OSCR:: CHEAT SHEET

The oSCR package, pronounced "Oscar", provides a set of functions for working with Spatial Capture Recapture (SCR) models.

Getting the package

Package hosted on GitHub

library (devtools)
install_github("jaroyle/oSCR")
library(oSCR)

Workflow

- Every model you run on oSCR has the following 4 basic steps.
- Modeled after unmarked workflow

1. Format the sampling data

One file for each one:

- Spatial encounter histories
- Detector information

2. Define and format the State Space

- Size and resolution of the *state space*
- Spatial covariates for density

3. Analyze the data - model fitting

- Likelihood based: use AIC to do model selection
- No need to use other packages, oSCR has helper functions to do the model selection.

4. Post processing model output for

inference:

This means that now that you have your parameters all you have to do is interpret your results!

Modelling framework

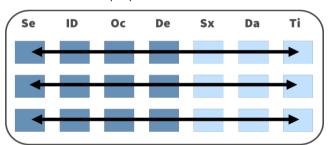
A. Single-session models

 Repeated sample occasions on a single population of individuals using a single array of traps.

B. Multi-session models

- Data grouped in strata or groups which are independent in space or time.
- C. Explicit sex-structured models
- D. Multi-session sex-structured models

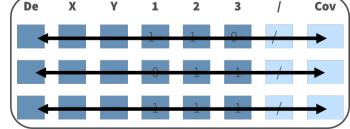
1. Format sampling data


Before starting to use oSCR you need to format the datafiles in a scrFrame which consists of two basic spreadsheets: **edf** and **tdf**.

1.1 edf: encounter data file.

- Single data frame.
- Each row has individual detection events.
- Dark blue = required; light blue = optional.

Sex (Sx)


- Columns contain capture information:
 - Session (Se)
 - Individual ID (ID)Date (Da)
 - Occasion (Oc) Time (Ti)
 - Detector* (De)

1.2 tdf: trap deployment data file.

- A list with information for each session (tdf1, tdf2,...).
- Each row is a trap.
- Columns contain trap information
 - Detector* (De)
 - 1, 2, 3, ... n)
 - X (required, UTM)
- Separator (e.g., /)Trap level covariates
- Y (required, UTM)Binary trap operation
- (different column per covariate)
- data for malfunctions, rotations (required if
- problems were found;

 X Y 1 2 3 /

*Notice that both edf and tdf have the same **Detector** (**De**) column that **MUST** match (same name, class, relational database).

1.3 data2oscr(): is a function that links **edf** and **tdf** files via the detector* names. Creates **scrFrame**.

data <- data2oscr(</pre>

edf, # encounter data file

df, # list containing trap deployment file

sess.col*, # session col number or name in edf

id.col*, # individual ID col # or name in edf

occ.col. # occasion col number or name in edf

trap.col*, # detector col number or name in edf

sex.col*, # sex col number or name in edf

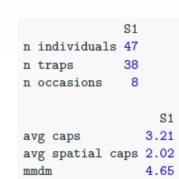
sex.nacode, # character for unknown sex in edf

K, # number of occasions

ntraps, # number of traps

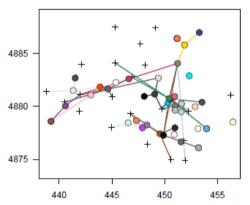
trapcov.names,# vector of un-numbered cov
names

tdf.sep) # separator (e.g., "/")


* which(colnames(edf) %in% "name of column in edf")

1.4 Summary functions for scrFrame:

 scrFrame contains information from the edf and tdf via detector names.


1.5 Summary of scrFrame

sf

1.6 Spatial captures per session

plot(sf) #y and x are UTM

sf<-data\$scrFrame</pre>

sf\$caphist Array of individual-by-trap-by-occasion (n x J x K). Binary or counts.

sf\$traps Data frame containing at least trap ID and coordinates of traps. Best with UTM.

sf\$indcovs Sex data (0 female, 1 male) or any bivariate covariate. NAs allowed.

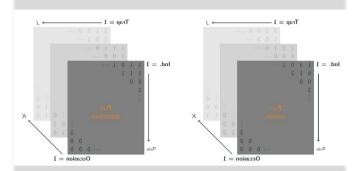
sf\$trapCovs List of session specific trap covariates. Row per trap, and column per covariate.

sf\$sigCovs A data frame of covariates that affect space use (sigma, σ).

sf\$trapOperation A list of session specific information on trap operational data.

sf\$occasions A vector of number of occasions per session .

sf\$mmdm Mean maximum distance moved pooled across sessions. ½ mmdm ~ σ


sf\$mdm Maximum distance moved pooled across sessions.

\$telemetry Telemetry object for fitting resource selection models.

Page 1

OSCR:: CHEAT SHEET

1.4.1 Navigating the scrFrame

Capture history

- Session 1, all individuals, all traps, occasion 3 sf\$caphist[[1]][, ,3]
- Session 1, individual 4, all traps, all occasions sf\$caphist[[1]][4, ,]

Traps

Session 1 trap coordinates sf\$traps[[1]]

Trap covariates

 Trap covariate df session 1 occasion 4 sf\$trapCovs[[1]][[4]]

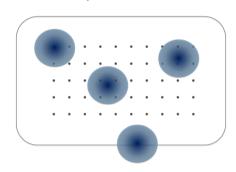
Trap operation

 Session 1 trap trap operation matrix sf\$trapOperation [[1]]

Covariates that affect sigma (σ)

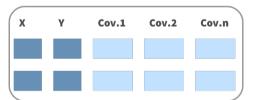
These covariates are NOT session specific.
 This is a sessions=rows dataframe
 sf\$ sigCovs[[1]]

Vectors and single numbers


- sf\$ occasions
- sf\$mmdm
- sf\$mdm

Datasets available

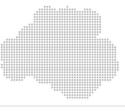
- > data(package = "oSCR")
- > data(ocelot)
- > data("beardata")
- > data("nybears")
- > data("peromyscus")
- > data("mink")


2. Create the State Space

The **State Space (S)** is the core element of SCR models. It defines where individuals can live and should represent activity centers of all sampled individuals.

ssDF: the State Space Data Frame

- List with spatially explicit information from each session.
- At least include the coordinates (X, Y) of the discrete state space (UTM).
- Can include spatial covariates for a continuous state space to study variation in Density.
- Non habitat can be removed by removing unwanted coordinates (e.g., parking lot).


2.1. make.ssDF():

- Remember that ½ mmdm ~ σ
- Extracts covariates and removes non habitat

ss <- make.ssDF(scrFrame, buffer, $\#\3$ to 4σ around traps res) $\#\$ $<\hat{\sigma}$

2.2. Plot the state space

Plot state space plot(ss) •Plot state space & traps
plot(ss, sf)

Vary the buffer and/or resolution

Varying buffer, fixed resolution

make.ssDF(sf, buffer = 1, res = 0.5) make.ssDF(sf, buffer = 3, res = 0.5)

Q Fixed buffer, varying resolution

make.ssDF(sf, buffer = 3, res = 0.1) make.ssDF(sf, buffer = 3, res = 0.5)

3. Fit the model

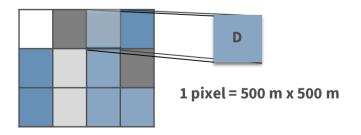
3.1. Single-session model: Fit the model with oSCR.fit():

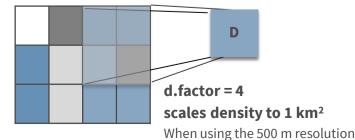
See pg. 3 for null model and multi-session models.

model is a list with 3 basic formulations:

list(D \sim 1, p0 \sim 1, sig \sim 1)

Variation in			
D	pixel density		
p0	baseline encounter prob/rate		
sig	sigma (σ)		


3.2. Backtransform to the real scale


model	fitted model			
newdata	Optional new data object for predictions			
d.factor	optional scale the estimates to a different resolution			
type	density ("dens"), detection probability ("det"), sigma("sig")			

"dens" Sex-specific estimates of density, and the density estimates are per pixel. "det" Estimate of detection at distance from activity cents. = 0.

"det" Estimate of detection at distance from activity center = 0. "sig" Estimates of the spatial scale of detection.

d.factor

OSCR:: CHEAT SHEET

Page 3 describes the specific functions and workflow for the null model and multi-session model in the oSCR package.

Model specifics

Null model (SCR₀)

- The null model assumes homogeneous density which means all pixels have the same expected density.
- For additional arguments see ?oSCR.fit()

mod1 <- oSCR.fit(list(D ~ 1,
p0 ~ 1, sig ~ 1),
scrFrame, #scrFrame object
ssDF, #ssDF object
...) #other arguments
mod1 #summary</pre>

If you included sex as a covariate in the scrFrame:

- Sex ratio psi () will be included in the summary
- Can compare AIC with and without sex effects

Multi-session model

Are your data organized in multi-sessions and you want to analyze all of them jointly?

Spatial sessions: different study areas (e.g., parks, trapping grids)

Temporal sessions: same areas different times (e.g. seasons, years)

Session specific **population size** N_g (g=group/session)

- Test for differences among sessions using AIC.
- Can share parameters among sessions or not.

- The multi-session model follows similar steps as the single session model.
- The edf files from multiple sessions may be merged into one data frame prior to data2oscr
 - edf <- rbind(edf1, edf2, ...)
- The tdf files must be separate files for each session.

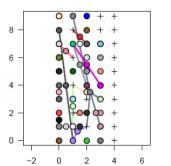
1. data2oscr for multi-session scrFrame

data <- data2oscr(
 edf, #include session column
 list(tdf1, tdf2, ...), #tdf files
 sess.col*, #session col in edf
 id.col*, #individual ID col in edf
 occ.col, #occasion col in edf
 trap.col*, #detector col in edf
 sex.col*, #sex col in edf
 sex.nacode, #unknown sex in edf
 K, #vector with occasions per session
 ntraps) #vector with traps per session</pre>

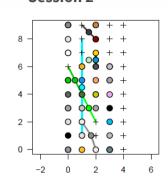
sf <- data\$sf

sf # summary info per session (S1, S2..)

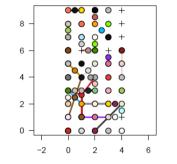
1.2. Summary of multi-session scrFrame

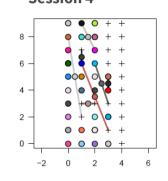

avg spatial caps 1.30 1.15 1.27 1.13		S1	S2	S3	S4		
S1 S2 S3 S4 avg caps 1.91 1.47 1.71 1.37 avg spatial caps 1.30 1.15 1.27 1.13	n individuals	77	60	108	54		
S1 S2 S3 S4 avg caps 1.91 1.47 1.71 1.37 avg spatial caps 1.30 1.15 1.27 1.13	n traps	50	50	50	50		
avg caps 1.91 1.47 1.71 1.37 avg spatial caps 1.30 1.15 1.27 1.13	n occasions	7	5	6	4		
	avg caps avg spatial ca mmdm	ps	1.9	01 1.	. 47 . 15	1.71 1.27	1.37 1.13

1.3. Plot spatial captures in a multi-session scrFrame


Use plot(sf) to plot a spatial capture per session

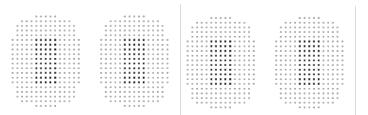
par(mfrow=c(1,n)) # n = sessions
plot(sf) # plot all sessions


Session 1


Session 2

Session 3 S

Session 4


2. Make the State Space Data Frame of a multi-session scrFrame

ss <- make.ssDF(
scrFrame, # multi-session
buffer, #buffer width
res) #state space resolution</pre>

• You can vary the buffer and resolution as in the single-session model.

?make.ssDF() # Look at the help file for other arguments

• Visualize the state space

3. Model fitting

- Specify models that consider or not variation among sessions.
 - fixed vs. session specific **D**
 - fixed vs. session specific **p0**
 - fixed vs. session specific **space use** (σ)

Model	Algebra	In oSCR.fit
Density	$log(D(s_i)) = \beta_0$	D ~ 1
Density	$log(D(s_i)) = \beta_0 + \beta_{1(g)} Session_g$	D \sim session
Detection	$logit(p_0) = \alpha_0$	$p0 \sim 1$
Detection	$logit(p_0) = \alpha_0 + \alpha_{1(g)} Session_g$	p0 \sim session
Space use	$log(\sigma) = \gamma_0$	$sig \sim 1$
Space use	$log(\sigma) = \gamma_0 + \gamma_{1(g)} Session_g$	$ ext{sig} \sim ext{session}$

• Include all models into a list using fitList.oSCR():

f1 <- fitList.oSCR(
mods, # list of fitted models
rename) # if TRUE models are
renamed with sensible names</pre>

- Compare multiple modelsms <- modSel.oSCR(f1)
- Generate an AIC table to compare multiple models
 ms\$aic
- Generate a coefficient table ms\$coef.tab
- Generate a model averaged coefficients
 ma <- ma.coef(ms) # include a
 modSel.oSCR object

3.1. Back transform to the real scale

top.model <- m3</pre>

pred.df <- data.frame(session =
factor (c(1, 2, 3, 4, ...)))</pre>

pred.det <- get.real(
model = top.model, type = "det",
newdata = pred.df)</pre>