “Master” is currently a single
point of failure, but it will be fixed in upcoming releases.

Resilient Distributed Dataset

The core concept in Apache Spark is the Resilient Distributed Dataset (RDD). It
is an immutable distributed collection of data, which is partitioned across
machines in a cluster. It facilitates two types of operations: transformation and
action. A transformation is an operation such as filter(), map(), or union() on an
RDD that yields another RDD. An action is an operation such as count(), first(),
take(n), or collect() that triggers a computation, returns a value back to the Master,
or writes to a stable storage system. Transformations are lazily evaluated, in
that they don’t run until an action warrants it. Spark Master/Driver remembers
the transformations applied to an RDD, so if a partition is lost (say a slave
machine goes down), that partition can easily be reconstructed on some other
machine in the cluster. That is why is it called “Resilient.”

Figure 9 shows how transformations are lazily evaluated:

Figure 9

Let’s understand this conceptually by using the following example: Say we
want to find the 5 most commonly used words in a text file. A possible
solution is depicted in Figure 10.

Figure 10

The following code snippets show how we can do this in Scala using
Spark Scala REPL shell:

scala> val hamlet =
sc.textFile(“/Users/akuntamukkala/temp/gutenburg.txt”)
hamlet: org.apache.spark.rdd.RDD[String] = MappedRDD[1] at
textFile at <console>:12

In the above command, we read the file and create an RDD of strings.
Each entry represents a line in the file.

scala> val topWordCount = hamlet.flatMap(str=>str.split(“ “)).
filter(!_.isEmpty).map(word=>(word,1)).reduceByKey(_+_).map{case (word, count) =>
(count, word)}.sortByKey(false) topWordCount: org.apache.spark.rdd.RDD[(Int, String)]
= MapPartitionsRDD[10] at sortByKey at <console>:14

1. The above commands shows how simple it is to chain the
transformations and actions using succinct Scala API. We split each
line into words using hamlet.flatMap(str=>str.split(“ “)).

2. There may be words separated by more than one whitespace, which
leads to words that are empty strings. So we need to filter those
empty words using filter(!_.isEmpty).

3. We map each word into a key value pair: map(word=>(word,1)).

4. In order to aggregate the count, we need to invoke a reduce step
using reduceByKey(_+_). The _+_ is a shorthand function to add values
per key.

5. We have words and their respective counts, but we need to sort by
counts. In Apache Spark, we can only sort by key, not values. So, we
need to reverse the (word, count) to (count, word) using map{case (word,
count) => (count, word)}.

6. We want the top 5 most commonly used words, so we need to sort the
counts in a descending order using sortByKey(false).

scala> topWordCount.take(5).foreach(x=>println(x)) (1044,the)

(730,and)
(679,of)
(648,to)
(511,I)

The above command contains.take(5) (an action operation, which triggers
computation) and prints the top ten most commonly used words in the input
text file: /Users/akuntamukkala/temp/gutenburg.txt.

The same could be done in the Python shell also.

RDD lineage can be tracked using a useful operation: toDebugString
scala> topWordCount.toDebugString
res8: String = MapPartitionsRDD[19] at sortByKey at <console>:14 ShuffledRDD[18] at
sortByKey at <console>:14

MappedRDD[17] at map at <console>:14 MapPartitionsRDD[16] at
reduceByKey at <console>:14
ShuffledRDD[15] at reduceByKey at <console>:14 MapPartitionsRDD[14] at

reduceByKey at <console>:14
MappedRDD[13] at map at <console>:14 FilteredRDD[12] at

filter at <console>:14
FlatMappedRDD[11] at flatMap at <console>:14

MappedRDD[1] at textFile at <console>:12
HadoopRDD[0] at textFile at <console>:12

Commonly Used Transformations:

Transformation & Purpose Example & Result

scala> val rdd =
filter(func) sc.parallelize(List(“ABC”,”BCD”,”DEF”))
Purpose: new RDD by selecting those scala> val filtered = rdd.filter(_.contains(“C”))
data elements on which func returns scala> filtered.collect()
true Result:

Array[String] = Array(ABC, BCD)

scala> val rdd=sc.parallelize(List(1,2,3,4,5))
map(func) scala> val times2 = rdd.map(_*2)
Purpose: return new RDD by applying scala> times2.collect()
func on each data element Result:

Array[Int] = Array(2, 4, 6, 8, 10)

© DZone, Inc. | dzone.com

http://www.dzone.com?refcardz
http://www.dzone.com?refcardz

4 apache Spark

flatMap(func) scala> val rdd=sc.parallelize(List(“Spark is
awesome”,”It is fun”))Purpose: Similar to map but func scala> val fm=rdd.flatMap(str=>str.split(“ “))returns a Seq instead of a value. For scala> fm.collect()example, mapping a sentence into a Result:Seq of words Array[String] = Array(Spark, is, awesome,
It, is, fun)

reduceByKey(func,[numTasks]) scala> val word1=fm.map(word=>(word,1))
scala> val wrdCnt=word1.reduceByKey(_+_)Purpose: : To aggregate values of a scala> wrdCnt.collect()key using a function. “numTasks” is an Result:optional parameter to specify number Array[(String, Int)] = Array((is,2), (It,1),of reduce tasks (awesome,1), (Spark,1), (fun,1))

scala> val cntWrd = wrdCnt.map{case (word,

groupByKey([numTasks]) count) => (count, word)}
scala> cntWrd.groupByKey().collect()Purpose: To convert (K,V) to Result:(K,Iterable<V>) Array[(Int, Iterable[String])] =
Array((1,ArrayBuffer(It, awesome, Spark,
fun)), (2,ArrayBuffer(is)))

distinct([numTasks]) scala> fm.distinct().collect()
Purpose: Eliminate duplicates from Result:
RDD Array[String] = Array(is, It, awesome, Spark,

fun)

Commonly Used Set Operations

Transformation & Example & ResultPurpose

union() Scala> val rdd1=sc.parallelize(List(‘A’,’B’))
scala> val rdd2=sc.parallelize(List(‘B’,’C’))Purpose: new RDD containing scala> rdd1.union(rdd2).collect()all elements from source RDD Result:and argument. Array[Char] = Array(A, B, B, C)

intersection() Scala> rdd1.intersection(rdd2).collect()Purpose: new RDD containing Result:all elements from source RDD Array[Char] = Array(B)and argument.

cartesian() Scala> rdd1.cartesian(rdd2).collect()Purpose: new RDD cross Result:product of all elements from Array[(Char, Char)] = Array((A,B), (A,C), (B,B), (B,C))source RDD and argument.

subtract()
Purpose: new RDD created scala> rdd1.subtract(rdd2).collect()
by removing data elements in Result:
source RDD in common with Array[Char] = Array(A)
argument

scala> val personFruit = sc.parallelize(Seq((“Andy”,
“Apple”), (“Bob”, “Banana”), (“Charlie”, “Cherry”),
(“Andy”,”Apricot”)))

join(RDD,[numTasks]) scala> val personSE = sc.parallelize(Seq((“Andy”,
Purpose:When invoked on “Google”), (“Bob”, “Bing”), (“Charlie”, “Yahoo”),
(K,V) and (K,W), this operation (“Bob”,”AltaVista”)))
creates a new RDD of (K, scala> personFruit.join(personSE).collect()
(V,W)) Result:

Array[(String, (String, String))] =
Array((Andy,(Apple,Google)), (Andy,(Apricot,Google)),
(Charlie,(Cherry,Yahoo)), (Bob,(Banana,Bing)),
(Bob,(Banana,AltaVista)))

scala> personFruit.cogroup(personSE).collect()

cogroup(RDD,[numTasks]) Result:
Array[(String, (Iterable[String], Iterable[String]))]Purpose: To convert (K,V) to = Array((Andy,(ArrayBuffer(Apple,(K,Iterable<V>) Apricot),ArrayBuffer(Google))),
(Charlie,(ArrayBuffer(Cherry),ArrayBuffer(Yahoo))),
(Bob,(ArrayBuffer(Banana),ArrayBuffer(Bing,
AltaVista))))

For a more detailed list of transformations, please refer to:
http://spark.apache.org/docs/latest/programming-guide.
html#transformations

Commonly Used Actions

Action & Purpose Example & Result

count() scala> val rdd = sc.parallelize(List(‘A’,’B’,’C’))
scala> rdd.count()Purpose: Get the number of Result:data elements in the RDD Long = 3

collect() scala> val rdd = sc.parallelize(List(‘A’,’B’,’C’))
Purpose: get all the data scala> rdd.collect()
elements in an RDD as an Result:
array Array[Char] = Array(A, B, C)

reduce(func) scala> val rdd = sc.parallelize(List(1,2,3,4))Purpose: Aggregate the data scala> rdd.reduce(_+_)elements in an RDD using Result:this function which takes two Int = 10arguments and returns one

take (n) Scala> val rdd = sc.parallelize(List(1,2,3,4))
Purpose: : fetch first n scala> rdd.take(2)
data elements in an RDD. Result:
Computed by driver program. Array[Int] = Array(1, 2)

foreach(func) Scala> val rdd = sc.parallelize(List(1,2,3,4))
scala> rdd.foreach(x=>println(“%s*10=%s”.Purpose: execute function for format(x,x*10)))each data element in RDD. Result:Usually used to update an 1*10=10accumulator(discussed later) 4*10=40or interacting with external 3*10=30systems. 2*10=20

first() scala> val rdd = sc.parallelize(List(1,2,3,4))
Purpose: retrieves the first scala> rdd.first()
data element in RDD. Similar Result:
to take(1) Int = 1

scala> val hamlet = sc.textFile(“/Users/akuntamukkala/

saveAsTextFile(path) temp/gutenburg.txt”)
scala> hamlet.filter(_.contains(“Shakespeare”)).Purpose:Writes the content saveAsTextFile(“/Users/akuntamukkala/temp/of RDD to a text file or a set of filtered”)text files to local file system/ Result:HDFS akuntamukkala@localhost~/temp/filtered$ ls
_SUCCESS part-00000 part-00001

For a more detailed list of actions, please refer to:
http://spark.apache.org/docs/latest/programming-guide.html#actions

rdd persistence

One of the key capabilities of Apache Spark is persisting/caching an RDD
in cluster memory. This speeds up iterative computation. The following
table shows the various options Spark provides:

Storage Level Purpose

MEMORY_ONLY This option stores RDD in available cluster
memory as deserialized Java objects. Some

(Default level) partitions may not be cached if there is not
enough cluster memory. Those partitions will
be recalculated on the fly as needed.

This option stores RDD as deserialized

MEMORY_AND_DISK
Java objects. If RDD does not fit in cluster
memory, then store those partitions on the
disk and read them as needed.

This options stores RDD as serialized Java
objects (One byte array per partition). This is

MEMORY_ONLY_SER more CPU intensive but saves memory as it
is more space efficient. Some partitions may
not be cached. Those will be recalculated on
the fly as needed.

MEMORY_ONLY_DISK_SER This option is same as above except that disk
is used when memory is not sufficient.

DISC_ONLY This option stores the RDD only on the disk

MEMORY_ONLY_2, MEMORY_AND_ Same as other levels but partitions are
DISK_2, etc. replicated on 2 slave nodes

© DZone, Inc. | dzone.com

http://spark.apache.org/docs/latest/programming-guide.html#actions
http://www.dzone.com?refcardz
http://www.dzone.com?refcardz

5 apache Spark

The above storage levels can be accessed by using the persist()
operation on an RDD. The cache() operation is a convenient way of
specifying the MEMORY_ONLY option

For a more detailed list of persistence options, please refer to:

http://spark.apache.org/docs/latest/programming-guide.html#rdd-
persistence

Spark uses the Least Recently Used (LRU) algorithm to remove old, unused,
cached RDDs to reclaim memory. It also provides a convenient unpersist()
operation to force removal of cached/persisted RDDs.

Shared Variables

Accumulators
Spark provides a very handy way to avoid mutable counters and counter
synchronization issues by providing accumulators. The accumulators are
initialized on a Spark context with a default value. These accumulators are
available on Slave nodes, but Slave nodes can’t read them. Their only purpose
is to fetch atomic updates and forward them to Master. Master is the only one
that can read and compute the aggregate of all updates. For example, say we
want to find the number of statements in a log file of log level ‘error’…

akuntamukkala@localhost~/temp$ cat output.log error

warning
info
trace
error
info
info
scala> val nErrors=sc.accumulator(0.0)
scala> val logs = sc.textFile(“/Users/akuntamukkala/temp/output. log”)

scala> logs.filter(_.contains(“error”)).foreach(x=>nErrors+=1) scala> nErrors.value

Result: Int = 2

Broadcast Variables
It is common to perform join operations on RDDs to consolidate data by a
certain key. In such cases, it is quite possible to have large datasets sent
around to slave nodes that host the partitions to be joined. This presents a
huge performance bottleneck, as network I/O is 100 times slower than RAM
access. In order to mitigate this issue, Spark provides broadcast variables,
which, as the name suggests, are broadcasted to slave nodes. The RDD
operations on the nodes can quickly access the broadcast variable value. For
example, say we want to calculate the shipping cost of all line items in a file.
We have a static look-up table that specifies cost per shipping type. This look-
up table can be a broadcast variable.

akuntamukkala@localhost~/temp$ cat packagesToShip.txt ground

express
media
priority
priority
ground
express
media
scala> val map = sc.parallelize(Seq((“ground”,1),(“med”,2),
(“priority”,5),(“express”,10))).collect().toMap
map: scala.collection.immutable.Map[String,Int] = Map(ground -> 1, media -> 2, priority -
> 5, express -> 10) scala> val bcMailRates = sc.broadcast(map)

In the above command, we create a broadcast variable, a map containing cost
by class of service.

scala> val pts = sc.textFile(“/Users/akuntamukkala/temp/ packagesToShip.txt”)

scala> pts.map(shipType=>(shipType,1)).reduceByKey(_+_). map{case
(shipType,nPackages)=>(shipType,nPackages*bcMailRates. value(shipType))}.collect()

In the above command we calculate shipping cost by looking up mailing rates
from broadcast variable.

Array[(String, Int)] = Array((priority,10), (express,20), (media,4), (ground,2))

scala> val shippingCost=sc.accumulator(0.0) scala>
pts.map(x=>(x,1)).reduceByKey(_+_).map{case
(x,y)=>(x,y*bcMailRates.value(x))}.foreach(v=>shippingCost+=v._2) scala>
shippingCost.value
Result: Double = 36.0

In the above command we use accumulator to calculate total cost to ship.
The following presentation provides more information:

http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-
amp-camp-2012-advanced-spark.pdf

Spark SQL

Spark SQL provides a convenient way to run interactive queries over large
data sets using Spark Engine, using a special type of RDD called
SchemaRDD. SchemaRDDs can be created from existing RDDs or other
external data formats such as Parquet files, JSON data or by running HQL on
Hive. SchemaRDD is similar to a table in RDBMS. Once data are in
SchemaRDD, the Spark engine will unify it with batch and streaming use
cases. Spark SQL provides two types of contexts: SQLContext &
HiveContext that extend SparkContext functionality.

SQLContext provides access to a simple SQL parser whereas
HiveContext provides access to HiveQL parser. HiveContext enables
enterprises to leverage their existing Hive infrastructure.

Let’s see a simple example using SQLContext.

Say we have the following ‘|’ delimited file containing customer data:

John Smith|38|M|201 East Heading Way #2203,Irving, TX,75063 Liana
Dole|22|F|1023 West Feeder Rd, Plano,TX,75093
Craig Wolf|34|M|75942 Border Trail,Fort Worth,TX,75108 John
Ledger|28|M|203 Galaxy Way,Paris, TX,75461 Joe Graham|40|M|5023
Silicon Rd,London,TX,76854

Define Scala case class to represent each row:

case class Customer(name:String,age:Int,gender:String,address:
String)

The following code snippet shows how to create SQLContext using
SparkContext, read the input file, convert each line into a record in
SchemaRDD and then query in simple SQL to find male consumers
under the age of 30:

val sparkConf = new SparkConf().setAppName(“Customers”)
val sc = new SparkContext(sparkConf)
val sqlContext = new SQLContext(sc)
val r = sc.textFile(“/Users/akuntamukkala/temp/customers.txt”)
val records = r.map(_.split(‘|’))
val c = records.map(r=>Customer(r(0),r(1).trim.toInt,r(2),r(3)))
c.registerAsTable(“customers”)

sqlContext.sql(“select * from customers where gender=’M’ and age <
30”).collect().foreach(println)
Result:
[John Ledger,28,M,203 Galaxy Way,Paris, TX,75461]

For more practical examples using SQL & HiveQL, please refer to the
following links:

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://databricks-training.s3.amazonaws.com/data-exploration-using-spark-
sql.html

© DZone, Inc. | dzone.com

http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://databricks-training.s3.amazonaws.com/data-exploration-using-spark-sql.html
https://databricks-training.s3.amazonaws.com/data-exploration-using-spark-sql.html
https://databricks-training.s3.amazonaws.com/data-exploration-using-spark-sql.html
http://www.dzone.com?refcardz
http://www.dzone.com?refcardz

6 apache Spark

Figure 11

Spark Streaming

Spark Streaming provides a scalable, fault tolerant, efficient way of
processing streaming data using Spark’s simple programming model. It
converts streaming data into “micro” batches, which enable Spark’s batch
programming model to be applied in Streaming use cases. This unified
programming model makes it easy to combine batch and interactive data
processing with streaming. Figure 10 shows how Spark Streaming can be
used to analyze data feeds from multitudes of data sources.

Figure 12

The core abstraction in Spark Streaming is Discretized Stream (DStream).
DStream is a sequence of RDDs. Each RDD contains data received in a
configurable interval of time. Figure 12 shows how Spark Streaming creates a
DStream by converting incoming data into a sequence of RDDs. Each RDD
contains streaming data received every 2 seconds as defined by interval
length. This can be as small as ½ second, so latency for processing time can
be under 1 second.

Spark Streaming also provides sophisticated window operators, which help
with running efficient computation on a collection of RDDs in
a rolling window of time. DStream exposes an API, which contains operators
(transformations and output operators) that are applied on constituent RDDs.
Let’s try and understand this using a simple example given in Spark Streaming
download. Say, you want to find the trending hash tags in your Twitter stream.
Please refer to the following example to find the complete code snippet:

spark-1.0.1/examples/src/main/scala/org/apache/spark/examples/
streaming/TwitterPopularTags.scala
val sparkConf = new SparkConf().setAppName(“TwitterPopularTags”)
val ssc = new StreamingContext(sparkConf, Seconds(2))
val stream = TwitterUtils.createStream(ssc, None, filters)

The above snippet is setting up Spark Streaming Context. Spark
Streaming will create an RDD in DStream containing Tweets retrieved
every two seconds.

val hashTags = stream.flatMap(status => status.getText.split(“ “).filter(_.startsWith(“#”)))

The above snippet converts the Tweets into a sequence of words, then
filters only those beginning with a #.

val topCounts60 = hashTags.map((_, 1)).reduceByKeyAndWindow(_
+ _, Seconds(60)).map{case (topic, count) => (count, topic)}.
transform(_.sortByKey(false))

The above snippet shows how to calculate a rolling aggregate of the number
of times a hashtag was mentioned in a window of 60 seconds.

topCounts60.foreachRDD(rdd => {
val topList = rdd.take(10)
println(“\nPopular topics in last 60 seconds (%s

total):”.format(rdd.count())) topList.foreach{case (count, tag) =>
println(“%s (%s

tweets)”.format(tag, count))}
})

The above snippet shows how to extract the top ten trending Tweets and
then print them out.
ssc.start()
The above snippet instructs the Spark Streaming Context to start retrieving
Tweets. Let’s look at a few popular operations. Assume that we are reading
streaming text from a socket:

val lines = ssc.socketTextStream(“localhost”, 9999,
StorageLevel.MEMORY_AND_DISK_SER)

Transformation & Example & ResultPurpose

map(func)
lines.map(x=>x.toInt*10).print()

prompt>nc –lk Output:Purpose: Create a new DStream
by applying this function to all 9999 120
constituent RDDS in DStream 12 340

34

flatMap(func)
lines.flatMap(_.split(“ “)).print()

Output:Purpose: Same as map, but the prompt>nc –lkmapping function can output zero Spark9999or more items is
Spark is fun fun

lines.flatMap(_.split(“ “)).count()

count() prompt>nc –lk
Purpose: create a DStream of RDDs 9999 Output:containing a count of the number say

4of data elements hello
to
spark

lines.map(x=>x.toInt).reduce(_+_).
print()

reduce(func)
prompt>nc –lkPurpose: Same as count, but
9999instead of count, the value is Output:
1derived by applying the function 163
5
7

lines.countByValue().print()
countByValue() prompt>nc –lkPurpose: Same as map, but the 9999 Output:mapping function can output zero spark (is,1)
or more items spark (spark,2)

is (fun,2)
fun
fun

val words = lines.flatMap(_.split(“
“))
val wordCounts = words.map(x =>
(x, 1)).reduceByKey(_+_)

reduceByKey(func,[numTasks]) wordCounts.print()

prompt>nc –lk Output:
9999 (is,1)
spark is fun (spark,1)
fun (fun,3)
fun

The following example shows how Apache Spark combines Spark batch with Spark
Streaming. This is a powerful capability for an all-in-one technology stack. In this example,
we read a file containing brand names and filter those streaming data sets that contain any
of the brand names in the file.

© DZone, Inc. | dzone.com

http://www.dzone.com?refcardz
http://www.dzone.com?refcardz

7 apache Spark

val sparkConf = new SparkConf().
lines.countByWindow(Seconds(30),setAppName(“NetworkWordCount”)

val sc = new SparkContext(sparkConf)
countByWindow(windowLength,

Seconds(10)).print()
val ssc = new StreamingContext(sc,
Seconds(10)) slideInterval)

prompt>nc –lk 9999 Output:
transform(func) Purpose: Returns a new sliding

val lines = ssc. 1window count of elements in a steam 10 (0th second)Purpose: Creates a new DStream 2
socketTextStream(“localhost” 9999, 20 (10 seconds later)by applying RDD->RDD 3
StorageLevel.MEMORY_AND_DISK_SER) 30 (20 seconds later)transformation to all RDDs in 3

DStream. val brands = sc.textFile(“/Users/ 40 (30 seconds later)

brandNames.txt
akuntamukkala/temp/brandNames.txt”)
lines.transform(rdd=> { For additional transformation operators, please refer to:coke

rdd.intersection(brands) http://spark.apache.org/docs/latest/streaming-programming-guide.nike
sprite }).print() html#transformations
reebok

prompt>nc –lk
Spark Streaming has powerful output operators. We already saw9999 Output:

msft foreachRDD() in above example. For others, please refer to:sprite
apple

nike http://spark.apache.org/docs/latest/streaming-programming-guide.nike
sprite html#output-operations
ibm

updateStateByKey(func) Please refer to the StatefulNetworkCount

example in Spark Streaming. Additional ResourcesPurpose: Creates a new DStream
where the value of each key This helps with computing a running aggregateis updated by applying given

of the total number of times a word has • Wikipedia article (good):function.
occurred. http://en.wikipedia.org/wiki/Apache_Spark

• Launching a Spark cluster on EC2:
http://ampcamp.berkeley.edu/exercises-strata-conf-2013/launching-

Common Window Operations a-cluster.html
• Quick start:

Transformation & Example & Result
https://spark.apache.org/docs/1.0.1/quick-start.html

Purpose
• The Spark platform provides MLLib(machine learning) and

val win = lines. GraphX(graph algorithms). The following links provide more
window(Seconds(30),Seconds(10)); information:
win.foreachRDD(rdd => {

• https://spark.apache.org/docs/latest/mllib-guide.htmlwindow(windowLength, rdd.foreach(x=>println(x+ “ “))
slideInterval) })

• https://spark.apache.org/docs/1.0.1/graphx-programming-guide.htmlPurpose: Returns a new DStream
prompt>nc –lk 9999 Output:computed from windowed batches

of source DStream 10 (0th second) 10
20 (10 seconds later) 10 20
30 (20 seconds later) 20 10 30
40 (30 seconds later) 20 30 40 (drops 10)

ABOUT THE AUTHOR RECOMMENDED BOOK

http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations
http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations
http://en.wikipedia.org/wiki/Apache_Spark
http://ampcamp.berkeley.edu/exercises-strata-conf-2013/launching-a-cluster.html
http://ampcamp.berkeley.edu/exercises-strata-conf-2013/launching-a-cluster.html
https://spark.apache.org/docs/1.0.1/quick-start.html
https://spark.apache.org/docs/latest/mllib-guide.html
https://spark.apache.org/docs/1.0.1/graphx-programming-guide.html

