
 POWER BI CHEATSHEET

What isPower Query?
“An IDE for M development“

Components

Data values let expression Custom function

DEMO

Syntax Sugar

a functional language such as M. Functions are called with
parentheses.
› Shared –Is a keyword that loads allfunctions
(including help and example) and enumerators in
result set. The calloffunctionis madeinsideempty
query using by = # shared

Functions can be divided into two categories:
› Prefabricated –Example: Date.From()
› Custom –these are functions that the user himself prepares
for the model by means of the extension of the notation by
„()=> “, where the argumetsthat will be required for the
evaluation of the function can be placed in parentheses.
When using multiple argumets, it is necessary to separate

M languagesupportstwoversionsofcomments:
› Single-line comments–canbe createdby //beforecode
› Shortcut: CTRL + ´
› Multi-line comments–canbe createdby /*beforecodeand
*/ after code
› Shortcut: ALT + SHIFT + A

Each value type is associated with a literal syntax, a set of values
of that type, a set of operators defined above that set of values,
and an internal type attributed to the newly created values.
› Null–
› Logical–
› Number–
› Time–
› Date–
› DateTime–
› DateTimeZone–

› Duration–
› Text–
› Binary–
› List–
› Record–
› Table–#table({columns},{{first rowcontenct},{}…})*
› Function–
› Type–

There are severaloperators within the Mlanguage, but not every
operator can be used for all types of values.
› Primaryoperators
› (x)–Parenthesizedexpression
› x[i]–FieldReference. Returnvalue from record, list of values
from table.
› x{i}–Itemaccess. Returnvalue from list, record from table.

“Placing the “?“ Character after the operator returns null if the
index is not in the list “

› x(…)–Functioninvocation
› {1 .. 10}–Automatic list creation from 1 to 10
› … –Not implemented
› Mathematicaloperators–+, -, *, /
› Comparativeoperators
› >, >= –Greater than, greater than or equal to
› <, <= –Less than, less than or equal to
› =, <>–isequal, isnot equal. Equalreturnstrueevenfor
null= null
› Logicaloperators
› and–short-circuitingconjunction
› or–short-circuitingdisjunction
› not–logicalnegation
› Type operators
› as–Iscompatiblenullable-primitive type orerror
› is–Test if compatible nullable-primitive type
› Metadata -The word meta assigns metadata to a value.
Example of assigningmetadata to variablex:
“x meta y“ or“x meta [name = x, value= 123,…]“

Even in Power Query, there is an“If“ expression, which, based
on the inserted condition, decides whether the result will be a
true-expressionor a false-expression.

Syntactic form of If expression:
if<predicate> then< true-expression> else<false-expression>

“elseis required in M's conditional expression “
Condition entry:
Ifx > 2 then1 else0
If[Month] > [Fiscal_Month] thentrueelsefalse
Ifexpressionistheonlyconditionalin M. If you have multiple
predicates to test, you must chain togetherlike:
if <predicate>
then< true-expression>
else if <predicate>
then< false-true-expression>
else < false-false-expression >

When evaluating the conditions, the following applies:
› If the value created by evaluating the ifacondition is not a
logical value, then an error with the reason code
“Expression.Error„is raised
› A true-expression is evaluated only if the if condition
evaluates to true. Otherwise,false-expressionisevaluated.
› If expressions in variables are not available, they must not be
evaluated
› The error that occurred during the evaluation of the condition
will spread further either in the form of a failure of the entire
query or“Error“ value in the record.

Capturing errors is possible, for example, using the try
expression. An attempt is made to evaluate the expression
after the word try. If an error occurs during the evaluation, the
expression after the word otherwise is applied

Syntax example:
tryDate.From([textDate]) otherwisenull

The expressionlet is used to capture the value from an
intermediate calculation in anamedvariable. These named
variablesare local in scope to the `let` expression.The
construction of the term let looks like this:

let
name_of_variable= <expression>,
returnVariable= <function>(name_of_variable)
in
returnVariable

When it is evaluated, the following always applies:
› Expressions in variables define a new range containing

identifiers from the production of the list of variablesand must
be present when evaluating terms within a listvariables. The

expressions in the list of variables arethey can refer to each
other
› All variables must be evaluated before the term letisevaluated.
› If expressions in variables are not available, let willnot be
evaluated
› Errors that occur during query evaluation propagate as an error
to other linked queries.

For recursive functionsis necessary to use the character “@“
which refers to the function within its calculation. A typical
recursive function is the factorial. The function for the factorial
can be written as follows:
let
Factorial= (x) =>
if x = 0 then 1 else x * @Factorial(x -1),
Result = Factorial(3)
in
Result // = 6

Functions can be called against specific arguments. However, if
the function needs to be executed for each record, an entire
sheet, or an entire column in a table, it is necessary to append
the word eachto the code. As the name implies, for each
context record, it applies the procedure behind it.Eachis never
required!It simply makes it easier to define a function in-line
for functions which require a function as their argument.

Example of custom function entries:
(x, y) => Number.From(x) + Number.From(y)

(x) =>
let
out= Number.From(x) +
Number.From(Date.From(DateTime.LocalNow()))
in
out
The input argumetsto the functions are of two types:
› Required–All commonly written argumetsin ().Without
these argumets, the function cannot be called.
› Optional–Such a parameter may or may not be tofunction to

enter. Mark the parameter as optionalby placing text before
the argumentname“Optional“. For example (optional x). If it

does not happenfulfillmentof an optional argument, so be the
sameforfor calculation purposes, but its value will be null.
Optionalarguments must come after required arguments.

Arguments can be annotated with `as <type>` to indicate
required type of the argument. The function will throw a type
error if called with arguments of the wrong type.Functionscan
alsohave annotatedreturn ofthem. This annotationisprovided
as:
(x as number, y as text) as logical=> <expression>
The returnof the functions isvery different. The output can be a
sheet, a table, one value but also other functions. This means
that one function can produce another function. Such a function
is written as follows:
letfirst= (x)=> () => letout = {1..x}in outin first
When evaluating functions, it holds that:

› Errors caused by evaluating expressions in a list of
expressions or in a function expression will propagate
further either as a failure or as an “Error“ value
› The number of arguments created from the argument
list must be compatible with the formal argumetsof
the function, otherwise an error will occur with reason
code “Expression.Error“

› Invalid functions

and, as, each, else, error, false, if, in, is, let, meta, not,
otherwise, or, section, shared, then, true, try, type, #binary,
#date, #datetime, #datetimezone, #duration, #infinity, #nan,
#sections, #shared, #table, #time

› Each is essentially a syntactic abbreviation for declaring non-
type functions, using a single formal parameter named.
Therefore, the following notations are semantically
equivalent:

› Operators can be combined. For example, as follows:
› LastStep[Year]{[ID]}
*This means that you can get the
value from another step based on the index of the column

› Productionof a DateKeydimension goes like this:
#table(

type table [Date=date, Day=Int64.Type, Month=Int64.Type,
MonthName=text, Year=Int64.Type,Quarter=Int64.Type],
List.Transform(
List.Dates(start_date, (start_date-endd_ate),
#duration(1, 0, 0 ,0)),
each {_, Date.Day(_), Date.Month(_),
Date.MonthName(_), Date.Year(_), Date.QuarterOfYear(_)}
))

As the name implies, it is about composing. Specifically, the
steps in Power Query are composed into a single query, which
is then implemented againstthe data source.Data sources
thatsupportsQuery foldingare resources that support the
concept of query languagesas relationaldatabase sources.
This means that, for example, a CSV or XML file as a flat file
with data will definitely not be supported by Query Folding.
Therefore, thetransformation does not have to take place
until after the data is loaded, but it is possible to get the data
ready immediately. Unfortunately, not every source supports
this feature.
› Validfunctions

› Ribbon–A ribbon containing settings andpre-built features by Power
Query itself rewrites in M language for user convenience.
› Queries–simply a named M expression.Queriescanbe movedinto
groups
›Primitive –A primitive value isasingle-part value, such as anumber,

logical,date,text, or null. A null value can be used to indicate the absence
of any data.
›List –The list is an ordered sequence of values.M supports endless lists.

Lists definethe characters “{“and “}“indicate the beginning and theend of
the list.
›Record–A record is a set of fields, where the field is a pair of which form
the name and value. The name is a text value that is inthefield record
unique.
›Table –A table is a set of values arranged innamed columns and rows.
Table can be operated on as if it is a list of records, or as if it is a record of
lists. Table[Field]` (field reference syntax for records) returns a list of values in
that field. ̀`Table{i}` (list index access syntax) returns a record representing a
row of the table.
›Function –A function is a value that when called usingarguments creates a
new value. Functions are written by listingthe function argumetsin
parentheses, followed bythe transition symbol “=>“ and the expression
defining thefunction.Thisexpression usually refers to argumetsby
name. Thereare alsofunctions without argumets.
›Parameter –The parameter stores a value that can be used for

transformations. In addition to the name of the parameter and the value it
stores, it also has other properties that provide metadata. The undeniable

advantage of the parameter is that it can be changed from the Power BI
Service environment without the need for direct intervention in the data

set. Syntax ofparameterisas regular queryonly thing that is special is that
the metadata follows a specific format.
› Formula Bar –Displays the currently loaded step and allows you to edit
it.To be ableto seeformulabar, It has to be enabledin theribbonmenu
insideView category.
›Query settings –Settings that include the ability to edit the name and
description of the query. It also contains an overview of all currently applied

steps.Applied Steps arethe variables defined in a let expressionand they
are representedby varaiblesnames.
› Data preview –A component that displays a preview of the data in the
currently selected transformation step.
› Status bar –This is the bar located at the bottom of the screen. The row
contains information about the approximate state of the rows, columns,

Within Power Query, the priority of the operators applies, so for
example “X + Y * Z“ will be evaluated as “X + (Y * Z)“

null
true, false
1, 2, 3, ...
#time(HH,MM,SS)
#date(yyyy,mm,ss)
#datetime(yyyy,mm,dd,HH,MM,SS)

#datetimezone(yyyy,mm,dd,HH,MM,SS, 9,00)
#duration(DD,HH,MM,SS)
“text“
#binary(“link“)
{1, 2, 3}
[A = 1, B = 2]

(x) => x + 1
type { number}, type table [A = any, B = text]
* The index of the first row of the table is the same as for the records in sheet 0

› Remove, Renamecolumns
› Rowfiltering
› Grouping, summarizing, pivot and unpivot
› Merge and extract data from queries
› Connect queries based on the same data
source › Add custom columns with simple logic

› Mergequeriesbasedon differentdata sources
› AddingcolumnswithIndex
› Change the data type of a column

let
Source = ...,
addColumn=Table.AddColumn(Source, „NewName“, each [field1] + 1)
in
addColumn
- - - - -- --- ---- --- --- ---- --- ---- --- ---- --- --- ---- --- ---- --- ---- --- --- ---- --- ---- --- ---- --- --- ---- --- ---- --- ---- --- --- ---- --- --- - ---

---- --- --- ---- --- ---- --- --- ---- --
let
Source = ...,
add1ToField1 =(_) => [field1] + 1,
addColumn(Source,“NewName“,add1ToField1)
in
The second piece of syntax sugar is that bare square brackets are syntax
sugar for field access of a Record named ̀`_`.

and time the data was last reviewed. In addition to this information, there
is profiling source information for the columns. Here it is possible to switch
the profiling from 1000 rows to the entire data set.

Functionsin Power Query

them using a delimiter.

Knowledge of functions is your best helper when working with

Operators

Comments

Conditions

Each

Recursive functions

Keywords

Query Folding

Theexpressiontry… otherwise

