
> Getting help

Display Conda version with conda --version

Display Conda system info with conda info

Get help on Conda with conda --help

Get help on Conda command usage with conda {command} --help

conda --version

conda info

docker --

docker build --

help

help

> Listing packages

List all installed packages with conda list

List installed packages matching a regular expression with conda list {regex}

 # lists packages with names starting with z

List all versions of all packages in all conda channels with conda search

List all versions of a package (all channels) with conda search {pkg}

List versions of a package (all channels) with conda search '{pkg}{version}'

List package versions for a conda channel with conda search {channel}::{pkg}

conda list

conda list ^z

conda search

conda search

conda search

conda search

scikit-learn

'scikit-learn>=1'

conda-forge::scikit-learn

> Installing & managing packages

Install packages with conda install {pkg1} {pkg2} ...

Install specific version of package with conda install {pkg}={version}

Update all packages with conda update --all

Uninstall packages with conda uninstall {pkg}

conda install numpy pandas

conda install scipy=1.10.1

conda update --all

conda uninstall pycaret

> Working with channels

List channels with conda config --show channels

Add a channel (highest priority) with conda config --prepend channels {channel}

Add a channel (lowest priority) with conda config --append channels {channel}

conda config --show channels

conda config --prepend channels conda-forge

conda config --append channels bioconda

> Working with environments
List environments with conda env list

Restrict command scope to an environment by appending --name {envname}

conda env list

conda list --name base

conda install scikit-learn --name myenv

> Managing environments
Create an environment for technology with conda create -n {env}

Clone existing environment with conda create --clone {old_env} --name {new_env}

Create environment, auto-accepting prompts with conda create --yes --name {env}

For non-interactive usage

Make environment the default environment with conda activate {env}

This prepends the environment directory to the system PATH environment variable

Make the base environment the default with conda deactivate {env}

This removes the environment directory from system PATH environment variable

conda create --name my_python_env

conda create -- template_env --name project_env

conda create --yes --name my_env

conda activate my_env

conda deactivate my_env

clone

> Sharing environments
Export active environment to a YAML file with conda env export > environment.yml

Export every package including dependencies (maximum reproducibility)

Export only packages explicitly asked for (increased portability)

Import environment from YAML with conda env create --name {env} --file {yaml_file}

Export list of packages to TEXT file with conda list --export > requirements.txt

Usually requires manual editing; you can also use pip freeze

Import environment from TEXT file with conda create --name {env} --file {yaml_file}

conda env > environment.yml

conda env --from-history > environment.yml

conda env create --name my_env2 --file environment.yml

conda list -- > requirements.txt

conda create --name my_env --file requirements.txt

export

export

export

> Definitions

Conda is an application for data science package management and environment management. It is
primarily used for managing Python packages, though it also supports R, Ruby, Lua, Scala, Java,
JavaScript, C, C++, and Fortran packages.

A package is a pre-built software package, including code, libraries needed to run the code, and
metadata. Conda packages are .conda files or .tar.bz2 files. Popular packages include pandas, seaborn,
and r-dplyr.

A channel is a location that hosts packages. Popular channels include conda-forge, bioconda, and intel.

An environment is a directory containing installed packages. Having multiple environments lets you use
different versions of packages for different projects.

anaconda is a meta-package that allows you to install hundreds of data science packages with a single
conda command.

Mamba is an open source reimplementation of Conda with the same syntax and some performance
improvements. The majority of the code in this cheat sheet will also work with Mamba.

Conda vs. Pip

Feature Pip Conda

Package management

Environment management

Language support Python only Many data languages

Installation Included with Python Separate install

License MIT BSD

Conda Cheat Sheet

Learn data science online at www.DataCamp.com

Learn Data Science Online at
www.DataCamp.com

