| 1 | | 7 | |---|--|---| | | | ALGORITHM | DESCRIPTION | APPLICATIONS | ADVANTAGES D | ISADVANTAGES | |------------|-------------|---------------------------------|--|--|--|---| | | | Linear Regression | A simple algorithm that models a linear relationship between inputs and a continuous numerical output variable | USE CASES1. Stock price prediction2. Predicting housing prices3. Predicting customer lifetime value | Explainable method Interpretable results by its output coefficients Faster to train than other machine learning models | Assumes linearity between inputs and output Sensitive to outliers Can underfit with small, high-dimensional data | | Learning | Models | Logistic Regression | A simple algorithm that models a linear relationship between inputs and a categorical output (1 or 0) | USE CASES1. Credit risk score prediction2. Customer churn prediction | Interpretable and explainable Less prone to overfitting when using regularization Applicable for multi-class predictions | Assumes linearity between inputs and outputs Can overfit with small, high-dimensional data | | | Linear | Ridge Regression | Part of the regression family — it penalizes features that have low predictive outcomes by shrinking their coefficients closer to zero. Can be used for classification or regression | USE CASES1. Predictive maintenance for automobiles2. Sales revenue prediction | Less prone to overfitting Best suited where data suffer from multicollinearity Explainable & interpretable | All the predictors are kept in the final model Doesn't perform feature selection | | | | Lasso Regression | Part of the regression family — it penalizes features that have low predictive outcomes by shrinking their coefficients to zero. Can be used for classification or regression | USE CASES1. Predicting housing prices2. Predicting clinical outcomes based on health data | Less prone to overfitting Can handle high-dimensional data No need for feature selection | 1. Can lead to poor interpretability as it can keep highly correlated variables | | | | Decision Tree | Decision Tree models make decision rules on
the features to produce predictions. It can be
used for classification or regression | USE CASES 1. Customer churn prediction 2. Credit score modeling 3. Disease prediction | Explainable and interpretable Can handle missing values | 1. Prone to overfitting2. Sensitive to outliers | | | dels | Random Forests | An ensemble learning method that combines the output of multiple decision trees | USE CASES 1. Credit score modeling 2. Predicting housing prices | Reduces overfitting Higher accuracy compared to other models | Training complexity can be high Not very interpretable | | | -Based Mo | Gradient Boosting
Regression | Gradient Boosting Regression employs boosting to make predictive models from an ensemble of weak predictive learners | USE CASES1. Predicting car emissions2. Predicting ride hailing fare amount | Better accuracy compared to other regression models It can handle multicollinearity It can handle non-linear relationships | Sensitive to outliers and can therefore cause overfitting Computationally expensive and has high complexity | | Supervised | Tree | XGBoost | Gradient Boosting algorithm that is efficient & flexible. Can be used for both classification and regression tasks | USE CASES1. Churn prediction2. Claims processing in insurance | Provides accurate results Captures non linear relationships | Hyperparameter tuning can be complex Does not perform well on sparse datasets | | S | | LightGBM Regressor | A gradient boosting framework that is designed to be more efficient than other implementations | USE CASES1. Predicting flight time for airlines2. Predicting cholesterol levels based on health data | Can handle large amounts of data Computational efficient & fast training speed Low memory usage | Can overfit due to leaf-wise splitting and high
sensitivity Hyperparameter tuning can be complex | | | | K-Means | K-Means is the most widely used clustering approach—it determines K clusters based on euclidean distances | USE CASES 1. Customer segmentation 2. Recommendation systems | Scales to large datasets Simple to implement and interpret Results in tight clusters | Requires the expected number of clusters from the beginning Has troubles with varying cluster sizes and densities | | Learning | Clustering | Hierarchical
Clustering | A "bottom-up" approach where each data point is treated as its own cluster—and then the closest two clusters are merged together iteratively | USE CASES1. Fraud detection2. Document clustering based on similarity | There is no need to specify the number of clusters The resulting dendrogram is informative | Doesn't always result in the best clustering Not suitable for large datasets due to high complexity | | vised | | Gaussian Mixture
Models | A probabilistic model for modeling normally distributed clusters within a dataset | USE CASES 1. Customer segmentation 2. Recommendation systems | Computes a probability for an observation
belonging to a cluster Can identify overlapping clusters More accurate results compared to K-means | Requires complex tuning Requires setting the number of expected mixture components or clusters | | > Unsuper | Association | Apriori algorithm | Rule based approach that identifies the most frequent itemset in a given dataset where prior knowledge of frequent itemset properties is used | USE CASES 1. Product placements 2. Recommendation engines 3. Promotion optimization | Results are intuitive and Interpretable Exhaustive approach as it finds all rules based on the confidence and support | Generates many uninteresting itemsets Computationally and memory intensive. Results in many overlapping item sets |