

THE ULTIMATE GUIDE TO

PROGRAMMING APACHE HIVE

A Reference Guide Document – Straight from the trenches,

with real world lessons, tips and tricks included to help you

take on and start analyzing BigData with Apache Hadoop.

Note: All effort has been made to keep this book vendor agnostic. It doesn't matter what vendor or

distribution you use for hadoop and hive, the concepts in here should be accessible to you.

© 2015 by NextGen Publishing. All rights reserved.

No part of this book may be reproduced in any written, electronic, recording, or photocopying form without

written permission from the rights owner, Fru Nde.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the author, nor the publishing company, and its dealer and distributors will be held liable for any

damages caused or alleged to be caused directly or indirectly by this book.

First Edition

Printed in the, United States of America

Let’s Get Started!

Introduction

Audience

Prerequisites

About Apache Hive

Why Hive?

Hive Architecture

Hive Query Execution Engines

Anatomy of HiveQL

HiveQL and Examples

Key Hive Query Optimization

Tips Resources

Let‟s Get Started!

I want to thank you and congratulate you for downloading this book "The

Ultimate Guide to Programming Apache Hive".

This book contains proven steps and strategies on how to become a truly savvy Hive

Programmer. You will be able to increase your profitability, areas of opportunity,

and so much more by unleashing the Hive tips this book will teach you.

Here‟s an inescapable fact: you will need to practice your way through

mastering Hive.

Because Hive is basically SQL on Hadoop, you would need to develop your

SQL skills along the way.

If you do not develop your SQL skills, you will not master Hive. SQL is at the heart

of Hive, and this book will help you get on the right path.

It‟s time for you to become an amazing Big Data professional, who can crunch

massive amounts of data with the help of the information compiled within this book.

Introduction

If you are already familiar with SQL then you may well be thinking about how to

add Hadoop skills to your tool belt as an option for data processing.

From a querying perspective, using Apache Hive is the next logical step you can

take. Using Hive provides a familiar interface to data held in a Hadoop cluster and

is a great way to get started with minimal learning curve.

Apache Hive a is data warehouse infrastructure built on top of Apache Hadoop for

providing data summarization, ad-hoc query, and analysis of large datasets. It

provides a mechanism to project structure onto the data in Hadoop and to query that

data using a SQL-like language called Hive Query Language (HiveQL or HQL).

In this book, I will take you deep down into Hive. I will do what many other

books haven't successfully done. Provide you with High level information about

Apache Hive that will allow you to strategically shine in that next board room

presentation, while leaving you with enough details to tactically take on BigData

projects and amaze your peers in the process.

Audience

This tutorial is prepared for professionals aspiring to make a career in Big Data

Analytics using Hadoop Framework. Administrators, ETL developers, Data

Analysts and professionals who are into analytics on Hadoop using Apache Hive

will be able to use this tutorial to good effect.

Prerequisites

Before proceeding with this tutorial, you need a basic knowledge of concepts of

Structured Query Language (SQL), Data Warehousing Concepts of tables, columns,

facts and dimensions, and any understanding of Linux operating systems, massively

parallel processing would be a plus. It also assumes you have a working installation

of Apache Hive. You can either accomplish this by downloading and installing the

raw tarball from the Hive website, or by going through any one of the vendored

packages such as Hortonworks, Microsoft, Cloudera, MapR, Pivotal, or more.

About Apache Hive

Apache Hive (http://hive.apache.org) is an open source volunteer project under

the Apache Software Foundation (http://www.apache.org/). Apache Hive

(commonly called Hive) provides data warehousing package/infrastructure built

on top of Hadoop.

http://hive.apache.org/
http://www.apache.org/

Brief History

Hive was originally an internal project by the Facebook Data team. After being

used internally, it was contributed to the Apache Software Foundation and made

freely available as an open source software. The project then quickly matured into

a full blown Apache Project. Its home page URL is. http://hive.apache.org

Initially, it was a subproject of Apache Hadoop, but has now graduated to become

a top-level project of its own. Hive is extremely powerful because it provides a

SQL query language, called Hive Query Language (HQL) for querying data

stored in a Hadoop cluster, either directly in HDFS or in other data storage

systems such as Apache Hbase.

The Anatomy of Hive

Hive has all the structures similar to a RDBMS like tables, joins, partitions. This

similarity with traditional SQL enables users familiar with SQL to easily query

underlying data in Hadoop. Hive itself is NOT a database solution like MySQL,

HBase, and Cassandra. Instead, it is simply a query system on top of HDFS, and

behind the scenes, every hive tables are simply references to files on HDFS.

This unique characteristic of Hive being able to directly query underlying files in

HDFS is good because it allows for other applications to modify Hive files within

HDFS independently of the Hive application. But this advantage comes with some

draw backs. Other applications having access to those files means that Hive can

never be certain if the data being read matches the schema. Therefore, Hive enforces

schema on read. If the underlying data format has changed, Hive will do its best to

compensate when it reads, but users can likely get unexpected results.

HiveQL

HiveQL does not fully conform to any particular revision of the ANSI SQL standard.

Until Hive 0.14, HiveQL was not ACID (an acronym for Atomicity, Consistency,

Isolation and Durability) complaint, offered no support for row level inserts, updates,

http://hive.apache.org/

and deletes. But that has been resolved as of the 0.14 release of Hive. Now, Hive

allows users to modify data using insert, update and delete SQL statements. It also

provides snapshot isolation and uses locking for writes -- allowing users to make

corrections to fact tables and changes to dimension tables with relative ease.

As of now (the writing of this book), Hive doesn‟t support transactions. But

who knows; the Hadoop ecosystem and Hive are under very active

development and support for transactions might be introduced with time.

Not your traditional RDBMS

Hive is not designed for online transaction processing and does not offer real-

time queries. As a result, most people tend to not compare it with RDBMS i.e.

the architecture of Hive is different from the Architecture of RDBMS.

According to the Apache Hive wiki, "Hive is not designed for OLTP

workloads and does not offer real-time queries or row-level updates. It is

best used for batch jobs over large sets of append-only data (like web

logs)."

Data Warehousing Solution built on top of Hadoop. It is very well suited for batch

processing data like: Log processing, Text mining, Document indexing, Customer-

facing business intelligence, Predictive modeling, hypothesis testing etc.

Summary:

• Hive Provides SQL-like query language named HiveQL

• Early Hive development work started at Facebook in 2007

• Today Hive is an Apache project that was previously under Hadoop, but

is now a project on its own

• With Hive, multiple schemas can be projected on the same data -- no

ETL required

• With Hive, popular query tools like Power Pivot, MicroStrategy,

Tableau, SAS e.t.c. and be connected and provided access to the underlying

data via JDBC and ODBC

• Hive allows users to query very large data sets interactively

using MapReduce, Tez, and more recently the Spark Query engine.

Why Hive?

Since most data professionals already know SQL and most Data Warehouse

applications today support SQL, Hive minimizes the effort of analyzing data at

scale on top of the Hadoop platform.

Hive is massively scalable with Hadoop. When users write queries with HQL,

Hive takes the query statements and automatically translates them into one of

(MapReduce jobs, TEZ, or Spark – depending on the execution engine being

used). The translated query is then executed against the data in the Hadoop cluster

and the results are returned to the user.

This saves Analysts time from having to write their own individual Map and

Reduce tasks before being able to execute a single query.

Typical Hive Workflow

When using Hive, users typically perform the following functions or workflow steps:

1. Create tables

2. Load data from source system in to Hive table or HDFS directories

3. Analyze/Process data by writing HiveQL

Key Benefits of Hive

Hive is ideal for data warehouse teams migrating to Hadoop, because it

gives them a familiar SQL language that hides the complexity of MR

programming. It also provides teams with the ability to bring structure

to various data formats such as Flat files, logs and more.

Hive supports text files (also called flat files), SequenceFiles (flat files

consisting of binary key/value pairs) and RCFiles (Record Columnar

Files which store columns of a table as a columnar database)

Summary Benefits of Hive

• Familiar SQL dialect. (This characteristic alone makes Hive

indispensable for most business users, who are already SQL users).

• Analysis of large datasets on Hadoop using (MapReduce, TEZ,

or Spark jobs).

• Simple interface for ad hoc querying, analyzing and

summarizing large amounts of data

• Access to files on various data stores such as HDFS and Hbase.

Key Disadvantages of Hive

Despite the benefits of Hive, it‟s not without its draw backs. When it

comes to system performance, Hive has several downsides. First, the

batch nature of Map / Reduce makes Hive perform poorly when you

need low-latency execution for simple queries.

The Apache Hive community is working effortlessly to address some of

these issues with using Hive as a replacement for traditional RDBMS

systems, but as it stands today, Hive still lacks some of the

functionalities commonly present in database systems for supporting

high-performance analytical queries.

Summary Disadvantages of Hive

• Not a real SQL Database.

• Up until Hive 0.14, HiveQL wasn‟t ACID complaint.

• Designed for scalability and ease-of-use. But not ideal for

low latency, sub-second, or real-time queries

• Even querying small amounts of data may take minutes.

(Results are much improved when using TEZ or Spark

Execution engines).

• Hive is useful only if the data is structured. With

unstructured data, Hive is not a good tool. Instead, by directly

writing pure MapReduce code, users can work on any kind of

dataset (structured or unstructured).

Hive Architecture

http://4.bp .blogspot.com/-Yy3-cDDuiqk/UAkBvWXmz9I/AAAAAAAAGWk/RM 1rJ5nWi9M /s1600/HiveClient.png

Some of the key components of the Hive Architecture are the MetaStore, the

interfaces users use, and the client services that support all interactions. These Hive

components would all be discussed in detail in the sections below.

http://4.bp.blogspot.com/-Yy3-cDDuiqk/UAkBvWXmz9I/AAAAAAAAGWk/RM1rJ5nWi9M/s1600/HiveClient.png

Hive MetaStore

The Hive MetaStore is a very important piece of the Hive Architecture. To

support features like schema(s) and data partitioning Hive keeps its metadata

in a MetaStore.

This metadata contains information about what tables exist, their columns,

privileges, column types, owners, key-value data, statistics and more.

The Hive MetaStore data is persisted in an ACID database such as

Derby, Oracle DB or MySQL. And all Hive processes communicate

with the MetaStore service using Thrift to read off the Metadata.

Hadoop NameNode vs Hive MetaStore

When most people are first introduced to Hadoop and the MPP architecture,

they are taught about the NameNode, DataNode and their roles. The common

scenario is that the NameNode is responsible for storing the directory tree of all

files in the HDFS file system. In addition, the NameNode also performs the

following functions:

Hive Name Node Functionalities

It also tracks where Hive data (not metadata) is spread across

Hadoop HDFS DataNode servers (Typically, each block of data is

replicated on 3 different DataNodes).

It tracks which DataNodes are dead and which ones are Live

through heartbeat mechanism.

It helps clients perform reads and writes on HDFS by receiving

their requests and redirecting them to the appropriate DataNode.

But despite this, the Hadoop NameNode is NOT responsible for storing Hive

Metadata. Instead, this information is managed by the Hive Service outside and

stored in a separate relational database systems; typically Derby, MySQL,

Oracle, PostgreSQL or any other relational database management system.

The Hive MetaStore contains information about Hive data such as:

IDs of Database, Tables and Indexes

The time of creation of a Table

The time of creation of an Index

Statistics of number of records stored in each tables at a point in

time IDs of roles assigned to a particular user InputFormat used for

a Table

OutputFormat used for a Table

Example: NameNode vs MetaStore

Assume you go to Hive and create a new table as such

When the query above executed, information about the newly created

table would be persisted in the Hive MetaStore (not NameNode).

Then, when you insert data into the Hive log_table, the actual data inserted

will be stored on Hadoop Data and Name Nodes (not MetaStore).

Tips on Hive MetaStore

Some Hive queries have to be compiled in order to generate MapReduce

jobs. But, some Hive operations don‟t invoke Hadoop processes at all.

Some very simple queries will just either read or write updates directly

to the MetaStore database.

Example: Queries like SELECT count (*) from tbl_TableName just reads

the table statistics stored in the MetaStore, and so returns results very fast.

Out of the box Hive comes with Derby database as the default MetaStore

location. The out of the box Derby database (a lightweight embedded

SQL DB) used by Hive is only effective for a single user and a single

process at a time. For large scale clusters, or in production, users need to

set up a MySQL or PostgreSQL database for Hive‟s metadata.

It is not mandatory to have MetaStore in the cluster itself. Any

machine (inside or outside the cluster) having a JDBC-compliant

database can be used for the MetaStore.

Hive Interface Options

Users and analysts can interact with Hive using several methods, including the

CLI, HUE, and JDBC/ODBC.

Command Line Interface (CLI) and Beeline

– CLI and Beeline are one to the top primary interfaces through which

developers work with Hive data.

– Generally speaking, CLI and Beeline perform similar functions i.e.

execute queries against Hive, but the primary difference between the

two involves how the clients connect to Hive. The Hive CLI connects

directly to the Hive Driver and requires that Hive be installed on the

same machine as the client. However, Beeline connects to HiveServer2

and does not require the installation of Hive libraries on the same

machine as the client. Beeline is a thin client that uses the Hive JDBC

driver and executes queries through HiveServer2, which allows

multiple concurrent client connections and supports authentication.

– When using the CLI, the following properties can be set to help

make the results that are printed on the screen such as column names

and database context more clear and intuitive.

Hadoop User Experience (HUE)

– HUE (http://gethue.com/) is an open-source Web user interface that

supports Apache Hadoop and its ecosystem, licensed under the Apache

http://gethue.com/

v2 license. Hue allows technical and non-technical users to take

advantage of Hive, Pig, and many of the other tools that are part of

the Hadoop ecosystem.

– Hue is great alternative to running 'show tables' or 'show extended

tables' from the CLI because it provides a very web-based GUI for users

to quickly browse the schema of Hive tables, and also write queries.

– With Hue, the Hive metadata is presented in a hierarchical manner

allowing users to start at the database level and click to get information

about tables including the SerDe, column names, and column types.

Java/Open Database Connectivity (JDBC/ODBC)

– Hive also provides JDBC and ODBC drivers that allow users to

connect popular Business Intelligence (BI) tools such as Excel, SAS,

MicroStrategy, Tableau, e.t.c. to query, analyze and visualize data

stored within Hive.

– Hive JDBC URLs have the following format:

– Depending on which vendor distribution of Hive you are using

(Hortonworks, Cloudera, MapR, e.t.c.), there might be vendor specific

Hive ODBC drivers available you can download and use to connect to

hive cluster, instead of using the native out-of-the box driver provided

by Hive.

Hive Query Execution Engines

There are several ways users can execute queries on Hive. Most queries

use MapReduce jobs, or more recently Tez and Spark execution engine.

Hive on MapReduce

Originally the MapReduce algorithm was very tightly coupled into the

workings of Hadoop‟s cluster management infrastructure. MapReduce is very

powerful, because of its divide and conquer approach – i.e. it divides the

query work and the data up amongst the numerous commodity servers in its

cluster, facilitates teamwork between them, and gets the answer.

Traditionally, Hive would run using the MapReduce engine. This meant,

Hive generates MapReduce jobs to implement all but the simplest queries.

Unfortunately, with this approach, the benefits of MapReduce (horizontal

scalability), was quickly overshadowed by the high latency in query

performance. Users who were used to sub-second queries from the RDBMS

world simply weren‟t getting it with Hadoop.

In Hadoop 2.0, YARN (an acronym for “yet another resource negotiator”)

was introduced as a processing algorithm-independent cluster management

layer. YARN allows for Hadoop cluster to run MapReduce jobs, but it can

host an array of other engines, as well.

This separation of the cluster management layer with the introduction of YARN

let to the up-spring of new execution engines such as Tez and Spark that

compete and even eclipse traditional MapReduce in many benchmark tests.

Depending on what version of Hive you use, MapReduce might be the

default (or the only) execution engine available. To execute Hive jobs using

the MapReduce execution engine, set (or change) the following property:

Hive on Tez

Tez (http://tez.apache.org/) is a new application framework built on

Hadoop Yarn that can execute complex directed acyclic graphs of general

data processing tasks. In many ways it can be thought of as a more flexible

and powerful successor of the MapReduce framework. To use the Tez

execution Engine on Hive, set the hive.execution.engine property to Tez

before any queries.

You can do this from the Hive CLI or as an option in your Hive command.

Setting this property will enable your Hive CLI to pick up the

hive.execution.engine setting that tells it to use Tez rather than MapReduce.

Hive on Spark

Apache Spark (https://spark.apache.org/) is an open source big data

processing framework built around speed, ease of use, and sophisticated

analytics. It was originally developed in UC Berkeley‟s AMPLab (Source:

http://www.infoq.com/articles/apache-spark-introduction), and open sourced

in 2010 as an Apache project.

Spark can run on Hadoop clusters and, because it uses memory instead of disk,

can also avoid long query execution times experienced with MapReduce‟s

batch mode. Spark provides support for a SQL language (Spark SQL). It also

provides command-line interfaces and ODBC/JDBC server.

Spark claims to run 100× faster than MapReduce. For this reason, we see

most people are having interest or moving altogether to Spark.

To enable and use spark execution engine, set the following property.

You can do this from the Hive CLI or as an option in your Hive command.

Setting this property will enable your Hive CLI to pick up the

hive.execution.engine setting that tells it to use Spark rather than MapReduce

or Tez.

http://tez.apache.org/
https://spark.apache.org/
http://www.infoq.com/articles/apache-spark-introduction

Pro Tip: Putting settings into a .hiverc file

While it is possible to set Hive properties from the Hive CLI or put them into

a Hive command, alternatively, you can create a .hiverc file in your home

directory on the Hadoop cluster and set the execution engine parameter in

that file. In the latter case, all your Hive jobs will execute with the properties

that are set in the .hiverc file.

Setting Hive properties using the Hive CLI or Hive command will only affect

individual Hive jobs. But, if you have properties that you want to set across

all your jobs, .hiverc file would be a more efficient way to go.

Each user can have a .hiverc file in his or her own home directory to set

up their hive environment.

Example:

In this case, we have setup a .hiverc file in Jane_Doe‟s home

directory. When Jane executes any Hive commands from the CLI,

these properties will first be set before the command is executed.

Making things much easier and consistent.

Anatomy of HiveQL

Hive is largely in synch with the traditional Relational Databases concepts.

In Hive as in other RDBMS systems, we have the concept of Databases,

Tables, Rows, Columns, e.t.c.

• Database: Set of Tables, used for name conflicts resolution

• Table: Set of Rows that have the same schema (same columns)

• Row: A single record; a set of columns

• Column: A unique instance and type for a single value

Along with the similarities Hive has with other RDBMS systems, HiveQL

also wields many important similarities to traditional SQL. (The ultimate goal

of the Hive project is to get it fully ACID compliant, and that goal was

achieved as of Hive 0.14).

Also, the good thing with Hive is that users get most of the usual suspects of

SQL statements such as SELECT, WHERE, e.t.c. to use for their data analysis.

Below are some to the common syntax similarities HiveQL shares with

native SQL.

• SELECT Scans the table specified by the FROM clause

• JOIN joins results sets from one table to another. Supports Inner,

Left, Right, and Full Outer Joins. Default Join in Hive is Inner Join. In

Inner Join, rows are joined where the keys match. Rows that do not match

are not included in the result.

• GROUP BY Gives a list of columns which specify how to aggregate

the records. A GROUP BY clause is frequently used with aggregate

functions, to group the result set by columns and apply aggregate functions

over each group.

• WHERE Gives the condition of what to filter. A WHERE clause is used

to filter the result set by using predicate operators and logical operators.

• Having A HAVING clause lets you filter the groups produced

by GROUP BY, by applying predicate operators to each groups.

• CLUSTER BY, DISTRIBUTE BY, SORT BY specify the sort

order and algorithm

• LIMIT specifies and limits the number of records to retrieve.

Hive Commands

In Hive, Commands are non-SQL statement such as setting a property or

adding a resource. They can be used in HiveQL scripts or directly in the CLI

or Beeline.

List of Hive Commands

Command Description

quit Use quit or exit to leave the interactive shell.

exit

reset Resets the configuration to the default values. Any

 configuration parameters that were set using the set

 command or -hiveconf parameter in hive command

 line will get reset to default value.

set <key>=<value> Sets the value of a particular configuration variable

 (key).

 Note: If you misspell the variable name, the CLI will

 not show an error.

set Prints a list of configuration variables that are

 overridden by the user or Hive.

set -v Prints all Hadoop and Hive configuration variables.

Add, List, Delete Adds, Lists or Removes one or more files, jars, or

FILE[S] <filepath> archives to the list of resources in the distributed

 cache.

! <command> Executes a shell command from the Hive shell.

dfs <dfs Executes a dfs command from the Hive shell.

command>

<query string> Executes a Hive query and prints results to standard

 output.

source FILE Executes a script file inside the CLI.

<filepath>

The full list and details of Hive Commands can be viewed at

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Commands

Sample Usage of Hive Commands

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Commands

HiveQL Data Types

Hive, being ACID compliant now has a lot of the data types you would find

in any other traditional SQL database.

In Hive, data types are categorized in to two main Categories, viz;

primitive and complex data types.

HiveQL Primitive Data Types

The primitive data types include Integers, Boolean, Floating point numbers

and strings. The below table lists the size of each data type:

Numeric Types

– TINYINT: 1-byte (signed integer, from -128 to 127)

– SMALLINT: 2-byte (signed integer, from -32,768 to 32,767)

– INT: 4-byte (signed integer, from -2,147,483,648 to

2,147,483,647)

– BIGINT: 8-byte (signed integer, from -

9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)

– FLOAT: 4-byte (single precision floating point number)

– DOUBLE: 8 byte (double precision floating point numbers)

– DECIMAL: Decimal type data is nothing but floating point value

with higher range than DOUBLE data type. The DECIMAL type in

Hive is as same as Big Decimal format of Java. It is used for

representing immutable arbitrary precision. The range of

decimal type is approximately -10
-308

 to 10
308

. The syntax

and example is as follows: DECIMAL (precision, scale).

Example: decimal (10,0).

Date/Time Types

– TIMESTAMP: Hive supports traditional UNIX timestamp with

optional nanosecond precision. It supports java.sql.Timestamp

format “YYYY-MM-DD HH:MM:SS.fffffffff” and format

“yyyy-mm-dd hh:mm:ss.ffffffffff”.

– DATE: DATE values are described in year/month/day format

in the form {{YYYY-MM-DD}}.

String Types

String type data types can be specified using single quotes (' ')

or double quotes (" "). It contains two data types: VARCHAR

and CHAR. Hive follows C-types escape characters.

– STRING: Max size is 2GB.

– VARCHAR: 1 to 65355 in length

– CHAR: 255 in length

Misc Types

– BOOLEAN: TRUE/FALSE value

– BINARY

Example Syntax: Hive Primitive Data Type

HiveQL Complex Data Types

The complex data types in Hive include Arrays, Maps and Structs. Complex

data types are all built on using the primitive data types.

– Arrays: Contain a list of elements of the same data type. These

elements are accessed by using an index. For example an array, “tweets”,

containing a list of elements [„happytweet‟, ‟oktweet‟, „joyfultweet‟], the

element “happytweet” in the array can be accessed by specifying tweets.

(Note: negative values and non-constant expressions are allowed as of

Hive 0.14.)

– Maps: Maps are key-value pairs. The elements are accessed by using

the keys. For example a map, “log_list” containing the “servername” as

key and “serverlocation” as value, the location of the server can be

accessed by specifying log_list[„servername‟].

(Note: negative values and non-constant expressions are allowed as of

Hive 0.14.)

– Structs: Structs are like “objects” or “c-style structs”. They contain

elements of different data types. The elements can be accessed by using

the dot notation. For example in a struct, “log”, the server of the log can

be retrieved as specifying log.server.

– Union Types: Union types can at any one point hold exactly one of their

specified data types. You can create an instance of this type using the

create_union UDF:

(Note: Only available starting with Hive 0.7.0.)

Example: Hive Complex Data Type

Hive External vs Internal Tables

In Hive tables can be created as EXTERNAL or INTERNAL (managed tables).

The choice of how the table is created affects how data is loaded, controlled, and

managed.

Key Differences

Internal table data stores in Warehouse folder, External table data points to

location you mentioned in table creation. So when you delete the internal

table it delete Schema as well as Data under Warehouse folder, but in

external table its only Schema going to lose. When you want table back you

can create a table with schema again and point the location.

With external tables, Hive does not delete data from HDFS when you drop the

base table. It doesn‟t also rename the directory when the base table is renamed.

Furthermore, external tables can't be archived and hive will not do any

operations that affect the underlying files if the tables is declared external.

Hive EXTERNAL table

– External tables are preferred when the data is also used outside of Hive.

For example, the data files are read and processed by an existing program

that doesn't lock the files.

– Data remains in the underlying location even after a DROP TABLE. This

can apply if you are pointing multiple schemas (tables or views) at a single

data set or if you are iterating through various possible schemas.

– In external tables, if you drop it, it deletes only schema of the table, table

data exists in physical location. So to delete the data use hadoop fs -rmr

table_name.

Hive INTERNAL (Managed) table

– Hive completely manages the lifecycle of the table and data.

– Unlike external tables where users have control on it, in Managed tables,

hive has full control on table.

– When you drop an internal table, it drops the data, and it also drops the

metadata. (So, use caution when dropping Hive INTERNAL tables).

HiveQL and Examples

Hive – Data Definition Language – DDL

Create Managed Table

Create External Table

Create database

Create schema

Create Tables

Dropping Tables

Renaming a Table

Adding, Modifying and Dropping a table partition (aka. Partition

swapping)

Changing Columns

Adding Columns

Deleting or Replacing columns

Alter table properties

Alter Storage properties

Partitions

Show table

Describe table

Alter Table

Drop Table

More Hive queries

Hive – Data Modification Language (DML)

Hive Tables

Simple Select statement: Similar to SQL

Loading flat files into Hive

Insert Data into Tables from Queries

Dynamic Partition Inserts

Properties to enable Dynamic Partition Inserts

Creating and Loading tables in One Query

Exporting data from Hive

To Single Directory

To Multiple Directories/Files

Hive Views

Used to reduce complex queries

Create View

HiveQL Indexes

Creating Indexes

BitMap Indexes

Rebuilding Indexes

Showing Indexes

Dropping Indexes

Hive Queries that sample Data

HiveQL Table Generating Functions

Normal user-defined functions, such as CONCAT (), take in a single input

row and output a single output row. In contrast, table-generating functions

transform a single input row to multiple output rows. Hive table generating

functions include; Explode, Split, Lateral View.

Hive‟s table generating functions allow a single row to expand to multiple

rows; it takes an array and generate a row for each item in the array (split is

a function that splits a string into an array)

HiveQL User Defined Functions (UDFs)

Hive Calling Out to External Programs

In hive, it is possible to call out to external programs to perform map

and reduce operations. See example below.

Key Hive Query Optimization Tips

Hive from the ground up is designed like SQL engines do. But given the

challenges that come with working on the Massively Parallel Processing (MPP)

architecture, it turns out that Hive in some cases does not work like SQL engines.

So, special techniques must be employed to tune and optimize hive queries so they

can run efficiently. Let's discuss such best practices to get maximum performance

benefits from hive.

Optimize ON JOINS

When joining three or more tables, if every ON clause uses the

same join key, a single MapReduce join will be used. Also note

that Hive allows only equality Joins.

Hive always assumes that the last table in the query is the largest.

It attempts to buffer the other tables and stream the last table. So,

the last table in queries should be the largest.

Use small tables on the left side of your joins. Enable auto

optimization, and take advantage of improved query

performance with Map/Side joins.

In every map/reduce stage of the join, the last table in the sequence is

streamed through the reducers whereas the others are buffered.

Therefore, it helps to reduce the memory needed in the reducer for

buffering the rows for a particular value of the join key by organizing

the tables such that the largest tables appear last in the sequence.

Read more on Hive Joins at:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+J

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Joins

Optimize on ORDER BY vs SORT BY

SORT BY query produces multiple independent files. ORDER BY

- just one file. This is because unlike SORT BY when doing

ORDER BY, everything is piped through one reducer; an

approach that might take a very long time for large data sets.

In SORT BY, each reducer handles a subset of the data, so joining

the files together would be globally sorted (in most cases).

Always avoid using ORDER BY in queries. ORDER BY is

slow and results in one final reducer sorting the data. Instead,

use SORT BY or CLUSTER BY which organizes data on a per

reducer (local) level and hence results in much faster queries.

Optimize On Partitions

Partitioning works on both managed and external tables.

Partitioned data are physically stored under separate directories.

You can store the data in a subdirectory tree like

year/month/day or if it is geographic data country/state/zipcode

and so forth. That allows queries to quickly traverse and to skip

the irrelevant data, saving lots of CPU time.

When inserting data to partitioned tables, the partition columns

must be specified. The partition columns, must be the last

columns in the query statement.

Use caution not to over partition your data within Hive. It‟s

important to consider the cardinality of the column that will be

partitioned on. HDFS performs better when it has smaller set

of large files instead of larger set of smaller files. Selecting a

column with high cardinality will result in fragmentation of

data and put strain on the name node to manage all the

underlying structures in HDFS.

Optimize On Bucketing

Bucketed tables are fantastic in that they allow much more

efficient sampling than do non-bucketed tables, and they may

later allow for time saving operations such as mapside joins.

Use the following command to enforce bucketing:

Bucketing provides mechanism to query and examine

random samples of data.

With Bucketing, Data is broken into a set of buckets based on

a hash function of a "bucket column".

Bucketing offers capability to execute queries on a sub-set

of random data

Hive does not automatically enforce bucketing. User is required

to specify the number of buckets by setting # of reducer.

Optimize On Statistics and Cost Based Optimization

(CBO)

Statistics such as the number of rows of a table or partition and

the histograms of a particular interesting column are important

in many ways. One of the key use cases of statistics is query

optimization.

For newly created tables and/or partitions (that are populated

through the INSERT OVERWRITE command), statistics are

automatically computed by default. The user has to explicitly

set the Boolean variable hive.stats.autogather to false so that

statistics are not automatically computed and stored into Hive

MetaStore.

Another feature of Hive 0.13 and beyond is support for Cost

Based Optimization (CBO) that leverages statistics collected on

Hive tables. To collect statistics for the Hive query optimizer,

set two parameters:

For existing tables and/or partitions, the user can issue the

ANALYZE command to gather statistics and write them into Hive

MetaStore. The syntax for that command is described below:

Statistics serve as the input to the cost functions of the optimizer

so that it can compare different plans and choose among them.

Statistics may sometimes meet the purpose of the users'

queries. Users can quickly get the answers for some of their

queries by only querying stored statistics rather than firing

long-running execution plans.

Optimize On Compression

Text is where Hive started, but it has evolved into handling just

about any text file. Today, ORC (Optimized Row Columnar)

files are the new, highly optimized format for data that was

recently released.

Using ORCFile or converting existing data to ORCFile is

simple. To use it just add STORED AS orc to the end of your

create table statements like this:

ORC files predate Hive 0.13. The ORC format first showed up

in Hive 0.11, but they work particularly well in conjunction with

the new features of Hive 0.13.

Source: http://hortonworks.com/blog/orcfile-in-hdp -2-better-compression-better-performance/

ORC (Optimized Row Columnar) is a columnar file format

optimized to improve performance of Hive. Inserting data into

ORC compressed tables might be a little slower, but if you

want good query speed, while compressing the data as much as

possible, then ORC is for you.

Optimize On Vectorization

Vectorization allows Hive to process a batch of rows together as

a unit instead of processing one row at a time. When used,

Vectorization greatly reduces the CPU usage for typical query

operations like scans, filters, aggregates, and joins. A standard

query execution system processes one row at a time. A

vectorized query execution on the other hand streamlines

operations by processing a block of 1024 rows at a time.

To use vectorized query execution, the data must be stored in

ORC format. Vectorized execution is turned off by default,

so your queries only utilize it if this variable is turned on. To

turn vectorization on, use the following property.

To disable vectorized execution and go back to

standard execution, do the following:

More details on Hive Vectorization can be found at this link:

https://cwiki.apache.org/confluence/display/Hive/Vectorized+Que

https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution

Optimize On Queues and Schedulers

In most cases, as Hadoop usage grows and many users take on the

tasks of executing Hive queries on the Hadoop cluster, contention

for the Hadoop resources will inevitably become an issue. In

order to mitigate this issue, Hive provides the concepts of queues

and schedulers multi-tenant use and workload management.

There are two prominent schedulers for multi-user workloads in

Hive: the Fair Scheduler, developed at Facebook, and the

Capacity Scheduler, developed at Yahoo. (Setting up queues and

schedulers is beyond the scope of this book. More information on

that can be found at this links:

http://blog.cloudera.com/blog/2008/11/job-scheduling-in-

hadoop/)

Once you have the scheduler and queues setup, you can then

manage users queries and direct their workloads to a

particular queue by using this property.

In a cluster that is setup to use queues, if you do not specify the

queue name in your job options, the job will be submitted to the

default queue. Any jobs submitted to the default queue will have

a lower priority than jobs submitted to other queues.

http://blog.cloudera.com/blog/2008/11/job-scheduling-in-hadoop/
http://blog.cloudera.com/blog/2008/11/job-scheduling-in-hadoop/

Hive Functions

Like with traditional SQL, there are lots of pre-built functions for performing

analytical tasks within Hive. These range from simple Date functions, Mathematical

functions, String functions, to more advanced windowing functions that can be used

for Ranking, Aggregation, Navigation Time Series Analysis, Allocations, Data

Densification and Linear Regression.

Simple functions can even be chained for more complex analysis.

The list below provides links to articles that lists all built-in aggregate functions.

Because these list might constantly evolve and change, it's better to provide the raw

URLs and point you to the direct source rather than pasting the functions in here.

Please visit the links to check out the functions.

Date Functions

http://docs.treasuredata.com/articles/hive-functions#date-functions

Mathematical Functions

http://docs.treasuredata.com/articles/hive-functions#mathematical-functions

Arithmetic Operators

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#Lang

LogicalOperators

Aggregate functions

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#Lang

Built-inAggregateFunctions(UDAF)

Table Generating Functions

Explode

http://docs.treasuredata.com/articles/hive-functions#collection-functions

String Functions

http://docs.treasuredata.com/articles/hive-functions#string-functions

http://docs.treasuredata.com/articles/hive-functions#date-functions
http://docs.treasuredata.com/articles/hive-functions#mathematical-functions
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-LogicalOperators
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-LogicalOperators
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inAggregateFunctions(UDAF)
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Built-inAggregateFunctions(UDAF)
http://docs.treasuredata.com/articles/hive-functions#collection-functions
http://docs.treasuredata.com/articles/hive-functions#string-functions

Misc Functions

http://docs.treasuredata.com/articles/hive-functions#misc-functions

http://docs.treasuredata.com/articles/hive-functions#misc-functions

Resources

• Apache Hive Project

– http://hive.apache.org/

• Apache Hive Wiki

– https://cwiki.apache.org/confluence/display/Hive/Home

• Apache Hive On GitHub

– https://github.com/apache/hive

• Books

– Capriolo, Edward, Dean Wampler, and Jason Rutherglen.

Programming Hive. Sebastopol, CA: O'Reilly & Associates, 2012.

Print.

– Lam, Chuck. Hadoop in Action. Greenwich, CT: Manning, 2011.

Print. (Chapter About Hive)

– Holmes, Alex. Hadoop in Practice. N.p.: Manning Publications,

2014. Print. (Chapter About Hive)

http://hive.apache.org/
https://cwiki.apache.org/confluence/display/Hive/Home
https://github.com/apache/hive

Final Word

I want to thank you and congratulate you for downloading the book “The

Definitive Guide to Programming Apache Hive".

This book contains proven steps and strategies on how to become a truly a great

Apache Hive Programmer. You will be able to increase your profitability, areas

of opportunity, and so much more by unleashing the skills you‟ve learned

Here‟s an inescapable fact: you will need to practice your way to mastery.

Because Hive is basically SQL on Hadoop, you would need to develop your

SQL skills along the way.

If you do not develop your SQL skills, you will not master Hive. SQL is at the heart

of Hive, and we hope this book has helped you get on the right path.

It‟s time for you to become an amazing Big Data professional, who can crunch

massive amounts of data with the help of the information compiled within this book.

