The Ultimate Guide to
Programming Apache Hive

A Reference Guide Document - Straight from the trenches,
with real world lessons, tips and tricks to help you take on
and start analyzing Big Data with Apache Hive

- FRU NDE -

g
:
3
3
$
g
P
5

T2 IL vIIL T2 L

THE UL TIVIATE GUIDE TO
PROGRAMMING

A Reference Guide Document — Straight from the trenches,
with real world lessons, tips and tricks included to help you
take on and start analyzing BigData with Apache Hadoop.

Note: All effort has been made to keep this book vendor agnostic. It doesn't matter what vendor or
distribution you use for hadoop and hive, the concepts in here should be accessible to you.

© 2015 by NextGen Publishing. All rights reserved.

No part of this book may be reproduced in any written, electronic, recording, or photocopying form without

written permission from the rights owner, Fru Nde.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the author, nor the publishing company, and its dealer and distributors will be held liable for any

damages caused or alleged to be caused directly or indirectly by this book.

First Edition

Printed in the, United States of America

Let’s Get Started!
Introduction

Audience

Prerequisites

About Apache Hive

Why Hive?

Hive Architecture

Hive Query Execution Engines
Anatomy of HiveOL

HiveOL and Examples

Key Hive Query Optimization

Tips Resources

Let’s Get Started!

| want to thank you and congratulate you for downloading this book "The
Ultimate Guide to Programming Apache Hive".

This book contains proven steps and strategies on how to become a truly savvy Hive
Programmer. You will be able to increase your profitability, areas of opportunity,
and so much more by unleashing the Hive tips this book will teach you.

Here’s an inescapable fact: you will need to practice your way through
mastering Hive.

Because Hive is basically SQL on Hadoop, you would need to develop your
SQL skills along the way.

If you do not develop your SQL skills, you will not master Hive. SQL is at the heart
of Hive, and this book will help you get on the right path.

It’s time for you to become an amazing Big Data professional, who can crunch
massive amounts of data with the help of the information compiled within this book.

Introduction

If you are already familiar with SQL then you may well be thinking about how to

add Hadoop skills to your tool belt as an option for data processing.

From a querying perspective, using Apache Hive is the next logical step you can
take. Using Hive provides a familiar interface to data held in a Hadoop cluster and
IS a great way to get started with minimal learning curve.

Apache Hive a is data warehouse infrastructure built on top of Apache Hadoop for
providing data summarization, ad-hoc query, and analysis of large datasets. It
provides a mechanism to project structure onto the data in Hadoop and to query that
data using a SQL-like language called Hive Query Language (HiveQL or HQL).

In this book, I will take you deep down into Hive. | will do what many other
books haven't successfully done. Provide you with High level information about
Apache Hive that will allow you to strategically shine in that next board room
presentation, while leaving you with enough details to tactically take on BigData
projects and amaze your peers in the process.

Audience

This tutorial is prepared for professionals aspiring to make a career in Big Data
Analytics using Hadoop Framework. Administrators, ETL developers, Data
Analysts and professionals who are into analytics on Hadoop using Apache Hive
will be able to use this tutorial to good effect.

Prerequisites

Before proceeding with this tutorial, you need a basic knowledge of concepts of
Structured Query Language (SQL), Data Warehousing Concepts of tables, columns,
facts and dimensions, and any understanding of Linux operating systems, massively
parallel processing would be a plus. It also assumes you have a working installation
of Apache Hive. You can either accomplish this by downloading and installing the
raw tarball from the Hive website, or by going through any one of the vendored
packages such as Hortonworks, Microsoft, Cloudera, MapR, Pivotal, or more.

About Apache Hive

Apache Hive (http://hive.apache.org) is an open source volunteer project under
the Apache Software Foundation (http://www.apache.org/). Apache Hive
(commonly called Hive) provides data warehousing package/infrastructure built
on top of Hadoop.

http://hive.apache.org/
http://www.apache.org/

Hive was originally an internal project by the Facebook Data team. After being
used internally, it was contributed to the Apache Software Foundation and made
freely available as an open source software. The project then quickly matured into
a full blown Apache Project. Its home page URL is. http://hive.apache.org

Initially, it was a subproject of Apache Hadoop, but has now graduated to become
a top-level project of its own. Hive is extremely powerful because it provides a
SQL query language, called Hive Query Language (HQL) for querying data
stored in a Hadoop cluster, either directly in HDFS or in other data storage
systems such as Apache Hbase.

The Anatomy of Hive

Hive has all the structures similar to a RDBMS like tables, joins, partitions. This
similarity with traditional SQL enables users familiar with SQL to easily query
underlying data in Hadoop. Hive itself is NOT a database solution like MySQL,
HBase, and Cassandra. Instead, it is simply a query system on top of HDFS, and
behind the scenes, every hive tables are simply references to files on HDFS.

This unique characteristic of Hive being able to directly query underlying files in
HDFS is good because it allows for other applications to modify Hive files within
HDFS independently of the Hive application. But this advantage comes with some
draw backs. Other applications having access to those files means that Hive can
never be certain if the data being read matches the schema. Therefore, Hive enforces
schema on read. If the underlying data format has changed, Hive will do its best to
compensate when it reads, but users can likely get unexpected results.

HiveQL
HiveQL does not fully conform to any particular revision of the ANSI SQL standard.

Until Hive 0.14, HiveQL was not ACID (an acronym for Atomicity, Consistency,

Isolation and Durability) complaint, offered no support for row level inserts, updates,

http://hive.apache.org/

and deletes. But that has been resolved as of the 0.14 release of Hive. Now, Hive
allows users to modify data using insert, update and delete SQL statements. It also
provides snapshot isolation and uses locking for writes -- allowing users to make
corrections to fact tables and changes to dimension tables with relative ease.

As of now (the writing of this book), Hive doesn’t support transactions. But
who knows; the Hadoop ecosystem and Hive are under very active
development and support for transactions might be introduced with time.

Not your traditional RDBMS

Hive is not designed for online transaction processing and does not offer real-
time queries. As a result, most people tend to not compare it with RDBMS i.e.
the architecture of Hive is different from the Architecture of RDBMS.

According to the Apache Hive wiki, "Hive is not designed for OLTP
workloads and does not offer real-time queries or row-level updates. It is
best used for batch jobs over large sets of append-only data (like web
logs)."
Data Warehousing Solution built on top of Hadoop. It is very well suited for batch
processing data like: Log processing, Text mining, Document indexing, Customer-

facing business intelligence, Predictive modeling, hypothesis testing etc.

Summary:
« Hive Provides SQL-like query language named HiveQL
» Early Hive development work started at Facebook in 2007
« Today Hive is an Apache project that was previously under Hadoop, but
IS now a project on its own
« With Hive, multiple schemas can be projected on the same data -- no
ETL required

« With Hive, popular query tools like Power Pivot, MicroStrategy,
Tableau, SAS e.t.c. and be connected and provided access to the underlying
data via JODBC and ODBC

« Hive allows users to query very large data sets interactively
using MapReduce, Tez, and more recently the Spark Query engine.

Why Hive?

Since most data professionals already know SQL and most Data Warehouse
applications today support SQL, Hive minimizes the effort of analyzing data at
scale on top of the Hadoop platform.

Hive is massively scalable with Hadoop. When users write queries with HQL,
Hive takes the query statements and automatically translates them into one of
(MapReduce jobs, TEZ, or Spark — depending on the execution engine being
used). The translated query is then executed against the data in the Hadoop cluster
and the results are returned to the user.

This saves Analysts time from having to write their own individual Map and

Reduce tasks before being able to execute a single query.

When using Hive, users typically perform the following functions or workflow steps:

1. Create tables
2. Load data from source system in to Hive table or HDFS directories
3. Analyze/Process data by writing HiveQL

Hive is ideal for data warehouse teams migrating to Hadoop, because it
gives them a familiar SQL language that hides the complexity of MR
programming. It also provides teams with the ability to bring structure
to various data formats such as Flat files, logs and more.

Hive supports text files (also called flat files), SequenceFiles (flat files
consisting of binary key/value pairs) and RCFiles (Record Columnar
Files which store columns of a table as a columnar database)

Summary Benefits of Hive
« Familiar SQL dialect. (This characteristic alone makes Hive
indispensable for most business users, who are already SQL users).
« Analysis of large datasets on Hadoop using (MapReduce, TEZ,
or Spark jobs).
« Simple interface for ad hoc querying, analyzing and
summarizing large amounts of data

« Access to files on various data stores such as HDFS and Hbase.

Despite the benefits of Hive, it’s not without its draw backs. When it
comes to system performance, Hive has several downsides. First, the
batch nature of Map / Reduce makes Hive perform poorly when you
need low-latency execution for simple queries.

The Apache Hive community is working effortlessly to address some of
these issues with using Hive as a replacement for traditional RDBMS
systems, but as it stands today, Hive still lacks some of the
functionalities commonly present in database systems for supporting
high-performance analytical queries.

Summary Disadvantages of Hive
» Not areal SQL Database.
« Up until Hive 0.14, HiveQL wasn’t ACID complaint.

« Designed for scalability and ease-of-use. But not ideal for

low latency, sub-second, or real-time queries

« Even querying small amounts of data may take minutes.
(Results are much improved when using TEZ or Spark
Execution engines).

« Hive is useful only if the data is structured. With
unstructured data, Hive is not a good tool. Instead, by directly
writing pure MapReduce code, users can work on any kind of
dataset (structured or unstructured).

Hive Architecture

Hive Storage
Hive dients Hive services and (ompute
Thiift Hive Theift
"Dl ~ ..’ “ ,._ﬂ- (U
w ._.‘
mﬁa;m S w .. ,m, Driver |- B FleSystem | |
‘ ;'-.‘
"' :-.' "._.. w
0DBC Kive 0DBC |7 Hive Web R

http://4.bp .blogspot.com/-Yy3-cDDuigk/UAKBVWXmz9I/AAAAAAAAGWEK/RM 1rJ5nWi9M /s1600/HiveClient.png

Some of the key components of the Hive Architecture are the MetaStore, the
interfaces users use, and the client services that support all interactions. These Hive
components would all be discussed in detail in the sections below.

http://4.bp.blogspot.com/-Yy3-cDDuiqk/UAkBvWXmz9I/AAAAAAAAGWk/RM1rJ5nWi9M/s1600/HiveClient.png

The Hive MetaStore is a very important piece of the Hive Architecture. To
support features like schema(s) and data partitioning Hive keeps its metadata
in a MetaStore.

This metadata contains information about what tables exist, their columns,
privileges, column types, owners, key-value data, statistics and more.

The Hive MetaStore data is persisted in an ACID database such as
Derby, Oracle DB or MySQL. And all Hive processes communicate
with the MetaStore service using Thrift to read off the Metadata.

Hadoop NameNode vs Hive MetaStore

When most people are first introduced to Hadoop and the MPP architecture,
they are taught about the NameNode, DataNode and their roles. The common
scenario is that the NameNode is responsible for storing the directory tree of all
files in the HDFS file system. In addition, the NameNode also performs the
following functions:

Hive Name Node Functionalities

o lItalso tracks where Hive data (not metadata) is spread across
Hadoop HDFS DataNode servers (Typically, each block of data is
replicated on 3 different DataNodes).

o It tracks which DataNodes are dead and which ones are Live
through heartbeat mechanism.

o It helps clients perform reads and writes on HDFS by receiving

their requests and redirecting them to the appropriate DataNode.
But despite this, the Hadoop NameNode is NOT responsible for storing Hive
Metadata. Instead, this information is managed by the Hive Service outside and

stored in a separate relational database systems; typically Derby, MySQL,
Oracle, PostgreSQL or any other relational database management system.

The Hive MetaStore contains information about Hive data such as:

[J

[]

IDs of Database, Tables and Indexes

The time of creation of a Table

The time of creation of an Index

Statistics of number of records stored in each tables at a point in
time 1Ds of roles assigned to a particular user InputFormat used for
a Table

OutputFormat used for a Table

Example: NameNode vs MetaStore

Assume you go to Hive and create a new table as such

hi ve =

CREATE TABLE |l og tabl e (
idB QNT
, NAME string

) partitioned BY (server string);

When the query above executed, information about the newly created

table would be persisted in the Hive MetaStore (not NameNode).

Then, when you insert data into the Hive log_table, the actual data inserted

will be stored on Hadoop Data and Name Nodes (not MetaStore).

Tips on Hive MetaStore
e Some Hive queries have to be compiled in order to generate MapReduce

jobs. But, some Hive operations don’t invoke Hadoop processes at all.

Some very simple queries will just either read or write updates directly
to the MetaStore database.

o Example: Queries like SELECT count (*) from tbl_TableName just reads
the table statistics stored in the MetaStore, and so returns results very fast.

o Out of the box Hive comes with Derby database as the default MetaStore

location. The out of the box Derby database (a lightweight embedded
SQL DB) used by Hive is only effective for a single user and a single
process at a time. For large scale clusters, or in production, users need to
set up a MySQL or PostgreSQL database for Hive’s metadata.

o Itis not mandatory to have MetaStore in the cluster itself. Any
machine (inside or outside the cluster) having a JDBC-compliant
database can be used for the MetaStore.

Users and analysts can interact with Hive using several methods, including the
CLI, HUE, and JDBC/ODBC.

Command Line Interface (CLI) and Beeline

— CLI and Beeline are one to the top primary interfaces through which
developers work with Hive data.

— Generally speaking, CLI and Beeline perform similar functions i.e.
execute queries against Hive, but the primary difference between the
two involves how the clients connect to Hive. The Hive CLI connects
directly to the Hive Driver and requires that Hive be installed on the
same machine as the client. However, Beeline connects to HiveServer2
and does not require the installation of Hive libraries on the same
machine as the client. Beeline is a thin client that uses the Hive JDBC
driver and executes queries through HiveServer2, which allows
multiple concurrent client connections and supports authentication.

— When using the CLI, the following properties can be set to help
make the results that are printed on the screen such as column names
and database context more clear and intuitive.

- print col um headers for query results
SET hive. cli. PR NT. header = true;

-- print default db. i.e. the current database context
SET hi ve. cli. PR NTI. CURRENT. db = true;

Pro Tipx Note that, a common source of error occurs when users wite code us-
ing an outside |DE and try to copy/paste it to the CLI. Mhen pasting hive

code to the CLI, avoid lines that begin with tabs. Ctherwise, this wll cause
the CLI interface to not execute the hive script and error messages woul d be

di spl ayed.
Hadoop User Experience (HUE)

— HUE (http://gethue.com/) is an open-source Web user interface that

supports Apache Hadoop and its ecosystem, licensed under the Apache

http://gethue.com/

v2 license. Hue allows technical and non-technical users to take
advantage of Hive, Pig, and many of the other tools that are part of
the Hadoop ecosystem.

— Hue is great alternative to running 'show tables' or 'show extended
tables' from the CLI because it provides a very web-based GUI for users
to quickly browse the schema of Hive tables, and also write queries.

— With Hue, the Hive metadata is presented in a hierarchical manner
allowing users to start at the database level and click to get information
about tables including the SerDe, column names, and column types.

Java/Open Database Connectivity (JDBC/ODBC)

— Hive also provides JDBC and ODBC drivers that allow users to
connect popular Business Intelligence (BI) tools such as Excel, SAS,
MicroStrategy, Tableau, e.t.c. to query, analyze and visualize data
stored within Hive.

— Hive JDBC URLs have the following format:

j dbc: hive2: |/ <host> <port > <dbNane>; <sessi onConf s>?<hi veCorf s>#<hi veVars>

— Depending on which vendor distribution of Hive you are using
(Hortonworks, Cloudera, MapR, e.t.c.), there might be vendor specific
Hive ODBC drivers available you can download and use to connect to
hive cluster, instead of using the native out-of-the box driver provided
by Hive.

Hive Query Execution Engines

There are several ways users can execute queries on Hive. Most queries

use MapReduce jobs, or more recently Tez and Spark execution engine.

Hive on MapReduce

Originally the MapReduce algorithm was very tightly coupled into the
workings of Hadoop’s cluster management infrastructure. MapReduce is very
powerful, because of its divide and conquer approach — i.e. it divides the
query work and the data up amongst the numerous commaodity servers in its
cluster, facilitates teamwork between them, and gets the answer.

Traditionally, Hive would run using the MapReduce engine. This meant,
Hive generates MapReduce jobs to implement all but the simplest queries.
Unfortunately, with this approach, the benefits of MapReduce (horizontal
scalability), was quickly overshadowed by the high latency in query
performance. Users who were used to sub-second queries from the RDBMS
world simply weren’t getting it with Hadoop.

In Hadoop 2.0, YARN (an acronym for “yet another resource negotiator’)

was introduced as a processing algorithm-independent cluster management
layer. YARN allows for Hadoop cluster to run MapReduce jobs, but it can

host an array of other engines, as well.

This separation of the cluster management layer with the introduction of YARN

let to the up-spring of new execution engines such as Tez and Spark that

compete and even eclipse traditional MapReduce in many benchmark tests.

Depending on what version of Hive you use, MapReduce might be the
default (or the only) execution engine available. To execute Hive jobs using
the MapReduce execution engine, set (or change) the following property:

SET hi ve. executi on engi ne = nr;

Hive on Tez

Tez (http://tez.apache.org/) is a new application framework built on
Hadoop Yarn that can execute complex directed acyclic graphs of general
data processing tasks. In many ways it can be thought of as a more flexible
and powerful successor of the MapReduce framework. To use the Tez

execution Engine on Hive, set the hive.execution.engine property to Tez
before any queries.

SET hi ve. execution engine = tez;
You can do this from the Hive CLI or as an option in your Hive command.
Setting this property will enable your Hive CLI to pick up the
hive.execution.engine setting that tells it to use Tez rather than MapReduce.

Hive on Spark

Apache Spark (https://spark.apache.org/) is an open source big data

processing framework built around speed, ease of use, and sophisticated
analytics. It was originally developed in UC Berkeley’s AMPLab (Source:
http://www.infog.com/articles/apache-spark-introduction), and open sourced

in_ 2010 as an Apache project.

Spark can run on Hadoop clusters and, because it uses memory instead of disk,
can also avoid long query execution times experienced with MapReduce’s
batch mode. Spark provides support for a SQL language (Spark SQL). It also
provides command-line interfaces and ODBC/JDBC server.

Spark claims to run 100x faster than MapReduce. For this reason, we see
most people are having interest or moving altogether to Spark.

To enable and use spark execution engine, set the following property.

SET hi ve. executi on engine = spark;

You can do this from the Hive CLI or as an option in your Hive command.
Setting this property will enable your Hive CLI to pick up the

hive.execution.engine setting that tells it to use Spark rather than MapReduce
or Tez.

http://tez.apache.org/
https://spark.apache.org/
http://www.infoq.com/articles/apache-spark-introduction

Pro Tip: Putting settings into a .hiverc file

While it is possible to set Hive properties from the Hive CLI or put them into
a Hive command, alternatively, you can create a .hiverc file in your home
directory on the Hadoop cluster and set the execution engine parameter in
that file. In the latter case, all your Hive jobs will execute with the properties
that are set in the .hiverc file.

Setting Hive properties using the Hive CLI or Hive command will only affect
individual Hive jobs. But, if you have properties that you want to set across
all your jobs, .hiverc file would be a more efficient way to go.

Each user can have a .hiverc file in his or her own home directory to set

up their hive environment.

Example:

$cat |/ home/] ane Doe'. hi verc

SET hi ve. execution engine = tez;

SET hi ve. j ob. queuenane = el t;

ADD |/ hone' | ane_Doe/ Foo/] AR Cool H ve. j ar;

In this case, we have setup a .hiverc file in Jane_Doe’s home
directory. When Jane executes any Hive commands from the CLI,
these properties will first be set before the command is executed.

Making things much easier and consistent.

Anatomy of HiveQL

Hive is largely in synch with the traditional Relational Databases concepts.
In Hive as in other RDBMS systems, we have the concept of Databases,
Tables, Rows, Columns, e.t.c.

» Database: Set of Tables, used for name conflicts resolution

» Table: Set of Rows that have the same schema (same columns)
* Row: Asingle record; a set of columns

« Column: A unique instance and type for a single value

Along with the similarities Hive has with other RDBMS systems, HiveQL
also wields many important similarities to traditional SQL. (The ultimate goal
of the Hive project is to get it fully ACID compliant, and that goal was
achieved as of Hive 0.14).

Also, the good thing with Hive is that users get most of the usual suspects of
SQL statements such as SELECT, WHERE, e.t.c. to use for their data analysis.
Below are some to the common syntax similarities HiveQL shares with
native SQL.

« SELECT Scans the table specified by the FROM clause

« JOIN joins results sets from one table to another. Supports Inner,
Left, Right, and Full Outer Joins. Default Join in Hive is Inner Join. In
Inner Join, rows are joined where the keys match. Rows that do not match
are not included in the result.

« GROUP BY Gives a list of columns which specify how to aggregate
the records. A GROUP BY clause is frequently used with aggregate
functions, to group the result set by columns and apply aggregate functions
over each group.

WHERE Gives the condition of what to filter. A WHERE clause is used
to filter the result set by using predicate operators and logical operators.

+ Having A HAVING clause lets you filter the groups produced

by GROUP BY, by applying predicate operators to each groups.

« CLUSTER BY, DISTRIBUTE BY, SORT BY specify the sort
order and algorithm

« LIMIT specifies and limits the number of records to retrieve.

In Hive, Commands are non-SQL statement such as setting a property or
adding a resource. They can be used in HiveQL scripts or directly in the CLI
or Beeline.

List of Hive Commands

Command Description

quit Use quit or exit to leave the interactive shell.

exit

reset Resets the configuration to the default values. Any

configuration parameters that were set using the set
command or -hiveconf parameter in hive command
line will get reset to default value.

set <key>=<value> Sets the value of a particular configuration variable

(key).
Note: If you misspell the variable name, the CLI will
not show an error.

set Prints a list of configuration variables that are
overridden by the user or Hive.

set -v Prints all Hadoop and Hive configuration variables.

Add, List, Delete Adds, Lists or Removes one or more files, jars, or
FILE[S] <filepath> archives to the list of resources in the distributed
cache.

I <command> Executes a shell command from the Hive shell.

dfs <dfs Executes a dfs command from the Hive shell.

command>

<query string> Executes a Hive query and prints results to standard
output.

source FILE Executes a script file inside the CLI.

<filepath>

The full list and details of Hive Commands can be viewed at

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Commands

Sample Usage of Hive Commands

hi ve> set hive. execution. engi ne=t ez;

hi ve> set;

hi ve> select * fromlog table linit 10
hi ve> !l s;

hi ve> dfs -Is;

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Commands

Hive, being ACID compliant now has a lot of the data types you would find
in any other traditional SQL database.

In Hive, data types are categorized in to two main Categories, Vviz;
primitive and complex data types.

HiveQL Primitive Data Types
The primitive data types include Integers, Boolean, Floating point numbers
and strings. The below table lists the size of each data type:
o Numeric Types
— TINYINT: 1-byte (signed integer, from -128 to 127)
— SMALLINT: 2-byte (signed integer, from -32,768 to 32,767)
— INT: 4-byte (signed integer, from -2,147,483,648 to
2,147,483,647)
— BIGINT: 8-byte (signed integer, from -
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)
— FLOAT: 4-byte (single precision floating point number)

— DOUBLE: 8 byte (double precision floating point numbers)

— DECIMAL.: Decimal type data is nothing but floating point value
with higher range than DOUBLE data type. The DECIMAL type in
Hive is as same as Big Decimal format of Java. It is used for
representing immutable arbitrary precision. The range of

decimal type is approximately -10°% 10 10°%, The syntax

and example is as follows: DECIMAL (precision, scale).
Example: decimal (10,0).

o Date/Time Types

— TIMESTAMP: Hive supports traditional UNIX timestamp with
optional nanosecond precision. It supports java.sgl. Timestamp

format “YYYY-MM-DD HH:MM:SS fffffffff” and format
“yyyy-mm-dd hh:mm:ss.fiff”.

— DATE: DATE values are described in year/month/day format

in the form {{YYYY-MM-DD}}.
e String Types
String type data types can be specified using single quotes (' ')

or double quotes (" *). It contains two data types: VARCHAR
and CHAR. Hive follows C-types escape characters.

— STRING: Max size is 2GB.
— VARCHAR: 1 to 65355 in length
— CHAR: 255 in length

e Misc Types
— BOOLEAN: TRUE/FALSE value
— BINARY

Example Syntax: Hive Primitive Data Type

Syt ax:
CREATE TABLE sinple_dt |
Log string
, ServerNanes string
. Regi ons Bl GI NT
. Measurel TI NYINT
, Measure2 DOLBLE
. Zi p_Code | NT
. Load_date DateTine

HiveQL Complex Data Types

The complex data types in Hive include Arrays, Maps and Structs. Complex
data types are all built on using the primitive data types.

— Arrays: Contain a list of elements of the same data type. These

elements are accessed by using an index. For example an array, “tweets”,
containing a list of elements [‘happytweet’, "oktweet’, ‘joyfultweet’], the

element “happytweet” in the array can be accessed by specifying tweets.

Syntax: ARRAY < data type >
(Note: negative values and non-constant expressions are allowed as of

Hive 0.14.)

— Maps: Maps are key-value pairs. The elements are accessed by using
the keys. For example a map, “log_list” containing the “servername” as
key and “serverlocation” as value, the location of the server can be

accessed by specifying log_list[‘servername’].

Syntax: Map < prinitive type data_type >
(Note: negative values and non-constant expressions are allowed as of

Hive 0.14.)

— Structs: Structs are like “objects” or “c-style structs”. They contain
elements of different data types. The elements can be accessed by using
the dot notation. For example in a struct, “log”, the server of the log can
be retrieved as specifying log.server.

Syntax: STRUCT < col _type: data type [COMMENT col commernt],... >

— Union Types: Union types can at any one point hold exactly one of their
specified data types. You can create an instance of this type using the
create_union UDF:

Syntax: UNIONTYPE < data type data type ... >
(Note: Only available starting with Hive 0.7.0.)

Example: Hive Complex Data Type

Synt ax:
CREATE TABLE conpl ex_dt |

NAME STRI NG

cid BI@NT

i sStudent BOCLEAN

. ROLE VARCHAR(64)

. sal ary DECI MAL(8, 2)

, phones ARRAY <l NI

, Course MAP <CHAR. FLOAT=

. address STRUCT <street: STRING city: STRING state: STRI NG zip: | NT>

, Teacher UN ONTYPE <FLOAT, BOOLEAN STRI NG>

.msc Bl NARY

) ROW FORMAT DELIM TED FI ELDS TERM NATED BY '} 001' COLLECTION | TEMB
TERM NATED BY '\ 002' NMAP KEYS TERM NATED BY '\ 003" LINES TERM NATED BY '\n';

In Hive tables can be created as EXTERNAL or INTERNAL (managed tables).
The choice of how the table is created affects how data is loaded, controlled, and
managed.

Key Differences

Internal table data stores in Warehouse folder, External table data points to
location you mentioned in table creation. So when you delete the internal
table it delete Schema as well as Data under Warehouse folder, but in
external table its only Schema going to lose. When you want table back you
can create a table with schema again and point the location.

With external tables, Hive does not delete data from HDFS when you drop the
base table. It doesn’t also rename the directory when the base table is renamed.
Furthermore, external tables can't be archived and hive will not do any
operations that affect the underlying files if the tables is declared external.

Hive EXTERNAL table

— External tables are preferred when the data is also used outside of Hive.
For example, the data files are read and processed by an existing program
that doesn't lock the files.

— Data remains in the underlying location even after a DROP TABLE. This
can apply if you are pointing multiple schemas (tables or views) at a single
data set or if you are iterating through various possible schemas.

— In external tables, if you drop it, it deletes only schema of the table, table
data exists in physical location. So to delete the data use hadoop fs -rmr
table_name.

Hive INTERNAL (Managed) table

— Hive completely manages the lifecycle of the table and data.

— Unlike external tables where users have control on it, in Managed tables,
hive has full control on table.

— When you drop an internal table, it drops the data, and it also drops the

metadata. (So, use caution when dropping Hive INTERNAL tables).

HiveQL and Examples

Hive — Data Definition Language — DDL
Create Managed Table

hi ve> CREATE TABLE nmanaged tabl e (Regi on STRING ;
LOAD DATA | NPATH '/ user [Fooj dat a t xt'
I NTO TABLE managed tabl e

--Note that LOCATICN is not specified and so hive uses the def aut Warehouse
| ocati on

Create External Table

hi ve> (REATE TABLE externa table (Regi on STRING)
LOCATI N ' f user/ Foo/ ext ernal _tab/
LOAD DATA | NPATH ' / user/ Foo/ dat a. t xt!
I NTO TABLE externa table

--Note that LOCATICN is nowspeci fied and so hive uses it.
Create database

hi ve> (REATE Dat abases Sal es;
Create schema

hi ve> (REATE SCGHEMA Sal es. Cust oners;
Create Tables

hi ve> (REATE TABLE Sal es. Cust oner s. custoner (

age | NI
, address STRI NG

);

--Inthis case, customer is the tabl e nane

Dropping Tables

hi ve> DRCP TABLE | F EXI STS enpl oyees;

Renaming a Table

hi ve> ALTER TABLE enpl oyees RENAME TO guests;

Adding, Modifying and Dropping a table partition (aka. Partition
swapping)

hi ve>= ALTER TABLE custoners ADD
IF NOT EXASTS PARTI TICON |

year = 2016, morth = 01, day = 01

) LOCATICN ‘/ custoners/ 2016' 01/ O01;

hi ve= ALTER TABLE customers PARTI TION (- - (hange partitl
year = 2016, nonth = 01, day = 01
) SET LOCATI CN ‘ / cust omers’ 2016/ 01, 01;

hi ve> ALTER TABLE customers (--inop
DRCP IF BEX1 STS PARTITION (
year = 2016, nonth =1, day = 1);

Changing Columns

hi ve> ALTER TABLE customers CHANGE CALUVN ol dname newnane COMMENT ¢ Qust oner
New Nan®® AFTER soneot her col unmnane;

Adding Columns

hi ve> ALTER TABLE customers ADD col ums (
firstname STRING COMMENT ‘First Nane
, l astname STRING COMMENT ‘Last Nang’

);
Deleting or Replacing columns

hi ve> ALTER TABLE customers REPLACE col umms (

new i rst nane STRING COVMENT ‘M New Fi rst Nane’
, newl ast nane STRING COVMENT ‘M New Last Nane
)

Not e:
* Repl aces origina colums inthe table wth the new defi ned col unmms
* Can only be used in tables that use the native SerDe: Dynani cSerDe.

Alter table properties

hi ve> ALTER TABLE customers SET TBLPRCPERTIES(‘notes’ = ’This t abl es houses
customers information AND IS refreshed daily’);

Alter Storage properties

hi ve> ALTER TABLE customers PARTI T1 ON (
year = 2016
,nmonth = 01
,day = 01
) SET FI LEFORMRT SEQUENCEFI LE;

Partitions

hi ve> (REATE TABLE customer (
age | NI
, address STRI NG
) PARTITI ONED BY (STATE string ;

Show table

i ve= SHOW Tabl es;

Describe table

hi ve> Descri be Cust oner;

Alter Table

hi ve> ALTER TABLE custoner ADD col ums (age INT);

Drop Table
hi ve> DRCP TABLE Cust omer;

More Hive queries
BahangePartitions
hi ve> ALTER TABLE Regi onl_Logs exchange PARTITION (Year = ' 2015')
WTH TABLE Regi on2_ Logs
The semarticsof the above statemert isthat the dataismovedfromthe target table to the

source table, Boththe tablesshoud have the same sdhema, The operationfalsinthe presence
of anindex. The source table shoud not have thet pertition.

Archive Partitions
hi ve> ALTER TABLE ...ARCH VE PARTI TI ON

Archivingisa featire to moves a partition'sfilesirto aHadoop Archive (HAR). Note thet only the
file court: will be reduced; HAR doesnot provide any compression.

Touch Partitions

hi ve> ALTER TABLE ... TQUCH PARTI TI (N
TOUHreadsthe metadata, and writesit badk. Thishasthe effedt of caudngthe pre/post exe-
atehookstofire. Anexample ue @ isif youhave ahookthat logs dl the tables/partitions
that were modfied, alongwith an exterrd i pt that alters the fileson HOFS dreddy. Since the
aript nodfiesfilesoutdde of hive, the modification woudn't be logged by the Fook. The exter-
rd ript coud cdl TOUH o fire the hook and mark the saidtable or pertitionasmodfied.

Hve Hodks
Hoddinginvolves techniguesfor interceptingfundion cdlsor messagesor evertsinan operat-
ingsystem gpplication, and other software comporerts.

AHodkisoode that hendesinterceptedfundion clls everts or messages

More onhookingavailadle &: hitp://www dideshare et/ uind<«/apache-Hve-ookamin-
woolkim130813

Hive — Data Modification Language (DML)

Hive Tables
Simple Select statement: Similar to SQL

hi ve> SELECT a. age FROM custoner a WHERE a LastNane = ‘Lou € ;
Loading flat files into Hive

hi ve> LOAD DATA LOCAL | NPATH ‘. /data/ home/ nyfil e. txt’ OVERWRI TE | NTO TABLE
Cust omer;

Note:

* Thereisno verification of incomingData

* [OADDATALOCAL .. .copfesthe locd data to the final location in HOFS, while LOAD DATA. . (i.e.

without LOCAL) movesthe datato the find dedtination. LOCAL saysthe file isafile inyour regus-
|ar file systemn (not HOFS)

* Default colurmn celirriter is\A and row ddlirmiter \n, so typicd filesbecorre atable havinga€n-

de wlumn and asmeny rowsaslines

Insert Data into Tables from Queries

hi ve> | NSERT OVERVWRI TE TABLE enpl oyees PARTI TI (N
firstname = 'fur'
,lastname = ' edn'
) SELECT * FROM src_enpl oyees enp;

Note 1: The CVERWRITE keywords causeshive to overwrite dl data inthe table. Igore itif youjust
wart to gopendthe data.

Dynamic Partition Inserts

hi ve> | NSERT OVERWAI TE TABLE enpl oyees PARTI TI CN (
firstname
, | ast name

) SELECT. . ., enp. fi rstname, enp. | astname FROM src_enpl oyees enp;

Nd e The followingisvery importat: for dynarric pertitioning
All Partition colunms (firtname, lastname) MUST be the last columnsinthe seled: datenrert:.

Properties to enable Dynamic Partition Inserts

|z the following propertiesinthe gueryto dlow dynamic partition,
hi we> SET hwve. EXEC DYMNAM C PARTI TI ON = true;

Hve=SET hive. EXEC. DVNAM C. PARTI TI (M. mode = nonstri ct;

hive=SET hive. EXEC. . [h"hlﬂ.l'*-'lc partltlnm perrmle = 1000;

Creating and Loadmg tables in One Query

hi ve> CREATE TABLE sub_enpl oyees AS
SELECT fi rst nane
, | ast nane
, address
FROM enpl oyees
WERE enp.type = 'sub';

Exporting data from Hive

Write reaitsfroma seledt statement to anHDFSdiredtory

hi ve> | NSERT OVERWRI TE DI RECTCRY ‘/directory/ custonmerResu ts’
SELECT a. *
FRCM custonmer a
WERE a Birthdate >= 01/ 01/1980 ’ ;

To Single Directory

hi ve> | NSERT OVERWAI TE LOCAL DI RECTORY ' /user/tnp_enpl oyees'
SELECT fi rst nane
, | astnane
, address
FROM enpl oyees enp
WHERE enp. Type = 'tnp' ;

To Multiple Directories/Files
hi ve > FROM src_enpl oyees enp

| NSERT OVERWRI TE DI RECTCRY '/ user/ tnp_enpl oyees'
SELECT *

WHERE enp. Type = 'tenp

I NSERT OVERWRI TE DI RECTCRY ' juser/full _enpl oyees'
SELECT *
WERE enp. Type = 'ful'

| NSERT OVERWRI TE DI RECTCRY '/ user/ exec_enpl oyees'
SELECT *
WERE enp. Type = ' executive';

Hive Views
Used to reduce complex queries

Create View
hi ve> CREATE VIEWIF NOI' EX STS top_cust oners AS
SELECT *

FROM cust oners cust
VHERE cust. ranki ng >= 89;

HiveQL Indexes

Creating Indexes
hi ve> CREATE | NDEX enpl oyees_index ON TABLE enpol oyees (country) AS
" org apache. hadoop. hi ve. gl . i ndex. conpact . Conpact | ndexHand er'

WTH DEFERRED REBU LD | DXPROPERTIES/(' creator = ' me ')

I N TABLE enpl oyees index table
PARTI TI ONED BY (country, nane);

BitMap Indexes
hi ve> CREATE | NDEX enpl oyees_i ndex ON TABLE enpol oyees (country) AS ‘BI TMAP

WTH DEFERRED REBU LD | DXPROPERTI ES(' creator = 'ne') |IN TABLE
enpl oyees_index_tabl e PARTI TI ONED BY (country, nane);

Rebuilding Indexes

hi ve> ALTER | NDEX enpl oyees_i ndex ON TABLE enpl oyees PARTITICN (courtry =
‘nane’) REBULD

Showing Indexes
hi ve > SHOW FORMATTED | NDEX ON enpl oyees;
Dropping Indexes

hi ve = DROP I NDEX | F BX1 STS enpl oyees i ndex ON TABLE enpl oyees;

Hive Queries that sample Data

hi ve > SELECT * FRCM cust oner s TABLESMPLE(BUKET 1 CQUTPUT CF 2 CN custom
erid cust;

hi ve > SELECT * FROM cust onmers TABLESMAWPLE(BUCKET 1 CQUTPUT CF 2 CN rand())
cust; --Bucket Sanpling

hi ve >SELECT * FRQM customers TABLESMAPLE(0. 1 PERCENT) cust;
HiveQL Table Generating Functions

Normal user-defined functions, such as CONCAT (), take in a single input
row and output a single output row. In contrast, table-generating functions
transform a single input row to multiple output rows. Hive table generating

functions include; Explode, Split, Lateral View.

hi ve> SELECT pagei d
i:gddpagel-\ds LATERAL VI EW expl ode(adi d | ist) adTabl e AS adid
Hive’s table generating functions allow a single row to expand to multiple
rows; it takes an array and generate a row for each item in the array (split is

a function that splits a string into an array)

HiveQL User Defined Functions (UDFs)

hi ve> ADD | AR MAKFs. j ar;
CREATE TEMPCRARY FUNCTI ON net _sal ary AS ' com exanpl e, MADFs' ;
SELECT EnpName, net _t ax(sal ary, deductions) FROM enpl oyees;

With UDFs, it’s easy for users to build their own custom fundions, putin ajar, and then use themin
queries.

The above LDF function takes the enployee’s sdary and deductions, then computesthe net tax

Hive Calling Out to External Programs

In hive, it is possible to call out to external programs to perform map

and reduce operations. See example below.

hi ve> FROM |
FROM | ogs MAP nessage WSING ' /user/]ane Doe AS |og feed
, court (LUSTER BY | og feed
)it
I NSERT O/ERWRI TE TABLE Log Data REDUCE | g error_name

,1g count USING ' [user/log andlyzer.py AS | og feed
, counts;

MNote the MAP .. ANGand REDUCE .. .USNG

Key Hive Query Optimization Tips

Hive from the ground up is designed like SQL engines do. But given the
challenges that come with working on the Massively Parallel Processing (MPP)
architecture, it turns out that Hive in some cases does not work like SQL engines.
So, special techniques must be employed to tune and optimize hive queries so they
can run efficiently. Let's discuss such best practices to get maximum performance
benefits from hive.

®

When joining three or more tables, if every ON clause uses the
same join key, a single MapReduce join will be used. Also note
that Hive allows only equality Joins.

Hive always assumes that the last table in the query is the largest.
It attempts to buffer the other tables and stream the last table. So,
the last table in queries should be the largest.

Use small tables on the left side of your joins. Enable auto
optimization, and take advantage of improved query

performance with Map/Side joins.

hi ve> SET hive. auto. convert.inner.join = true

hi ve> SET hi ve. mapj oi n. snal It abl e. fil esi ze = 1000000;

hi ve> SET hive. groupby. orderby. position aias = true;

[]

In every map/reduce stage of the join, the last table in the sequence is
streamed through the reducers whereas the others are buffered.
Therefore, it helps to reduce the memory needed in the reducer for
buffering the rows for a particular value of the join key by organizing
the tables such that the largest tables appear last in the sequence.
Read more on Hive Joins at:
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+J

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Joins

o SORT BY query produces multiple independent files. ORDER BY
- just one file. This is because unlike SORT BY when doing
ORDER BY, everything is piped through one reducer; an
approach that might take a very long time for large data sets.

e InSORT BY, each reducer handles a subset of the data, so joining

the files together would be globally sorted (in most cases).

--Atota ordering - one reducer. (Sl ower)

hive>SELECT NAME
, sa ary
FRCM enpl oy ees
CROER BY sal ary ASC

-=A LOCAL ordering - sorts within each reducer. (Faster!)
hive>SELECT NAME
, sal ary
FRCM enpl oyees SCRT BY sa ary ASC;
o Always avoid using ORDER BY in queries. ORDER BY is
slow and results in one final reducer sorting the data. Instead,
use SORT BY or CLUSTER BY which organizes data on a per

reducer (local) level and hence results in much faster queries.

®

Partitioning works on both managed and external tables.
Partitioned data are physically stored under separate directories.
You can store the data in a subdirectory tree like
year/month/day or if it is geographic data country/state/zipcode
and so forth. That allows queries to quickly traverse and to skip
the irrelevant data, saving lots of CPU time.

When inserting data to partitioned tables, the partition columns
must be specified. The partition columns, must be the last

columns in the query statement.

hi ve > I NSERT I NTO TABLE partitioned user PARTITI ON (country , STATE)

SELECT firstname, | astname, address, country, STATE
FRCOM tenp_user;

-=Noti ce how country and state used in the partition colums are listed as

the last colums inthe select statenent. Not sure vhy H ve was desi gned this

way, but that’s just howit is. Ignore this rule and your statenent wll
fail.

o Use caution not to over partition your data within Hive. It’s
important to consider the cardinality of the column that will be
partitioned on. HDFS performs better when it has smaller set
of large files instead of larger set of smaller files. Selecting a
column with high cardinality will result in fragmentation of
data and put strain on the name node to manage all the
underlying structures in HDFS.

Best Practice Parameters far L oading and Quenying HivePartitioned Tables

hi ve= SET hive. mapred node = strict;

hive=SET hive. enfor ce. bucketing = true;

hive=SET hiwve. enforce. sorting = true;

hive=SET hiwve. EXEC D¥YNAM C PARTI TI (N node = nonstri ct;

hive=SET hiwve. EXEC mex. DYNAM C partitions. pernode = 200000;

hive=SET hiwve. EXEC max. DYNAM C partitions = 200000;

hive=SET hive. EXEC mex. creat ed fil es = 2000000;

hive=SET hiwve. EXEC. parallel = true;

hive=SET hive. EXEC reducers. mmx = 4000

hive=SET hive. st ats. aut ogather = true;

hive=SET hive. CPTIM ZE. sort. DYNAM C. PARTITI CN = true;

hive=SET mepred j ob. reduce. i nput. buff er. PERCENT = 0. O

hive=SET mapr ecuice. i nput. fil ei nput fornat . split. ninsi zee = 300000000;
hive=SET mapr educe. i nput. fil ei nput format . split. ninsi ze. per. node = 300000000;
hive=SET mapreduce. i nput. fil ei nput formet . split. ninsi ze. per. rack = 300000000;

--f course, these nunbers woul d not necessarily transl ate di rectly to your
cl uster. You woul d need to exanmine and tune the va ues to match your particu-
lar cluster size and confi quration.

Bucketed tables are fantastic in that they allow much more
efficient sampling than do non-bucketed tables, and they may
later allow for time saving operations such as mapside joins.
Use the following command to enforce bucketing:

hi ve> SET hive. enf orce. bucketing = true;

Bucketing provides mechanism to query and examine
random samples of data.

With Bucketing, Data is broken into a set of buckets based on
a hash function of a "bucket column".

Bucketing offers capability to execute queries on a sub-set

of random data

Hive does not automatically enforce bucketing. User is required

to specify the number of buckets by setting # of reducer.

o Statistics such as the number of rows of a table or partition and
the histograms of a particular interesting column are important
In many ways. One of the key use cases of statistics is query
optimization.

e For newly created tables and/or partitions (that are populated
through the INSERT OVERWRITE command), statistics are
automatically computed by default. The user has to explicitly
set the Boolean variable hive.stats.autogather to false so that
statistics are not automatically computed and stored into Hive
MetaStore.

hi ve> SET hive. stats. aut ogather = f al se;

¢ Another feature of Hive 0.13 and beyond is support for Cost
Based Optimization (CBO) that leverages statistics collected on
Hive tables. To collect statistics for the Hive query optimizer,
set two parameters:

hi ve> SET hive. COMPUTE. query. using. stats = true;

hi ve> SET hive. stats. dbcl ass = fs;

e For existing tables and/or partitions, the user can issue the
ANALYZE command to gather statistics and write them into Hive
MetaStore. The syntax for that command is described below:

hi ve> Anal yze TABLE t [partition p] COvWUTE STATI STI CS
FOR [colums c,...];

o Statistics serve as the input to the cost functions of the optimizer

so that it can compare different plans and choose among them.

Statistics may sometimes meet the purpose of the users'

e queries. Users can quickly get the answers for some of their
queries by only querying stored statistics rather than firing
long-running execution plans.

Optimize On Compression

e Textis where Hive started, but it has evolved into handling just
about any text file. Today, ORC (Optimized Row Columnar)
files are the new, highly optimized format for data that was
recently released.

e Using ORCFile or converting existing data to ORCFile is
simple. To use it just add STORED AS orc to the end of your
create table statements like this:

hi ve> (REATE TABLE server_l ogs |
ip STRI NG
, host nane STRI NG
, G STRI NG
,load date DATE
) PARTI TI CNED BY (| oad_date STRING STCRED AS ORC TBLPRCPERTI ES
("orc. conpress" = "SNAPPY");

--This coomand creates a table stored ORC Hve. It a so uses Snappy compres-
sioninstead OF ZAib,

o ORC files predate Hive 0.13. The ORC format first showed up
in Hive 0.11, but they work particularly well in conjunction with

the new features of Hive 0.13.

File Size Comparison Across Encoding Methods
Dataset: TPC-DS Scale 500 Dataset

505 GB Impala

14% « Larger Block Sizes

(145 Smafler) 221 GB Hive 12 e

(62% Smaller) 131 GB arranges columns
(783 Smaller} adjacent within the
file for compression
& fast access
Encoded with Encoded with Encoded with Encoded with
Text RCFile Parquet ORCFile

Source: http://hortonworks.com/blog/orcfile-in-hdp -2-better-compression-better-performance/

¢ ORC (Optimized Row Columnar) is a columnar file format

optimized to improve performance of Hive. Inserting data into

ORC compressed tables might be a little slower, but if you
want good query speed, while compressing the data as much as
possible, then ORC is for you.

e Vectorization allows Hive to process a batch of rows together as
a unit instead of processing one row at a time. When used,
Vectorization greatly reduces the CPU usage for typical query
operations like scans, filters, aggregates, and joins. A standard
query execution system processes one row at a time. A
vectorized query execution on the other hand streamlines
operations by processing a block of 1024 rows at a time.

e 10 USe vectorized query execution, the data must be stored in
ORC format. Vectorized execution is turned off by default,
so your queries only utilize it if this variable is turned on. To
turn vectorization on, use the following property.

hi ve> SET hive. vectorized executi on. enabl ed = true;
o Todisable vectorized execution and go back to

standard execution, do the following:

hi ve> SET hive.vectorized executi on. enabl ed = fal se

e More details on Hive Vectorization can be found at this link:
https://cwiki.apache.org/confluence/display/Hive/VVectorized+Que

https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution

¢ In most cases, as Hadoop usage grows and many users take on the
tasks of executing Hive queries on the Hadoop cluster, contention
for the Hadoop resources will inevitably become an issue. In
order to mitigate this issue, Hive provides the concepts of queues
and schedulers multi-tenant use and workload management.

o There are two prominent schedulers for multi-user workloads in
Hive: the Fair Scheduler, developed at Facebook, and the
Capacity Scheduler, developed at Yahoo. (Setting up queues and
schedulers is beyond the scope of this book. More information on
that can be found at this links:
http://blog.cloudera.com/blog/2008/11/job-scheduling-in-

hadoop/)
o Once you have the scheduler and queues setup, you can then

manage users queries and direct their workloads to a
particular queue by using this property.

hi ve> SET hive. job. queuenane = elt;

¢ Inacluster that is setup to use queues, if you do not specify the
gueue name in your job options, the job will be submitted to the
default queue. Any jobs submitted to the default queue will have
a lower priority than jobs submitted to other queues.

http://blog.cloudera.com/blog/2008/11/job-scheduling-in-hadoop/
http://blog.cloudera.com/blog/2008/11/job-scheduling-in-hadoop/

Hive Functions

Like with traditional SQL, there are lots of pre-built functions for performing
analytical tasks within Hive. These range from simple Date functions, Mathematical
functions, String functions, to more advanced windowing functions that can be used
for Ranking, Aggregation, Navigation Time Series Analysis, Allocations, Data
Densification and Linear Regression.

Simple functions can even be chained for more complex analysis.

The list below provides links to articles that lists all built-in aggregate functions.

Because these list might constantly evolve and change, it's better to provide the raw
URLSs and point you to the direct source rather than pasting the functions in here.
Please visit the links to check out the functions.

Date Functions

o http://docs.treasuredata.com/articles/hive-functions#date-functions

Mathematical Functions

o http://docs.treasuredata.com/articles/hive-functions#mathematical-functions

Arithmetic Operators

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#Lang

LogicalOperators

Aggregate functions

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ UDF#Lang

Built-inAggregateFunctions(UDAF)

Table Generating Functions

o Explode

o http://docs.treasuredata.com/articles/hive-functions#collection-functions

String Functions

o http://docs.treasuredata.com/articles/hive-functions#string-functions

http://docs.treasuredata.com/articles/hive-functions#date-functions
http://docs.treasuredata.com/articles/hive-functions#mathematical-functions
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-LogicalOperators
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-LogicalOperators
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inAggregateFunctions(UDAF)
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inAggregateFunctions(UDAF)
http://docs.treasuredata.com/articles/hive-functions#collection-functions
http://docs.treasuredata.com/articles/hive-functions#string-functions

Misc Functions

dittp://docs.treasuredata.com/articles/hive-functions#misc-functions

http://docs.treasuredata.com/articles/hive-functions#misc-functions

Resources

Apache Hive Project

— http://hive.apache.org/

Apache Hive Wiki

— https://cwiki.apache.org/confluence/display/Hive/Home

Apache Hive On GitHub

— https://github.com/apache/hive

Books

— Capriolo, Edward, Dean Wampler, and Jason Rutherglen.
Programming Hive. Sebastopol, CA: O'Reilly & Associates, 2012.
Print.

— Lam, Chuck. Hadoop in Action. Greenwich, CT: Manning, 2011.
Print. (Chapter About Hive)

— Holmes, Alex. Hadoop in Practice. N.p.: Manning Publications,
2014. Print. (Chapter About Hive)

http://hive.apache.org/
https://cwiki.apache.org/confluence/display/Hive/Home
https://github.com/apache/hive

Final Word

| want to thank you and congratulate you for downloading the book “The
Definitive Guide to Programming Apache Hive".

This book contains proven steps and strategies on how to become a truly a great
Apache Hive Programmer. You will be able to increase your profitability, areas
of opportunity, and so much more by unleashing the skills you’ve learned

Here’s an inescapable fact: you will need to practice your way to mastery.

Because Hive is basically SQL on Hadoop, you would need to develop your
SQL skills along the way.

If you do not develop your SQL skills, you will not master Hive. SQL is at the heart
of Hive, and we hope this book has helped you get on the right path.

It’s time for you to become an amazing Big Data professional, who can crunch
massive amounts of data with the help of the information compiled within this book.

