Sqoop Performance

Tuning Guidelines

When you use Sqoop with Informatica Developer to transfer data between relational databases and Hadoop File
System (HDFS), multiple factors impact the performance. You can optimize the performance by tuning Sqoop
command line arguments, hardware parameters, database parameters, and Informatica mapping parameters. This
article provides guidelines to help you to tune the performance of Sqoop when you transfer data between relational
databases and HDFS.

Big Data Management 10.1

OVBIVIBW. . o .ttt e 2 Performance Tuning

ATBaS. . o 3 Tune the Sqoop Command Line

DatCh. . 3 boundary-

QUETY. ot et e e e e e e 3 compress or

Y. 8 Tune the

Hardware. 8 Tune the

Database. 9 Tune the

MapPiNg. . . o e 9 Performance Improvement
with the Third-Party Teradata TDCH Driver. 9

Sqoop is a Hadoop command line program to process data between relational databases and HDFS
through MapReduce programs. You can use Sqoop to import and export data.

This document describes the key Sqoop command line arguments, hardware, database, and Informatica mapping
parameters that you can tune to optimize the performance of Sqoop. It also includes case studies that illustrate the
impact that the tuning has on the Sqoop performance.

Note: The performance testing results listed in this article are based on observations in an internal Informatica
environment using data from real-world scenarios. The Sqoop performance might vary based on individual
environments and other parameters even when you use the same data.

You can optimize the performance of Sqoop mappings by tuning the following areas:
« Sgoop command line arguments

« Hardware

« Database

« Informatica mapping

You can tune the following Sqoop arguments in the JDBC connection or Sqoop mapping to optimize performance:
« batch

« boundary-query

. compress or z

« direct

« Dsqoop.export.records.per.statement

« Enable primary key

« fetch-size

« num-mapper

o split-by

Specifies that you can group the related SQL statements into a batch when you export data.
Use the following syntax:
--batch

You can configure the batch argument in the JDBC interface using the available API.

Specifies the range of values that you can import. You can use boundary-query if you do not get the desired results
by using the split-by argument alone.

Use the following syntax:

--boundary-query select min(id), max(id) from <table name>

When you configure the boundary-query argument, you must specify the min(id) and max(id) along with the table name.
If you do not configure the argument, Sqoop runs the following query:

select min (<split-by>), max(<split-by>) from <table name>

When you configure the compress or z argument, you can compress the data approximately by 60% and reduce
the amount of disk space required in the target. You can configure compression when the target storage is limited.

Use the following syntax to configure compression:

—Z Or ——-compress

However, when you use the compress or z argument, the overall execution time increases by 35%. To reduce
the execution time, do not configure the compress or z argument.

Case Study

The following image shows the performance impact of disabling the compress argument:

Oracle Reader

00:57:36 ~35% faster

00:5024

00:43:12

003600

0028 48

00:21:36

00:14:24

ExecutionTime (HH:MM:55)

000712

With Compress ‘Without Compress

B Import 00:51-00 003250

direct

Specifies the direct import fast path when you import data from Oracle.

Use the following syntax:

--direct

Case Study

The following image shows the performance impact of tuning the direct argument:

Peformance Impact of --direct

SEEhld _~\35% faster -
w . .
a 0:36:00 /
: \/
2 0:28:48 Y
I
X
] 0:21:36
E
’-
8 0:14:24
!
% 0:07:12
w

0:00:00

Without --direct With —direct
M Oracle Import 0:39:23 0:25:46

Dsqoop.export.records.per.statement

When you export data, you can configure the batch argument along with the
Dsqoop.export.records.per.statement argument to insert multiple rows with a single statement.

Sqoop runs the following query when you configure the Dsqoop.export.records.per.statement argument.

INSERT INTO table VALUES (...), (...), («v.),...;

Case Study

The following image shows the performance impact of tuning the -Dsqoop.export.records.per.statement argument.

Peformance Impact of batch and
records/statement

_ 4:48:00

g 0:00:00

=

3 19:12:00

T
'g 14:24-00 ~98% faster
IE 9:36:00 _\\ /"

g 4:48:00 V

"” 0:00:00

records/st=1 records/st=10000

B Netezza Export 23:55:00 0:15:00

Enable Primary Key
Before you import data, you can enable the primary key constraint on the source table to optimize the
performance while reading data from a source.
Use the following query to enable the primary key constraint:
alter table <table name> add constraint <table name pk primary key {ID}>;

Note: You must remove the primary key-foreign key relationship when you insert data into a table.

Case Study

The following image shows the performance impact of enabling the primary key constraint:

MS SQL Reader

05736 ~40% faster

0:50:24

04312

0:36:00

02848

0:21:36

0:14:24

ExecutionTime (HH M W 55)

007:12

0:00:00 . "
Without Pkey With PKey

B Import :50:40 0:31:41

fetch-size

Specifies the number of entries that Sqoop can import at a time.

Use the following syntax:

--fetch-size=<n>

Where <n> represents the number of entries that Sqoop must fetch at a time. Default is 1000.

You can increase the value of the fetch-size argument based on the volume of data that you want to read. Set the
value based on the available memory and bandwidth.

Case Study

The following image summarizes the impact of tuning the Sqoop fetch-size argument to 10000:

Performance Impact of Tuning
Fetch-Size

~25% faster

\\ /I
v

2:09:36
1:55:12
1:40:48
1:26:24
1:12:00
0:57:36
0:43:12
0:28:48
0:14:24
0:00:00

ExecutionTime(HH :MM:SS)

Without Tuning With Tuning
B MS SQL Import 1:56:43 1:30:09

num-mappers

Specifies the number of map tasks that can run in parallel.

Use the following syntax:

--num-mappers <number of map tasks>

Default is 4.

To optimize performance, set the number of map tasks to a value lower than the maximum number of connections that
the database supports.

split-by
Specifies the column name based on which Sqoop must split the work units.

Use the following syntax:

--split-by <column name>

Note: If you do not specify a column name, Sqoop splits the work units based on the primary key.

Tune the Hardware

You can tune the following hardware parameters to optimize the performance:
. CPU frequency

« NIC card ring buffer size

To optimize the performance of relational databases, perform the following tasks:

« Analyze database statistics to fine tune queries.

« Maintain different physical disks for different tablespaces.
« Determine the expected database growth.

« Use the EXPLAIN PLAN statement to fine tune queries.

« Avoid foreign key constraints.

. Drop indexes before loading data.

« Optimize the JDBC connection URL parameters.

« Determine the best connectivity interface.

You can tune the following parameters at the Informatica mapping level to optimize the performance of relational
databases:

« Data movement mode
« Data type mapping

« Optimizer hints

« Partitions

« Ports precision

« Pushdown optimization

For more information about tuning the mapping parameters, see the Informatica Performance Tuning Guide.

The Teradata TDCH driver uses native drivers internally, which results in faster read and write operations
when compared to the generic Teradata JBDC driver.

Use the Teradata TDCH driver for improved performance.

The following image shows the performance improvement when you use the Teradata TDCH driver when compared
to the generic Teradata JDBC driver:

Teradata Writer

Ea ~30% faster

e
000000
TDCH Generic TDLJDBC
m Export 00:11:13 005628

Authors

Krishna Prabhakar Devarakonda
Siddiq Hussain
Anu Chandrasekharan

Pranav Sharma

10

