
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Learn how to turn
data into decisions.

From startups to the Fortune 500,
smart companies are betting on
data-driven insight, seizing the
opportunities that are emerging
from the convergence of four
powerful trends:
n New methods of collecting, managing, and analyzing data

n Cloud computing that offers inexpensive storage and
flexible, on-demand computing power for massive data sets

n Visualization techniques that turn complex data into
images that tell a compelling story

n Tools that make the power of data available to anyone

Get control over big data and turn it into insight with
O’Reilly’s Strata offerings. Find the inspiration and
information to create new products or revive existing ones,
understand customer behavior, and get the data edge.

Visit oreilly.com/data to learn more.

©2011 O’Reilly Media, Inc. O’Reilly logo is a registered trademark of O’Reilly Media, Inc.

www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Sqoop Cookbook

Kathleen Ting and Jarek Jarcec Cecho

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Sqoop Cookbook
by Kathleen Ting and Jarek Jarcec Cecho

Copyright © 2013 Kathleen Ting and Jarek Jarcec Cecho. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/ institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Courtney Nash Proofreader: Julie Van Keuren
Production Editor: Rachel Steely Cover Designer: Randy Comer
Copyeditor: BIM Proofreading Services Interior Designer: David Futato

July 2013: First Edition

Revision History for the First Edition:
2013-06-28: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449364625 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Apache Sqoop Cookbook, the image of a Great White Pelican, and related trade
dress are trade‐ marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trade‐ mark claim, the designations have been printed in caps or initial caps.

“Apache,” “Sqoop,” “Apache Sqoop,” and the Apache feather logos are registered trademarks or
trademarks of The Apache Software Foundation.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN: 978-1-449-36462-5

[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449364625
http://www.it-ebooks.info/

Table of Contents

Foreword. ix

Preface. xi

1. Getting Started. 1

1.1. Downloading and Installing Sqoop 1
1.2. Installing JDBC Drivers 3
1.3. Installing Specialized Connectors 4
1.4. Starting Sqoop 5
1.5. Getting Help with Sqoop 6

2. Importing Data. .
9

2.1. Transferring an Entire Table 10
2.2. Specifying a Target Directory 11
2.3. Importing Only a Subset of Data 13
2.4. Protecting Your Password 13
2.5. Using a File Format Other Than CSV 15
2.6. Compressing Imported Data 16
2.7. Speeding Up Transfers 17
2.8. Overriding Type Mapping 18
2.9. Controlling Parallelism 19
2.10. Encoding NULL Values 21
2.11. Importing All Your Tables 22

3. Incremental Import. 25

3.1. Importing Only New Data 25
3.2. Incrementally Importing Mutable Data 26
3.3. Preserving the Last Imported Value 27
3.4. Storing Passwords in the Metastore 28
3.5. Overriding the Arguments to a Saved Job 29

v

www.it-ebooks.info

http://www.it-ebooks.info/

3.6. Sharing the Metastore Between Sqoop Clients 30

4. Free-Form Query Import. 33
4.1. Importing Data from Two Tables 34
4.2. Using Custom Boundary Queries 35
4.3. Renaming Sqoop Job Instances 37
4.4. Importing Queries with Duplicated Columns 37

5. Export. 39
5.1. Transferring Data from Hadoop 39
5.2. Inserting Data in Batches 40
5.3. Exporting with All-or-Nothing Semantics 42
5.4. Updating an Existing Data Set 43
5.5. Updating or Inserting at the Same Time 44
5.6. Using Stored Procedures 45
5.7. Exporting into a Subset of Columns 46
5.8. Encoding the NULL Value Differently 47
5.9. Exporting Corrupted Data 48

6. Hadoop Ecosystem Integration. 51
6.1. Scheduling Sqoop Jobs with Oozie 51
6.2. Specifying Commands in Oozie 52
6.3. Using Property Parameters in Oozie 53
6.4. Installing JDBC Drivers in Oozie 54
6.5. Importing Data Directly into Hive 55
6.6. Using Partitioned Hive Tables 56
6.7. Replacing Special Delimiters During Hive Import 57
6.8. Using the Correct NULL String in Hive 59
6.9. Importing Data into HBase 60
6.10. Importing All Rows into HBase 61
6.11. Improving Performance When Importing into HBase 62

7. Specialized Connectors. 63
7.1. Overriding Imported boolean Values in PostgreSQL Direct Import 63
7.2. Importing a Table Stored in Custom Schema in PostgreSQL 64
7.3. Exporting into PostgreSQL Using pg_bulkload 65
7.4. Connecting to MySQL 66
7.5. Using Direct MySQL Import into Hive 66
7.6. Using the upsert Feature When Exporting into MySQL 67
7.7. Importing from Oracle 68
7.8. Using Synonyms in Oracle 69
7.9. Faster Transfers with Oracle 70

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

7.10. Importing into Avro with OraOop 70
7.11. Choosing the Proper Connector for Oracle 72
7.12. Exporting into Teradata 73
7.13. Using the Cloudera Teradata Connector 74
7.14. Using Long Column Names in Teradata 74

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

It’s been four years since, via a post to the Apache JIRA, the first version of Sqoop
was released to the world as an addition to Hadoop. Since then, the project has taken
several turns, most recently landing as a top-level Apache project. I’ve been amazed
at how many people use this small tool for a variety of large tasks. Sqoop users have
imported everything from humble test data sets to mammoth enterprise data
warehouses into the Hadoop Distributed Filesystem, HDFS. Sqoop is a core member
of the Hadoop eco‐ system, and plug-ins are provided and supported by several major
SQL and ETL ven‐ dors. And Sqoop is now part of integral ETL and processing
pipelines run by some of the largest users of Hadoop.

The software industry moves in cycles. At the time of Sqoop’s origin, a major concern
was in “unlocking” data stored in an organization’s RDBMS and transferring it to Ha‐
doop. Sqoop enabled users with vast troves of information stored in existing SQL tables
to use new analytic tools like MapReduce and Apache Pig. As Sqoop matures, a renewed
focus on SQL-oriented analytics continues to make it relevant: systems like Cloudera
Impala and Dremel-style analytic engines offer powerful distributed analytics with SQL-
based languages, using the common data substrate offered by HDFS.

The variety of data sources and analytic targets presents a challenge in setting up
effec‐ tive data transfer pipelines. Data sources can have a variety of subtle
inconsistencies: different DBMS providers may use different dialects of SQL, treat
data types differently, or use distinct techniques to offer optimal transfer speeds.
Depending on whether you’re importing to Hive, Pig, Impala, or your own
MapReduce pipeline, you may want to use a different file format or compression
algorithm when writing data to HDFS. Sqoop helps the data engineer tasked with
scripting such transfers by providing a compact but powerful tool that flexibly
negotiates the boundaries between these systems and their data layouts.

ix

www.it-ebooks.info

http://www.it-ebooks.info/

The internals of Sqoop are described in its online user guide, and Hadoop: The
Definitive Guide (O’Reilly) includes a chapter covering its fundamentals. But for
most users who want to apply Sqoop to accomplish specific imports and exports,
The Apache Sqoop Cookbook offers guided lessons and clear instructions that
address particular, common data management tasks. Informed by the multitude of
times they have helped individ‐ uals with a variety of Sqoop use cases, Kathleen and
Jarcec put together a comprehensive list of ways you may need to move or transform
data, followed by both the commands you should run and a thorough explanation of
what’s taking place under the hood. The incremental structure of this book’s chapters
will have you moving from a table full of “Hello, world!” strings to managing
recurring imports between large-scale systems in no time.
It has been a pleasure to work with Kathleen, Jarcec, and the countless others who
made Sqoop into the tool it is today. I would like to thank them for all their hard
work so far, and for continuing to develop and advocate for this critical piece of the
total big data management puzzle.

—Aaron Kimball
San Francisco, CA

May 2013

x | Foreword

www.it-ebooks.info

http://sqoop.apache.org/docs/
http://shop.oreilly.com/product/0636920021773.do
http://shop.oreilly.com/product/0636920021773.do
http://shop.oreilly.com/product/0636920021773.do
http://shop.oreilly.com/product/0636920029519.do
http://shop.oreilly.com/product/0636920029519.do
http://www.it-ebooks.info/

Preface

Whether moving a small collection of personal vacation photos between applications
or moving petabytes of data between corporate warehouse systems, integrating data
from multiple sources remains a struggle. Data storage is more accessible thanks to
the availability of a number of widely used storage systems and accompanying tools.
Core to that are relational databases (e.g., Oracle, MySQL, SQL Server, Teradata,
and Netezza) that have been used for decades to serve and store huge amounts of
data across all industries.
Relational database systems often store valuable data in a company. If made available,
that data can be managed and processed by Apache Hadoop, which is fast becoming the
standard for big data processing. Several relational database vendors championed de‐
veloping integration with Hadoop within one or more of their products.

Transferring data to and from relational databases is challenging and laborious.
Because data transfer requires careful handling, Apache Sqoop, short for “SQL to
Hadoop,” was created to perform bidirectional data transfer between Hadoop and
almost any external structured datastore. Taking advantage of MapReduce, Hadoop’s
execution engine, Sqoop performs the transfers in a parallel manner.
If you’re reading this book, you may have some prior exposure to Sqoop—especially
from Aaron Kimball’s Sqoop section in Hadoop: The Definitive Guide by Tom
White (O’Reilly) or from Hadoop Operations by Eric Sammer (O’Reilly).
From that exposure, you’ve seen how Sqoop optimizes data transfers between
Hadoop and databases. Clearly it’s a tool optimized for power users. A command-
line interface providing 60 parameters is both powerful and bewildering. In this book,
we’ll focus on applying the parameters in common use cases to help you deploy and
use Sqoop in your environment.
Chapter 1 guides you through the basic prerequisites of using Sqoop. You will learn how
to download, install, and configure the Sqoop tool on any node of your Hadoop cluster.

xi

www.it-ebooks.info

http://shop.oreilly.com/product/0636920021773.do
http://shop.oreilly.com/product/0636920025085.do
http://www.it-ebooks.info/

Chapters 2, 3, and 4 are devoted to the various use cases of getting your data from a
database server into the Hadoop ecosystem. If you need to transfer generated, processed,
or backed up data from Hadoop to your database, you’ll want to read Chapter 5.

In Chapter 6, we focus on integrating Sqoop with the rest of the Hadoop ecosystem.
We will show you how to run Sqoop from within a specialized Hadoop scheduler
called Apache Oozie and how to load your data into Hadoop’s data warehouse
system Apache Hive and Hadoop’s database Apache HBase.
For even greater performance, Sqoop supports database-specific connectors that use
native features of the particular DBMS. Sqoop includes native connectors for MySQL
and PostgreSQL. Available for download are connectors for Teradata, Netezza, Couch‐
base, and Oracle (from Dell). Chapter 7 walks you through using them.

Sqoop 2
The motivation behind Sqoop 2 was to make Sqoop easier to use by having a web ap‐
plication run Sqoop. This allows you to install Sqoop and use it from anywhere. In
addition, having a REST API for operation and management enables Sqoop to
integrate better with external systems such as Apache Oozie. As further discussion of
Sqoop 2 is beyond the scope of this book, we encourage you to download the bits
and docs from the Apache Sqoop website and then try it out!

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

xii | Preface

www.it-ebooks.info

http://sqoop.apache.org/
http://www.it-ebooks.info/

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation.
You do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating
a significant amount of example code from this book into your product’s
documentation does require permission.
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/jarcec/Apache-Sqoop-Cookbook.
We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Apache Sqoop Cookbook by Kathleen
Ting and Jarek Jarcec Cecho (O’Reilly). Copyright 2013 Kathleen Ting and Jarek
Jarcec Cecho, 978-1-449-36462-5.”
If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and business and
crea‐ tive professionals use Safari Books Online as their primary resource for
research, prob‐ lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for
organi‐ zations, government agencies, and individuals. Subscribers have access to
thousands of books, training videos, and prepublication manuscripts in one fully
searchable database from publishers like O’Reilly Media, Prentice Hall Professional,
Addison-Wesley Pro‐ fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-
Hill, Jones & Bartlett, Course Technol‐ ogy, and dozens more. For more information
about Safari Books Online, please visit us online.

Preface |
xiii

https://github.com/jarcec/Apache-Sqoop-Cookbook
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

www.it-ebooks.info

http://www.it-ebooks.info/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Apache_Sqoop.
To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.
For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Without the contributions and support from the Apache Sqoop community, this book
would not exist. Without that support, there would be no Sqoop, nor would Sqoop be
successfully deployed in production at companies worldwide. The unwavering
support doled out by the committers, contributors, and the community at large on the
mailing lists speaks to the power of open source.
Thank you to the Sqoop committers (as of this writing): Andrew Bayer, Abhijeet
Gaik‐ wad, Ahmed Radwan, Arvind Prabhakar, Bilung Lee, Cheolsoo Park, Greg
Cottman, Guy le Mar, Jonathan Hsieh, Aaron Kimball, Olivier Lamy, Alex Newman,
Paul Zimdars, and Roman Shaposhnik.
Thank you, Eric Sammer and O’Reilly, for giving us the opportunity to write this book.

Mike Olson, Amr Awadallah, Peter Cooper-Ellis, Arvind Prabhakar, and the rest of
the Cloudera management team made sure we had the breathing room and the
caffeine intake to get this done.

xiv | Preface

www.it-ebooks.info

http://oreil.ly/Apache_Sqoop
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Many people provided valuable feedback and input throughout the entire process, but
especially Rob Weltman, Arvind Prabhakar, Eric Sammer, Mark Grover, Abraham
Elmahrek, Tom Wheeler, and Aaron Kimball. Special thanks to the creator of Sqoop,
Aaron Kimball, for penning the foreword. To those whom we may have omitted
from this list, our deepest apologies.
Thanks to our O’Reilly editor, Courtney Nash, for her professional advice and
assistance in polishing the Sqoop Cookbook.
We would like to thank all the contributors to Sqoop. Every patch you contributed
improved Sqoop’s ease of use, ease of extension, and security. Please keep contributing!

Jarcec Thanks
I would like to thank my parents, Lenka Cehova and Petr Cecho, for raising my sister,
Petra Cechova, and me. Together we’ve created a nice and open environment that en‐
couraged me to explore the newly created world of computers. I would also like to thank
my girlfriend, Aneta Ziakova, for not being mad at me for spending excessive amounts of
time working on cool stuff for Apache Software Foundation. Special thanks to Arvind
Prabhakar for adroitly maneuvering between serious guidance and comic relief.

Kathleen Thanks
This book is gratefully dedicated to my parents, Betty and Arthur Ting, who had a
great deal of trouble with me, but I think they enjoyed it.

My brother, Oliver Ting, taught me to tell the truth, so I don’t have to remember any‐
thing. I’ve never stopped looking up to him.
When I needed to hunker down, Wen, William, Bryan, and Derek Young provided
me with a home away from home.
Special thanks to Omer Trajman for giving me an opportunity at Cloudera.

I am in debt to Arvind Prabhakar for taking a chance on mentoring me in the Apache
way.

Preface |
xv

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1
Getting Started

This chapter will guide you through the basic prerequisites of using Sqoop. You will
learn how to download and install Sqoop on your computer or on any node of your
Hadoop cluster. Sqoop comes with a very detailed User Guide describing all the
available parameters and basic usage. Rather than repeating the guide, this book
focuses on ap‐ plying the parameters to real use cases and helping you to deploy and
use Sqoop effec‐ tively in your environment.

1.1. Downloading and Installing Sqoop
Problem
You want to install Sqoop on your computer or on any node in your Hadoop cluster.

Solution
Sqoop supports the Linux operating system, and there are several installation options.
One option is the source tarball that is provided with every release. This tarball
contains only the source code of the project. You can’t use it directly and will need to
first compile the sources into binary executables. For your convenience, the Sqoop
community pro‐ vides a binary tarball for each major supported version of Hadoop
along with the source tarball.
In addition to the tarballs, there are open source projects and commercial companies
that provide operating system-specific packages. One such project, Apache Bigtop,
provides rpm packages for Red Hat, CentOS, SUSE, and deb packages for Ubuntu
and Debian. The biggest benefit of using packages over tarballs is their seamless
integration with the operating system: for example, Configuration files are stored in
/etc/ and logs in /var/log.

1

www.it-ebooks.info

http://sqoop.apache.org/docs/
http://bigtop.apache.org/
http://www.it-ebooks.info/

Discussion
This book focuses on using Sqoop rather than developing for it. If you prefer to
compile the source code from source tarball into binary directly, the Developer’s
Guide is a good resource.
You can download the binary tarballs from the Apache Sqoop website. All binary tarballs
contain a .bin__hadoop string embedded in their name, followed by the Apache Ha‐
doop major version that was used to generate them. For Hadoop 1.x, the archive name
will include the string .bin__hadoop-1.0.0. While the naming convention suggests this
tarball only works with version 1.0.0, in fact, it’s fully compatible not only with the entire
1.0.x release branch but also with version 1.1.0. It’s very important to download the
binary tarball created for your Hadoop version. Hadoop has changed internal in‐ terfaces
between some of the major versions; therefore, using a Sqoop tarball that was compiled
against Hadoop version 1.x with, say, Hadoop version 2.x, will not work.

To install Sqoop, download the binary tarball to any machine from which you want
to run Sqoop and unzip the archive. You can directly use Sqoop from within the
extracted directory without any additional steps. As Sqoop is not a cluster service,
you do not need to install it on all the nodes in your cluster. Having the installation
available on one single machine is sufficient. As a Hadoop application, Sqoop
requires that the Ha‐ doop libraries and configurations be available on the machine.
Hadoop installation instructions can be found in the Hadoop project documentation.
If you want to import your data into HBase and Hive, Sqoop will need those libraries.
For common function‐ ality, these dependencies are not mandatory.
Installing packages is simpler than using tarballs. They are already integrated with the
operating system and will automatically download and install most of the required de‐
pendencies during the Sqoop installation. Due to licensing, the JDBC drivers won’t be
installed automatically. For those instructions, check out the section Recipe 1.2.

Bigtop provides repositories that can be easily added into your system in order to
find and install the dependencies. Bigtop installation instructions can be found in the
Bigtop project documentation. Once Bigtop is successfully deployed, installing
Sqoop is very simple and can be done with the following commands:

• To install Sqoop on a Red Hat, CentOS, or other yum system:

$ sudo yum install sqoop

• To install Sqoop on an Ubuntu, Debian, or other deb-based system:

$ sudo apt-get install sqoop

2 | Chapter 1: Getting Started

www.it-ebooks.info

http://sqoop.apache.org/docs/1.4.3/SqoopDevGuide.html
http://sqoop.apache.org/docs/1.4.3/SqoopDevGuide.html
http://www.apache.org/dyn/closer.cgi/sqoop/
http://bit.ly/120Fj4r
https://cwiki.apache.org/confluence/display/BIGTOP/Index
https://cwiki.apache.org/confluence/display/BIGTOP/Index
http://www.it-ebooks.info/

• To install Sqoop on a SLES system:

$ sudo zypper install sqoop

Sqoop’s main configuration file sqoop-site.xml is available in the configuration di‐
rectory (conf/ when using the tarball or /etc/sqoop/conf when using Bigtop pack‐
ages). While you can further customize Sqoop, the defaults will suffice in a majority
of cases. All available properties are documented in the sqoop-site.xml file. We will
explain the more commonly used properties in greater detail later in the book.

1.2. Installing JDBC Drivers
Problem
Sqoop requires the JDBC drivers for your specific database server (MySQL, Oracle,
etc.) in order to transfer data. They are not bundled in the tarball or packages.

Solution
You need to download the JDBC drivers and then install them into Sqoop. JDBC drivers
are usually available free of charge from the database vendors’ websites. Some enterprise
data stores might bundle the driver with the installation itself. After you’ve obtained the
driver, you need to copy the driver’s JAR file(s) into Sqoop’s lib/ directory. If you’re
using the Sqoop tarball, copy the JAR files directly into the lib/ directory after unzip‐ ping
the tarball. If you’re using packages, you will need to copy the driver files into
the /usr/lib/sqoop/lib directory.

Discussion
JDBC is a Java specific database-vendor independent interface for accessing
relational databases and enterprise data warehouses. Upon this generic interface, each
database vendor must implement a compliant driver containing required functionality.
Due to licensing, the Sqoop project can’t bundle the drivers in the distribution. You
will need to download and install each driver individually.
Each database vendor has a slightly different method for retrieving the JDBC driver.
Most of them make it available as a free download from their websites. Please
contact your database administrator if you are not sure how to retrieve the driver.

1.2. Installing JDBC Drivers | 3

www.it-ebooks.info

http://www.it-ebooks.info/

1.3. Installing Specialized Connectors
Problem
Some database systems provide special connectors, which are not part of the Sqoop
distribution, and these take advantage of advanced database features. If you want to
take advantage of these optimizations, you will need to individually download and
install those specialized connectors.

Solution
On the node running Sqoop, you can install the specialized connectors anywhere on
the local filesystem. If you plan to run Sqoop from multiple nodes, you have to
install the connector on all of those nodes. To be clear, you do not have to install the
connector on all nodes in your cluster, as Sqoop will automatically propagate the
appropriate JARs as needed throughout your cluster.
In addition to installing the connector JARs on the local filesystem, you also need to
register them with Sqoop. First, create a directory manager.d in the Sqoop
configuration directory (if it does not exist already). The configuration directory
might be in a different location, based on how you’ve installed Sqoop. With
packages, it’s usually in the /etc/ sqoop directory, and with tarballs, it’s usually in
the conf/ directory. Then, inside this directory, you need to create a file (naming it
after the connector is a recommended best practice) that contains the following line:

connector.fully.qualified.class.name=/full/path/to/the/jar

You can find the name of the fully qualified class in each connector’s documentation.

Discussion
A significant strength of Sqoop is its ability to work with all major and minor database
systems and enterprise data warehouses. To abstract the different behavior of each sys‐
tem, Sqoop introduced the concept of connectors: all database-specific operations are
delegated from core Sqoop to the specialized connectors. Sqoop itself bundles many such
connectors; you do not need to download anything extra in order to run Sqoop. The most
general connector bundled with Sqoop is the Generic JDBC Connector that utilizes only
the JDBC interface. This will work with every JDBC-compliant database system. In
addition to this generic connector, Sqoop also ships with specialized con‐ nectors for
MySQL, Oracle, PostgreSQL, Microsoft SQL Server, and DB2, which utilize special
properties of each particular database system. You do not need to explicitly select the
desired connector, as Sqoop will automatically do so based on your JDBC URL.

4 | Chapter 1: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

In addition to the built-in connectors, there are many specialized connectors available
for download. Some of them are further described in this book. For example, OraOop
is described in Recipe 7.9, and Cloudera Connector for Teradata is described in
Recipe 7.13. More advanced users can develop their own connectors by following
the guidelines listed in the Sqoop Developer’s Guide.
Most, if not all, of the connectors depend on the underlying JDBC drivers in order to
make the connection to the remote database server. It’s imperative to install both the
specialized connector and the appropriate JDBC driver. It’s also important to
distinguish the connector from the JDBC driver. The connector is a Sqoop-specific
pluggable piece that is used to delegate some of the functionality that might be done
faster when using database-specific tweaks. The JDBC driver is also a pluggable
piece. However, it is in‐ dependent of Sqoop and exposes database interfaces in a
portable manner for all Java applications.

Sqoop always requires both the connector and the JDBC driver.

1.4. Starting Sqoop
Problem
You’ve successfully installed and configured Sqoop, and now you want to know how
to run it.

Solution
Sqoop is a command-line tool that can be called from any shell implementation such
as bash or zsh. An example Sqoop command might look like the following (all
param‐ eters will be described later in the book):

sqoop import \
-Dsqoop.export.records.per.statement=1 \
--connect jdbc:postgresql://postgresql.example.com/database \
--username sqoop \
--password sqoop \
--table cities \
-- \
--schema us

Discussion
The command-line interface has the following structure:

sqoop TOOL PROPERTY_ARGS SQOOP_ARGS [-- EXTRA_ARGS]

1.4. Starting Sqoop| 5

www.it-ebooks.info

http://bit.ly/11NGa9L
http://www.it-ebooks.info/

TOOL indicates the operation that you want to perform. The most important
operations are import for transferring data from a database to Hadoop and export for
transferring data from Hadoop to a database. PROPERTY_ARGS are a special set of
parameters that are entered as Java properties in the format -Dname=value
(examples appear later in the book). Property parameters are followed by
SQOOP_ARGS that contain all the various Sqoop parameters.

Mixing property and Sqoop parameters together is not allowed. Fur‐
thermore, all property parameters must precede all Sqoop parameters.

You can specify EXTRA_ARGS for specialized connectors, which can be used to
enter additional parameters specific to each connector. The EXTRA_ARGS
parameters must be separated from the SQOOP_ARGS with a --.

Sqoop has a bewildering number of command-line parameters (more
than 60). Type sqoop help to retrieve the entire list. Type sqoop help
TOO (e.g., sqoop help import) to get detailed information for a spe‐
cific tool.

1.5. Getting Help with Sqoop
Problem
You have a question that is not answered by this book.

Solution
You can ask for help from the Sqoop community via the mailing lists. The Sqoop
Mailing Lists page contains general information and instructions for using the Sqoop
User and Development mailing lists. Here is an outline of the general process:

1. First, you need to subscribe to the User list at the Sqoop Mailing Lists page.
2. To get the most out of the Sqoop mailing lists, you may want to read Eric

Raymond’s How To Ask Questions The Smart Way.

6 | Chapter 1: Getting Started

www.it-ebooks.info

http://bit.ly/14ad5s8
http://bit.ly/14ad5s8
http://bit.ly/14ad5s8
http://bit.ly/123IxFp
http://www.it-ebooks.info/

3. Then provide the full context of your problem with details on observed or
desired behavior. If appropriate, include a minimal self-reproducing example so
that others can reproduce the problem you’re facing.

4. Finally, email your question to user@sqoop.apache.org.

Discussion
Before sending email to the mailing list, it is useful to read the Sqoop documentation and
search the Sqoop mailing list archives. Most likely your question has already been asked,
in which case you’ll be able to get an immediate answer by searching the archives. If it
seems that your question hasn’t been asked yet, send it to user@sqoop.apache.org.

If you aren’t already a list subscriber, your email submission will be
rejected.

Your question might have to do with your Sqoop command causing an error or giving
unexpected results. In the latter case, it is necessary to include enough data to reproduce
the error. If the list readers can’t reproduce it, they can’t diagnose it. Including relevant
information greatly increases the probability of getting a useful answer.

To that end, you’ll need to include the following information:
• Versions: Sqoop, Hadoop, OS, JDBC
• Console log after running with the --verbose flag
— Capture the entire output via sqoop import … &> sqoop.log

• Entire Sqoop command including the options-file if applicable
• Expected output and actual output
• Table definition
• Small input data set that triggers the problem
— Especially with export, malformed data is often the culprit

• Hadoop task logs
— Often the task logs contain further information describing the problem

• Permissions on input files

1.5. Getting Help with Sqoop | 7

www.it-ebooks.info

mailto:user@sqoop.apache.org
http://bit.ly/19u2VrS
http://bit.ly/123IEkk
mailto:user@sqoop.apache.org
http://www.it-ebooks.info/

While the project has several communication channels, the mailing lists are not only
the most active but also the official channels for making decisions about the project
itself. If you’re interested in learning more about or participating in the Apache
Sqoop project, the mailing lists are the best way to do that.

8 | Chapter 1: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2
Importing Data

The next few chapters, starting with this one, are devoted to transferring data from
your relational database or warehouse system to the Hadoop ecosystem. In this
chapter we will cover the basic use cases of Sqoop, describing various situations
where you have data in a single table in a database system (e.g., MySQL or Oracle)
that you want to transfer into the Hadoop ecosystem.
We will be describing various Sqoop features through examples that you can copy
and paste to the console and then run. In order to do so, you will need to first set up
your relational database. For the purpose of this book, we will use a MySQL
database with the account sqoop and password sqoop. We will be connecting to a
database named sqoop. You can easily create the credentials using the script
mysql.credentials.sql uploaded to the GitHub project associated with this book.
You can always change the examples if you want to use different credentials or
connect to a different relational system (e.g., Oracle, PostgreSQL, Microsoft SQL
Server, or any others). Further details will be provided later in the book. As Sqoop is
focused primarily on transferring data, we need to have some data already available
in the database before running the Sqoop commands. To have something to start with,
we’ve created the table cities containing a few cities from around the world (see
Table 2-1). You can use the script mysql.tables.sql from the aforementioned GitHub
project to create and pop‐ ulate all tables that are needed.
Table 2-1. Cities

id country city
1 USA Palo Alto
2 Czech Republic Brno
3 USA Sunnyvale

9

www.it-ebooks.info

https://github.com/jarcec/Apache-Sqoop-Cookbook
https://github.com/jarcec/Apache-Sqoop-Cookbook
https://github.com/jarcec/Apache-Sqoop-Cookbook
http://www.it-ebooks.info/

2.1. Transferring an Entire Table
Problem
You have a table in a relational database (e.g., MySQL) and you need to transfer the
table’s contents into Hadoop’s Distributed File System (HDFS).

Solution
Importing one table with Sqoop is very simple: you issue the Sqoop import command
and specify the database credentials and the name of the table to transfer.

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities

Discussion
Importing an entire table is one of the most common and straightforward use cases of
Sqoop. The result of this command will be a comma-separated CSV file where each
row is stored in a single line. The example table cities will be imported as the
following file:

1,USA,Palo Alto
2,Czech Republic,Brno
3,USA,Sunnyvale

Note that this CSV file will be created in HDFS (as opposed to the
local filesystem). You can inspect the created files’ contents by using
the following command:

% hadoop fs -cat cities/part-m-*

In this example, Sqoop’s main binary was called with a couple of parameters, so let’s
discuss all of them in more detail. The first parameter after the sqoop executable is
import, which specifies the appropriate tool. The import tool is used when you want to
transfer data from the relational database into Hadoop. Later in the book we will discuss
the export tool, which is used to transfer data in the opposite direction (Chapter 5). The
next parameter, --connect, contains the JDBC URL to your database. The syntax of the
URL is specific for each database, so you need to consult your DB manual for the proper
format. The URL is followed by two parameters, --username and --password, which are
the credentials that Sqoop should use while connecting to the database. Fi‐ nally, the last
parameter, --table, contains the name of the table to transfer.

10 | Chapter 2: Importing Data

www.it-ebooks.info

http://www.it-ebooks.info/

You have two options besides specifying the password on the com‐
mand line with the --password parameter. These options are further
described in the section Recipe 2.4.

Now that you understand what each parameter does, let’s take a closer look to see what
will happen after you execute this command. First, Sqoop will connect to the database to
fetch table metadata: the number of table columns, their names, and the associated data
types. For example, for table cities, Sqoop will retrieve information about the three
columns: id, country, and city, with int, VARCHAR, and VARCHAR as their respec‐ tive
data types. Depending on the particular database system and the table itself, other useful
metadata can be retrieved as well (for example, Sqoop can determine whether the table is
partitioned or not). At this point, Sqoop is not transferring any data between the database
and your machine; rather, it’s querying the catalog tables and views. Based on the
retrieved metadata, Sqoop will generate a Java class and compile it using the JDK and
Hadoop libraries available on your machine.

Next, Sqoop will connect to your Hadoop cluster and submit a MapReduce job. Each
mapper of the job will then transfer a slice of the table’s data. As MapReduce executes
multiple mappers at the same time, Sqoop will be transferring data in parallel to achieve
the best possible performance by utilizing the potential of your database server. Each
mapper transfers the table’s data directly between the database and the Hadoop cluster.
To avoid becoming a transfer bottleneck, the Sqoop client acts as the overseer rather than
as an active participant in transferring the data. This is a key tenet of Sqoop’s design.

2.2. Specifying a Target Directory
Problem
The previous example worked well, so you plan to incorporate Sqoop into your
Hadoop workflows. In order to do so, you want to specify the directory into which
the data should be imported.

Solution
Sqoop offers two parameters for specifying custom output directories: --target-dir
and --warehouse-dir. Use the --target-dir parameter to specify the directory on
HDFS where Sqoop should import your data. For example, use the following
command to import the table cities into the directory /etl/input/cities:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \

2.2. Specifying a Target Directory | 11

www.it-ebooks.info

http://www.it-ebooks.info/

--table cities \
--target-dir /etl/input/cities

To specify the parent directory for all your Sqoop jobs, instead use the --warehouse-
dir parameter:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--warehouse-dir /etl/input/

Discussion
By default, Sqoop will create a directory with the same name as the imported table
inside your home directory on HDFS and import all data there. For example, when
the user jarcec imports the table cities, it will be stored in /user/jarcec/cities. This
di‐ rectory can be changed to any arbitrary directory on your HDFS using the --
target-dir parameter. The only requirement is that this directory must not exist prior
to running the Sqoop command.

Sqoop will reject importing into an existing directory to prevent acci‐
dental overwriting of data.

If you want to run multiple Sqoop jobs for multiple tables, you will need to change the --
target-dir parameter with every invocation. As an alternative, Sqoop offers another
parameter by which to select the output directory. Instead of directly specifying the final
directory, the parameter --warehouse-dir allows you to specify only the parent direc‐ tory.
Rather than writing data into the warehouse directory, Sqoop will create a directory with
the same name as the table inside the warehouse directory and import data there. This is
similar to the default case where Sqoop imports data to your home directory on HDFS,
with the notable exception that the --warehouse-dir parameter allows you to use a
directory other than the home directory. Note that this parameter does not need to change
with every table import unless you are importing tables with the same name.

Just as with the --target-dir parameter, Sqoop will reject import‐ ing
data when the final output directory already exists. In this case, the
name is comprised of the directory name specified in --warehouse-dir
and the name of a transferred table.

12 | Chapter 2: Importing Data

www.it-ebooks.info

http://www.it-ebooks.info/

2.3. Importing Only a Subset of Data
Problem
Instead of importing an entire table, you need to transfer only a subset of the rows
based on various conditions that you can express in the form of a SQL statement with
aWHERE clause.

Solution
Use the command-line parameter --where to specify a SQL condition that the
imported data should meet. For example, to import only USA cities from the table
cities, you can issue the following Sqoop command:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--where "country = 'USA'"

Discussion
Sqoop will propagate the content of the --where parameter as is to all generated
queries that fetch data. This provides a powerful ability by which to express any
condition that your particular database server can process. Any special functions,
conversions, or even user-defined functions can be used. Because the SQL fragment
will be propagated into generated queries without any Sqoop processing, any invalid
fragments may result in nonintuitive exceptions that are hard to debug. This
parameter can be confusing for new Sqoop users.
When using the --where parameter, keep in mind the parallel nature of Sqoop transfers.
Data will be transferred in several concurrent tasks. Any expensive function call will put
a significant performance burden on your database server. Advanced functions could lock
certain tables, preventing Sqoop from transferring data in parallel. This will adversely
affect transfer performance. For efficient advanced filtering, run the filtering query on
your database prior to import, save its output to a temporary table and run Sqoop to
import the temporary table into Hadoop without the --where parameter.

2.4. Protecting Your Password
Problem
Typing your password into the command-line interface is insecure. It can be easily
retrieved from listing the operating system’s running processes.

2.3. Importing Only a Subset of Data | 13

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
You have two options besides specifying the password on the command line with the --
password parameter. The first option is to use the parameter -P that will instruct Sqoop
to read the password from standard input. Alternatively, you can save your pass‐ word in
a file and specify the path to this file with the parameter --password-file.

Here’s a Sqoop execution that will read the password from standard input:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--table cities \
-P

Here’s an example of reading the password from a file:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--table cities \
--password-file my-sqoop-password

Discussion
Let’s take a deeper look at each available method. The first method, using the
parameter -P, will instruct Sqoop to prompt the user for the password before any
other Sqoop action is taken. An example prompt is shown below:

sqoop import -P --connect ...
Enter password:

You can type any characters into the prompt and then press the Enter key once you
are done. Sqoop will not echo any characters, preventing someone from reading the
pass‐ word on your screen. All entered characters will be loaded and used as the
password (except for the final enter). This method is very secure, as the password is
not stored anywhere and is loaded on every Sqoop execution directly from the user.
The downside is that it can’t be easily automated with a script.

The second solution, using the parameter --password-file, will load the password from
any specified file on your HDFS cluster. In order for this method to be secure, you need
to store the file inside your home directory and set the file’s permissions to 400, so no
one else can open the file and fetch the password. This method for securing your
password can be easily automated with a script and is the recommended option if you
need to securely automate your Sqoop workflow. You can use the following shell and
Hadoop commands to create and secure your password file:

echo "my-secret-password" > sqoop.password
hadoop dfs -put sqoop.password /user/$USER/sqoop.password
hadoop dfs -chown 400 /user/$USER/sqoop.password

14 | Chapter 2: Importing Data

www.it-ebooks.info

http://www.it-ebooks.info/

rm sqoop.password
sqoop import --password-file /user/$USER/sqoop.password ...

Sqoop will read the entire content of the file including any trailing whitespace characters,
which will be considered part of the password. When using a text editor to manually edit
the password file, be sure not to introduce extra empty lines at the end of the file.

2.5. Using a File Format Other Than CSV
Problem
The tab-separated CSV file that Sqoop uses by default does not suit your use case.
You prefer a binary format over plain text.

Solution
Sqoop supports three different file formats; one of these is text, and the other two are
binary. The binary formats are Avro and Hadoop’s SequenceFile. You can enable
import into SequenceFile using the --as-sequencefile parameter:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--as-sequencefile

Avro can be enabled by specifying the --as-avrodatafile parameter:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--as-avrodatafile

Discussion
Binary formats have a few benefits over that of text files. First, binary formats are a
natural fit for storing binary values like images or PDF documents. They are also
more suited for storing text data if the data itself contains characters that are
otherwise used as separators in the text file. Along with these benefits, there is one
downside: in order to access the binary data, you need to implement extra
functionality or load special libraries in your application.
The SequenceFile is a special Hadoop file format that is used for storing objects and
implements the Writable interface. This format was customized for MapReduce, and thus
it expects that each record will consist of two parts: key and value. Sqoop does not

2.5. Using a File Format Other Than CSV |
15

www.it-ebooks.info

http://www.it-ebooks.info/

have the concept of key-value pairs and thus uses an empty object called NullWritable in
place of the value. For the key, Sqoop uses the generated class. For convenience, this
generated class is copied to the directory where Sqoop is executed. You will need to
integrate this generated class to your application if you need to read a Sqoop-generated
SequenceFile.

Apache Avro is a generic data serialization system. Specifying the --asavrodatafile
parameter instructs Sqoop to use its compact and fast binary encoding format. Avro is a
very generic system that can store any arbitrary data structures. It uses a concept called
schema to describe what data structures are stored within the file. The schema is usually
encoded as a JSON string so that it’s decipherable by the human eye. Sqoop will generate
the schema automatically based on the metadata information retrieved from the data‐ base
server and will retain the schema in each generated file. Your application will need to
depend on Avro libraries in order to open and process data stored as Avro. You don’t
need to import any special class, such as in the SequenceFile case, as all required
metadata is embedded in the imported files themselves.

2.6. Compressing Imported Data
Problem
You want to decrease the overall size occupied on HDFS by using compression for
generated files.

Solution
Use the parameter --compress to enable compression:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--table cities \
--compress

Discussion
Sqoop takes advantage of the inherent parallelism of Hadoop by leveraging
Hadoop’s execution engine, MapReduce, to perform data transfers. As MapReduce
already has excellent support for compression, Sqoop simply reuses its powerful
abilities to provide compression options. By default, when using the --compress
parameter, output files will be compressed using the GZip codec, and all files will
end up with a .gz extension. You can choose any other codec using the --
compression-codec parameter. The fol‐ lowing example uses the BZip2 codec
instead of GZip (files on HDFS will end up having the .bz2 extension):

16 | Chapter 2: Importing Data

www.it-ebooks.info

http://www.it-ebooks.info/

sqoop import --compress \
--compression-codec org.apache.hadoop.io.compress.BZip2Codec

Another benefit of leveraging MapReduce’s compression abilities is that Sqoop can
make use of all Hadoop compression codecs out of the box. You don’t need to enable
com‐ pression codes within Sqoop itself. That said, Sqoop can’t use any compression
algo‐ rithm not known to Hadoop. Prior to using it with Sqoop, make sure your
desired codec is properly installed and configured across all nodes in your cluster.

As Sqoop delegates compression to the MapReduce engine, you need
to make sure the compressed map output is allowed in your Hadoop
configuration. For example, if in the mapred-site.xml file, the prop‐
erty mapred.output.compress is set to false with the final flag, then
Sqoop won’t be able to compress the output files even when you call
it with the --compress parameter.

The selected compression codec might have a significant impact on subsequent pro‐
cessing. Some codecs do not support seeking to the middle of the compressed file
without reading all previous content, effectively preventing Hadoop from processing
the input files in a parallel manner. You should use a splittable codec for data that
you’re planning to use in subsequent processing. Table 2-2 contains a list of
splittable and nonsplittable compression codecs that will help you choose the proper
codec for your use case.
Table 2-2. Compression codecs

Splittable Not Splittable
BZip2, LZO GZip, Snappy

2.7. Speeding Up Transfers
Problem
Sqoop is a great tool, and it’s processing bulk transfers very well. Can Sqoop run faster?

Solution
For some databases you can take advantage of the direct mode by using the --direct
parameter:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--table cities \
--direct

2.7. Speeding Up Transfers | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Rather than using the JDBC interface for transferring data, the direct mode delegates
the job of transferring data to the native utilities provided by the database vendor. In
the case of MySQL, the mysqldump and mysqlimport will be used for retrieving
data from the database server or moving data back. In the case of PostgreSQL, Sqoop
will take advantage of the pg_dump utility to import data. Using native utilities will
greatly improve performance, as they are optimized to provide the best possible
transfer speed while putting less burden on the database server. There are several
limitations that come with this faster import. For one, not all databases have available
native utilities. This mode is not available for every supported database. Out of the
box, Sqoop has direct support only for MySQL and PostgreSQL.
Because all data transfer operations are performed inside generated MapReduce jobs and
because the data transfer is being deferred to native utilities in direct mode, you will need
to make sure that those native utilities are available on all of your Hadoop TaskTracker
nodes. For example, in the case of MySQL, each node hosting a TaskTracker service
needs to have both mysqldump and mysqlimport utilities installed.

Another limitation of the direct mode is that not all parameters are supported. As the
native utilities usually produce text output, binary formats like SequenceFile or
Avro won’t work. Also, parameters that customize the escape characters, type
mapping, col‐ umn and row delimiters, or the NULL substitution string might not be
supported in all cases.

See Also
Sqoop also supports the pg_bulkload utility for PostgreSQL via a special build-in
con‐ nector. You can find more information about that in Recipe 7.3.

2.8. Overriding Type Mapping
Problem
The default type mapping that Sqoop provides between relational databases and Hadoop
usually works well. You have use cases requiring you to override the mapping.

Solution
Use Sqoop’s ability to override default type mapping using the parameter --map-
column-java. For example, to override the type of column id to Java type Long:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \ --
username sqoop \

18 | Chapter 2: Importing Data

www.it-ebooks.info

http://www.it-ebooks.info/

--table cities \
--map-column-java id=Long

Discussion
The parameter --map-column-java accepts a comma separated list where each item
is a key-value pair separated by an equal sign. The exact column name is used as the
key, and the target Java type is specified as the value. For example, if you need to
change mapping in three columns c1, c2, and c3 to Float, String, and String,
respectively, then your Sqoop command line would contain the following fragment:

sqoop import --map-column-java c1=Float,c2=String,c3=String ...

An example of where this parameter is handy is when your MySQL table has a primary
key column that is defined as unsigned int with values that are bigger than 2 147 483
647. In this particular scenario, MySQL reports that the column has type integer, even
though the real type is unsigned integer. The maximum value for an unsigned inte ger
column in MySQL is 4 294 967 295. Because the reported type is integer, Sqoop will use
Java’s Integer object, which is not able to contain values larger than 2 147 483
647.In this case, you have to manually provide hints to do more appropriate type
map‐ ping.
Use of this parameter is not limited to overcoming MySQL’s unsigned types problem.
It is further applicable to many use cases where Sqoop’s default type mapping is not
a good fit for your environment. Sqoop fetches all metadata from database structures
without touching the stored data, so any extra knowledge about the data itself must
be provided separately if you want to take advantage of it. For example, if you’re
using BLOB or BINARY columns for storing textual data to avoid any encoding
issues, you can use the --column-map-java parameter to override the default
mapping and import your data as String.

2.9. Controlling Parallelism
Problem
Sqoop by default uses four concurrent map tasks to transfer data to Hadoop.
Transfer‐ ring bigger tables with more concurrent tasks should decrease the time
required to transfer all data. You want the flexibility to change the number of map
tasks used on a per-job basis.

2.9. Controlling Parallelism |
19

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use the parameter --num-mappers if you want Sqoop to use a different number of
map‐ pers. For example, to suggest 10 concurrent tasks, you would use the following
Sqoop command:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--num-mappers 10

Discussion
The parameter --num-mappers serves as a hint. In most cases, you will get the
specified number of mappers, but it’s not guaranteed. If your data set is very small,
Sqoop might resort to using a smaller number of mappers. For example, if you’re
transferring only 4 rows yet set --num-mappers to 10 mappers, only 4 mappers will
be used, as the other 6 mappers would not have any data to transfer.
Controlling the amount of parallelism that Sqoop will use to transfer data is the main
way to control the load on your database. Using more mappers will lead to a higher
number of concurrent data transfer tasks, which can result in faster job completion.
However, it will also increase the load on the database as Sqoop will execute more
con‐ current queries. Doing so might affect other queries running on your server,
adversely affecting your production environment. Increasing the number of mappers
won’t always lead to faster job completion. While increasing the number of mappers,
there is a point at which you will fully saturate your database. Increasing the number
of mappers beyond this point won’t lead to faster job completion; in fact, it will have
the opposite effect as your database server spends more time doing context switching
rather than serving data.
The optimal number of mappers depends on many variables: you need to take into
account your database type, the hardware that is used for your database server, and
the impact to other requests that your database needs to serve. There is no optimal
number of mappers that works for all scenarios. Instead, you’re encouraged to
experiment to find the optimal degree of parallelism for your environment and use
case. It’s a good idea to start with a small number of mappers, slowly ramping up,
rather than to start with a large number of mappers, working your way down.

20 | Chapter 2: Importing Data

www.it-ebooks.info

http://www.it-ebooks.info/

2.10. Encoding NULL Values
Problem
Sqoop encodes database NULL values using the null string constant. Your downstream
processing (Hive queries, custom MapReduce job, or Pig script) uses a different constant
for encoding missing values. You would like to override the default one.

Solution
You can override the NULL substitution string with the --null-string and --null-non-
string parameters to any arbitrary value. For example, use the following command to
override it to \N:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--null-string '\\N' \
--null-non-string '\\N'

Discussion
Almost all relational databases allow you to define columns as optional, allowing the
columns to be associated with no value. This missing information is usually referred
to as the NULL value. For example, a BOOL column generally contains only two
distinct values: true and false. Additionally, the column can contain the value NULL
if during table creation you’ve explicitly allowed that column to be optional.
Databases usually store the NULL value as an extra bit in addition to the column’s
usual data. With Sqoop supporting the import of data to formats that don’t natively
support the NULL value (e.g., CSV file), there is a need to encode the missing value
into the data itself. By default, Sqoop uses the string constant null (lowercased) for
representing the missing value. This default constant might not suit your needs if
your data can contain the same string constant as a regular value or if your
downstream processing is expecting a different substitution string constant.

To allow easier integration with additional Hadoop ecosystem components, Sqoop
dis‐ tinguishes between two different cases when dealing with missing values. For
text-based columns that are defined with type VARCHAR, CHAR, NCHAR, TEXT,
and a few others, you can override the default substitution string using the parameter
--null-string. For all other column types, you can override the substitution string with
the --null-non-string parameter. Some of the connectors might not support different
substitution strings for different column types and thus might require you to specify
the same value in both parameters.

2.10. Encoding NULL Values | 21

www.it-ebooks.info

http://www.it-ebooks.info/

Internally, the values specified in the --null(-non)-string parameters are encoded as a
string constant in the generated Java code. You can take advantage of this by
specifying any arbitrary string using octal representation without worrying about
proper encod‐ ing. An unfortunate side effect requires you to properly escape the
string on the com‐ mand line so that it can be used as a valid Java string constant.

If you want to use \N to encode missing values, then you need to
specify \\N on the command line; \ is a special escape string character
in Java that will be interpreted by the compiler.
Your shell will try to unescape the parameters for you, so you need to
enclose those parameters in single quotes ('). Using double quotes (")
will cause your shell to interpret the escape characters, changing the
parameters before passing them to Sqoop.

See Also
The export tool uses different parameters for overriding NULL values; they are
further described in Recipe 5.8.

2.11. Importing All Your Tables
Problem
You would like to import all tables from your database at once using one command
rather than importing the tables one by one.

Solution
Rather than using the import tool for one table, you can use the import-all-tables tool.
For example, to import all tables from our example database, you would use the
following Sqoop command:

sqoop import-all-tables \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop

Discussion
When using the import-all-tables tool, Sqoop will use catalog queries to retrieve a list of
all tables in your database. Subsequently for each table, Sqoop will internally call the
import tool to import your data to Hadoop. Tables will be imported in sequential order to
avoid any unnecessary burden on the database server that would be created by

22 | Chapter 2: Importing Data

www.it-ebooks.info

http://www.it-ebooks.info/

importing several tables at the same time. With this one command, Sqoop will import
the entire content of a given database to Hadoop.

If you need to import all but a few tables, you can use the parameter --exclude-tables
that accepts a comma-separated list of table names that should be excluded from the
bulk import. For example, if you need to import all tables from the database except
cities and countries, you would use the following command:

sqoop import-all-tables \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--exclude-tables cities,countries

Importing all tables will internally call the usual import tool for transferring each table.
You’ll find that many of the import parameters can’t be used in conjunction with the
import-all-tables tool.

For example, you can’t use the parameter --target-dir, as that would instruct Sqoop to
import all tables into the same directory, resulting in a total file mess on HDFS.
Using the --warehouse-dir parameter is fine, as this parameter can be easily used for
all imported tables. You can take advantage of the parameter --exclude-tables to
skip importing tables that need special parameters; you can then import them
separately using the import tool, which allows you to specify additional parameters.

2.11. Importing All Your Tables | 23

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3
Incremental Import

So far we’ve covered use cases where you had to transfer an entire table’s contents
from the database into Hadoop as a one-time operation. What if you need to keep the
im‐ ported data on Hadoop in sync with the source table on the relational database
side? While you could obtain a fresh copy every day by reimporting all data, that
would not be optimal. The amount of time needed to import the data would increase
in proportion to the amount of additional data appended to the table daily. This
would put an un‐ necessary performance burden on your database. Why reimport
data that has already been imported? For transferring deltas of data, Sqoop offers the
ability to do incremental imports.

Examples in this chapter use the table visits, which can be created by the script
mysql.tables.sql described in Chapter 2.

3.1. Importing Only New Data
Problem
You have a database table with an INTEGER primary key. You are only appending new
rows, and you need to periodically sync the table’s state to Hadoop for further processing.

Solution
Activate Sqoop’s incremental feature by specifying the --incremental parameter. The
parameter’s value will be the type of incremental import. When your table is only
getting new rows and the existing ones are not changed, use the append mode.
Incremental import also requires two additional parameters: --check-column
indicates a column name that should be checked for newly appended data, and --last-
value contains the last value that successfully imported into Hadoop.

25

www.it-ebooks.info

http://www.it-ebooks.info/

The following example will transfer only those rows whose value in column id is
greater than 1:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table visits \
--incremental append \
--check-column id \
--last-value 1

Discussion
Incremental import in append mode will allow you to transfer only the newly created
rows. This saves a considerable amount of resources compared with doing a full import
every time you need the data to be in sync. One downside is the need to know the value
of the last imported row so that next time Sqoop can start off where it ended. Sqoop,
when running in incremental mode, always prints out the value of the last imported row.
This allows you to easily pick up where you left off. The following is sample output
printed out when doing incremental import in append mode:

13/03/18 08:16:36 INFO tool.ImportTool: Incremental import complete! ...
13/03/18 08:16:36 INFO tool.ImportTool: --incremental append
13/03/18 08:16:36 INFO tool.ImportTool: --check-column id
13/03/18 08:16:36 INFO tool.ImportTool: --last-value 2

Any changed rows that were already imported from previous runs
won’t be transmitted again. This method is meant for tables that are
not updating rows.

3.2. Incrementally Importing Mutable Data
Problem
While you would like to use the incremental import feature, the data in your table is
also being updated, ruling out use of the append mode.

Solution
Use the lastmodified mode instead of the append mode. For example, use the following
command to transfer rows whose value in column last_update_date is greater than
2013-05-22 01:01:01:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \ --
username sqoop \

26 | Chapter 3: Incremental Import

www.it-ebooks.info

http://www.it-ebooks.info/

--password sqoop \
--table visits \
--incremental lastmodified \
--check-column last_update_date \
--last-value "2013-05-22 01:01:01"

Discussion
The incremental mode lastmodified requires a column holding a date value (suitable
types are date, time, datetime, and timestamp) containing information as to when each
row was last updated. Sqoop will import only those rows that were updated after the last
import. This column should be populated to the current time on every new row insertion
or on a change to an existing row. This ensures that Sqoop can pick up changed rows
accurately. Sqoop knows only what you tell it. The onus is on your application to reliably
update this column on every row change. Any row that does not have a modified column,
as specified in the --check-column parameter, won’t be imported.

Internally, the lastmodified incremental import consists of two standalone
MapReduce jobs. The first job will import the delta of changed data similarly to
normal import. This import job will save data in a temporary directory on HDFS. The
second job will take both the old and new data and will merge them together into the
final output, preserving only the last updated value for each row.
As in the case of the append type, all you need to do for subsequent incremental
imports is update the value of the --last-value parameter. For convenience, it is
printed out by Sqoop on every incremental import execution.

13/03/18 08:16:36 INFO tool.ImportTool: Incremental import complete! ...
13/03/18 08:16:36 INFO tool.ImportTool: --incremental lastmodified
13/03/18 08:16:36 INFO tool.ImportTool: --check-column update_date
13/03/18 08:16:36 INFO tool.ImportTool: --last-value '1987-05-22 02:02:02'

3.3. Preserving the Last Imported Value
Problem
Incremental import is a great feature that you’re using a lot. Shouldering the
responsi‐ bility for remembering the last imported value is getting to be a hassle.

Solution
You can take advantage of the built-in Sqoop metastore that allows you to save all
pa‐ rameters for later reuse. You can create a simple incremental import job with the
fol‐ lowing command:

sqoop job \
--create visits \

3.3. Preserving the Last Imported Value | 27

www.it-ebooks.info

http://www.it-ebooks.info/

-- \
import \
--connect jdbc:mysql://mysql.example.com/sqoop \ --
username sqoop \
--password sqoop \ --
table visits \ --
incremental append \ --
check-column id \ --last-
value 0

And start it with the --exec parameter:

sqoop job --exec visits

Discussion
The Sqoop metastore is a powerful part of Sqoop that allows you to retain your job
definitions and to easily run them anytime. Each saved job has a logical name that is
used for referencing. You can list all retained jobs using the --list parameter:

sqoop job --list

You can remove the old job definitions that are no longer needed with the --delete
parameter, for example:

sqoop job --delete visits

And finally, you can also view content of the saved job definitions using the --show
parameter, for example:

sqoop job --show visits

Output of the --show command will be in the form of properties. Unfortunately,
Sqoop currently can’t rebuild the command line that you used to create the saved job.
The most important benefit of the built-in Sqoop metastore is in conjunction with
incremental import. Sqoop will automatically serialize the last imported value back
into the metastore after each successful incremental job. This way, users do not need
to remember the last imported value after each execution; everything is handled auto‐
matically.

3.4. Storing Passwords in the Metastore
Problem
You like the built-in Sqoop metastore for its ability to store jobs and the option to
elegantly run them at your convenience. As a next step, you would like to automate
the process and start the jobs automatically. Unfortunately, each execution requires
you to enter a password, which is not easily automated by a script.

28 | Chapter 3: Incremental Import

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Sqoop offers two ways to run jobs from within the metastore without requiring any user
input. The first and more secure method is by using the parameter --password-file to pass
in the file containing the password. The second, less secure method is to set the
property sqoop.metastore.client.record.password in the sqoop-site.xml to true:

<configuration>
...

<property>
<name>sqoop.metastore.client.record.password</name>
<value>true</value>

</property>
</configuration>

Discussion
Both available methods have their advantages and disadvantages. While using the
pass‐ word file is considered safer, in order to secure it, you need to restrict access to
the password file. The Sqoop job will be executed with the permissions of the user
running the --exec operation rather than the user who created the saved job. You
might need to share the file between the two users.
The second method of storing the password inside the metastore is less secure. The
metastore is unencrypted, and thus anyone can easily retrieve your saved password.
This method might be feasible if you have a dedicated machine with very restricted
user access.

3.5. Overriding the Arguments to a Saved Job

Problem
You have a saved job that has been running fine. Recently it has become slower than
usual. You would like to get more details about the execution by adding the --
verbose parameter.

Solution
You can add or override any parameters of the saved job when executing it. All you
need to do is add an extra -- after the --exec command, followed by any additional
param‐ eters you would like to add. For example, use the following command to add
the --verbose parameter to the saved job visits:

sqoop job --exec visits -- --verbose

3.5. Overriding the Arguments to a Saved Job| 29

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Saved jobs can be customized at execution time. This functionality is not limited to
adding new parameters like --verbose (used to get more insight into what the job is
doing). You can override any arbitrary parameter to check how the job with the new
settings will behave without modifying the saved job itself.
Another handy use case is to temporarily change the destination in HDFS or in the
Hive table if you need an extra import of data to do some unscheduled investigation
or analysis.

You need to be careful about changing the parameters of saved incre‐
mental jobs. Sqoop will always retain the value of the last imported
row into the metastore regardless of whether you are customizing the
execution or not. Using the saved job to just temporarily dump the
data somewhere else might lead to data loss in the main destination.

3.6. Sharing the Metastore Between Sqoop Clients

Problem
You’ve started using Sqoop’s built-in metastore, and it’s performing fine on your
com‐ puter. As a next step you would like to run the metastore as a service, shared by
clients on multiple physical machines.

Solution
Sqoop’s metastore can easily be started as a service with the following command:

sqoop metastore

Other clients can connect to this metastore by specifying the parameter --meta-
connect in the command line with the URL of this machine. For example, to create a
new saved job in the remote metastore running on the host mestastore.example.com,
you can execute the following command:

sqoop job
--create visits \
--meta-connect jdbc:hsqldb:hsql://metastore.example.com:16000/sqoop \
-- \
import \
--table visits
...

30 | Chapter 3: Incremental Import

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Running the metastore as a service will start the embedded HSQLDB database that
will be exposed to the rest of your cluster. The default port is 16000, and you can
configure it in the sqoop-site.xml file with the sqoop.metastore.server.port
configuration property.

In order to reuse the shared metastore, you can either use the parameter --meta-
connect on every Sqoop execution or save the value into the sqoop-site.xml config‐
uration file in the property sqoop.metastore.client.autoconnect.url:

<configuration>
...

<property>
<name>sqoop.metastore.client.autoconnect.url</name>
<value>jdbc:hsqldb:hsql://your-metastore:16000/sqoop</value>

</property>
</configuration>

3.6. Sharing the Metastore Between Sqoop Clients | 31

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Free-Form Query Import

The previous chapters covered the use cases where you had an input table on the source
database system and you needed to transfer the table as a whole or one part at a time into
the Hadoop ecosystem. This chapter, on the other hand, will focus on more ad‐ vanced
use cases where you need to import data from more than one table or where you need to
customize the transferred data by calling various database functions.

For this chapter we’ve slightly altered the test table cities (see Table 4-1),
normalizing the country name to a standalone table called countries (see Table 4-2).
The normalized variant of the table cities is called normcities and will be created and
populated automatically via the script mysql.tables.sql as described in Chapter 2.
Table 4-1. Normalized cities

id country_id city
1 1 Palo Alto
2 2 Brno
3 1 Sunnyvale

Table 4-2. Countries

country_id country

1 USA
2 Czech Republic

33

www.it-ebooks.info

http://www.it-ebooks.info/

4.1. Importing Data from Two Tables
Problem
You need to import one main table; however, this table is normalized. The important
values are stored in the referenced dictionary tables, and the main table contains only
numeric foreign keys pointing to the values in the dictionaries rather than to natural
keys as in the original cities table. You would prefer to resolve the values prior to
running Sqoop and import the real values rather than the numerical keys for the
countries.

Solution
Instead of using table import, use free-form query import. In this mode, Sqoop will
allow you to specify any query for importing data. Instead of the parameter --table,
use the parameter --query with the entire query for obtaining the data you would like
to transfer.

Let’s look at an example with the normalized table normcities and its dictionary
coun tries. In order to achieve the same output as with importing the denormalized
table cities, you could use the following Sqoop command:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--query 'SELECT normcities.id, \

countries.country, \
normcities.city \
FROM normcities \
JOIN countries USING(country_id) \
WHERE $CONDITIONS' \

--split-by id \
--target-dir cities

Discussion
The free-form query import is one of the advanced features of Sqoop. As with all ad‐
vanced software features, it gives you great power. With great power comes
significant responsibility.

There is a lot to be aware of when using free-form query imports. By using query im‐
ports, Sqoop can’t use the database catalog to fetch the metadata. This is one of the
reasons why using table import might be faster than the equivalent free-form query
import. Also, you have to manually specify some additional parameters that would
otherwise be populated automatically. In addition to the --query parameter, you need

34 | Chapter 4: Free-Form Query Import

www.it-ebooks.info

http://www.it-ebooks.info/

to specify the --split-by parameter with the column that should be used for slicing
your data into multiple parallel tasks. This parameter usually automatically defaults
to the primary key of the main table. The third required parameter is --target-dir,
which specifies the directory on HDFS where your data should be stored.

The free-form query import can’t be used in conjunction with the \--
warehouse-dir parameter.

Sqoop performs highly efficient data transfers by inheriting Hadoop’s parallelism. To
help Sqoop split your query into multiple chunks that can be transferred in parallel, you
need to include the $CONDITIONS placeholder in the where clause of your query.
Sqoop will automatically substitute this placeholder with the generated conditions
specifying which slice of data should be transferred by each individual task. While you
could skip $CONDITIONS by forcing Sqoop to run only one job using the --num-
mappers 1 param‐ eter, such a limitation would have a severe performance impact.
Sqoop will concurrently run several instances of your query at the same time for
different slices of data. With one straightforward join, this won’t be an issue, but it
can be an issue for more complex queries.

If your query needs more than a few seconds in order to start send‐
ing data, it might not be suitable for the free-form query import. If this
is the case, you can always run the expensive query once prior to
Sqoop import and save its output in a temporary table. Then you can
use table import to transfer the data into Hadoop.

4.2. Using Custom Boundary Queries
Problem
You found free-form query import to be very useful for your use case. Unfortunately,
prior to starting any data transfer in MapReduce, Sqoop takes a long time to retrieve
the minimum and maximum values of the column specified in the --split-by param‐
eter that are needed for breaking the data into multiple independent tasks.

Solution
You can specify any valid query to fetch minimum and maximum values of the --
split-by column using the --boundary-query parameter:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \

4.2. Using Custom Boundary Queries| 35

www.it-ebooks.info

http://www.it-ebooks.info/

--username sqoop \
--password sqoop \
--query 'SELECT normcities.id, \

countries.country, \
normcities.city \
FROM normcities \
JOIN countries USING(country_id) \
WHERE $CONDITIONS' \

--split-by id \
--target-dir cities \
--boundary-query "select min(id), max(id) from normcities"

Discussion
In order to partition data into multiple independent slices that will be transferred in a
parallel manner, Sqoop needs to find the minimum and maximum value of the
column specified in the --split-by parameter. In a table-based import, Sqoop uses the
table’s primary key by default and generates the query select min(col), max(col)
from tbl (for table tbl and split column col). In the case of the free-form query import,
there is no table that Sqoop can use for fetching those values; instead, it will use the
entire query specified on the command line as a subquery in place of the table name,
resulting in a query select min(col), max(col) from ($YOUR_QUERY). Such a
query is highly inefficient, as it requires materialization of the output result set prior
to moving any data just for the purpose of getting the import boundaries.
Without understanding your query and the underlying data, there aren’t many opti‐
mizations that Sqoop can automatically apply. Sqoop does offer the parameter --
boundary-query, with which a custom query can override the generated query. The
only requirement for this query is to return exactly one row with exactly two columns.
The first column will be considered the lower bound, while the second column will
be the upper bound. Both values are inclusive and will be imported. The type of both
columns must be the same as the type of the column used in the --split-by parameter.
Knowing your data and the purpose of your query allows you to easily identify the
main table, if there is one, and select the boundaries from this table without any
additional join or data transformations.
The query used for fetching boundaries can indeed be arbitrary. Let’s walk through a few
examples. If you happen to know the boundaries prior to running Sqoop, you can select
them directly without opening a single table using a constant boundary query like
SELECT 1, 500. If you’re storing the minimum and maximum values in different tables
for accounting purposes, you can fetch the data from there as well. There is no
requirement to reference any table used in the --query parameter inside the --boundary-
query parameter. As the output of the boundary query serves as the basis for importing
data, it is imperative that the return value not skew the import process.

36 | Chapter 4: Free-Form Query Import

www.it-ebooks.info

http://www.it-ebooks.info/

4.3. Renaming Sqoop Job Instances
Problem
You run several concurrent free-form query imports from various databases at the
same time on your Hadoop cluster. All MapReduce jobs are named QueryResult.jar,
so it’s very hard to see which MapReduce job belongs to which imported query.

Solution
You can use the command-line parameter --mapreduce-job-name to specify the name of
the generated MapReduce job. This name will then show up in the JobTracker web UI.
To name your job normcities, you would use the following command:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--query 'SELECT normcities.id, \

countries.country, \
normcities.city \
FROM normcities \
JOIN countries USING(country_id) \
WHERE $CONDITIONS' \

--split-by id \
--target-dir cities \
--mapreduce-job-name normcities

Discussion
Sqoop follows the default behavior of Hadoop in using the submitted JAR name for the
MapReduce job name. In a table import, the JAR is named after the table name, resulting
in unique JAR and therefore also MapReduce job names. In the free-form query import
case, with no single table involved, Sqoop will use QueryResult as the base name for the
JAR. All query imports will look exactly the same on the JobTracker web UI. You can
use the --mapreduce-job-name parameter to choose a name for your job.

4.4. Importing Queries with Duplicated Columns

Problem
You have more than one table that you’re joining in your free-form query. Your
Sqoop import is failing with an error message about duplicate columns, similar to the
following one:

Imported Failed: Duplicate Column identifier specified: 'id'

4.3. Renaming Sqoop Job Instances | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
You might need to use SQL projection to rename columns in the query so that each
column in the output result set has a unique name. You can do that using the AS
syntax. For example, to import city names from the tables cities and normcities, you
can use the following query:

--query "SELECT \
cities.city AS first_city \
normcities.city AS second_city \

FROM cities \
LEFT JOIN normcities USING(id)"

Discussion
During initial preparation and before submitting the MapReduce job, Sqoop performs
several actions. One such action is to fetch metadata about the transferred columns and
their associated types. During this step, Sqoop will generate a Java class that contains one
attribute for each column that will be named as the column itself. Java attributes must be
unique; therefore, all columns in your query must have unique names.

While databases generally enforce unique column names in tables, it is a likely
scenario that during a join operation two columns from different tables will have the
same name. The output result set then contains two columns with the same name.
This is especially problematic if your query selects all columns from all join tables
using fragments like select table1.*, table2.*. In this case, you must break the
general statement down, name each column separately, and use the AS clause to
rename the duplicate columns so that the query will not have duplicate names.

38 | Chapter 4: Free-Form Query Import

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5
Export

The previous three chapters had one thing in common: they described various use
cases of transferring data from a database server to the Hadoop ecosystem. What if
you have the opposite scenario and need to transfer generated, processed, or backed-
up data from Hadoop to your database? Sqoop also provides facilities for this use
case, and the fol‐ lowing recipes in this chapter will help you understand how to take
advantage of this feature.

5.1. Transferring Data from Hadoop
Problem
You have a workflow of various Hive and MapReduce jobs that are generating data
on a Hadoop cluster. You need to transfer this data to your relational database for
easy querying.

Solution
You can use Sqoop’s export feature that allows you to transfer data from the Hadoop
ecosystem to relational databases. For example, to export data from the export-dir
directory cities (the directory in HDFS that contains the source data) into table cities
(the table to populate in the database), you would use the following Sqoop command:

sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--export-dir cities

39

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Export works similarly to import, except export transfers data in the other direction.
Instead of transferring data from the relational database using SELECT queries, Sqoop
will transfer the data to the relational database using INSERT statements. Sqoop’s export
workflow matches the import case with slight differences. After you execute the Sqoop
command, Sqoop will connect to your database to fetch various metadata about your
table, including the list of all columns with their appropriate types. Using this metadata,
Sqoop will generate and compile the Java class. The generated class will be used in the
submitted MapReduce job that will export your data. Similar to the import mode, no data
is being transferred through the Sqoop client itself. All transfers are done in the
MapReduce job, with Sqoop overseeing the process from your machine.

Sqoop fetches the table’s metadata in the export: the destination table (specified with
the --table parameter) must exist prior to running Sqoop. The table does not have to
be empty, and you can even export new data from Hadoop to your database on an
iterative basis. The only requirement is that there not be any constraint violations
when performing the INSERT statements (for example, you can twice export the
same value for any primary or unique key).

5.2. Inserting Data in Batches
Problem
While Sqoop’s export feature fits your needs, it’s too slow. It seems that each row is
inserted in a separate insert statement. Is there a way to batch multiple insert
statements together?

Solution
Tailored for various databases and use cases, Sqoop offers multiple options for
inserting more than one row at a time.
First, you can enable JDBC batching using the --batch parameter:

sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--export-dir cities \
--batch

The second option is to use the property sqoop.export.records.per.statement to
specify the number of records that will be used in each insert statement:

40 | Chapter 5: Export

www.it-ebooks.info

http://www.it-ebooks.info/

sqoop export \
-Dsqoop.export.records.per.statement=10 \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--export-dir cities

Finally, you can set how many rows will be inserted per transaction with the
sqoop.export.statements.per.transaction property:

sqoop export \
-Dsqoop.export.statements.per.transaction=10 \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--export-dir cities

The default values can vary from connector to connector. Sqoop defaults to disabled
batching and to 100 for both sqoop.export.records.per.statement and
sqoop.export.statements.per.transaction properties.

Discussion
These methods all look at batching from different perspectives that you can combine
as you see fit. Let’s take a closer look at each of them.
The JDBC interface exposes an API for doing batches in a prepared statement with
multiple sets of values. With the --batch parameter, Sqoop can take advantage of this.
This API is present in all JDBC drivers because it is required by the JDBC interface.
The implementation may vary from database to database. Whereas some database
drivers use the ability to send multiple rows to remote databases inside one request to
achieve better performance, others might simply send each query separately. Some
drivers cause even worse performance when running in batch mode due to the extra
overhead in‐ troduced by serializing the row in internal caches before sending it row
by row to the database server.
The second method of batching multiple rows into the same query is by specifying
multiple rows inside one single insert statement. When setting the property
sqoop.export.records.per.statement to a value of two or more, Sqoop will create
the following query:

INSERT INTO table VALUES (...), (...), (...), ...;

As the query is completely generated by Sqoop, the JDBC driver doesn’t alter it, sending
it to the remote database as is. Unfortunately, not all databases support multiple rows in a
single insert statement. Common relational databases like MySQL, Oracle, and
PostgreSQL do support this, but some data warehouses might not. There is also one

5.2. Inserting Data in Batches | 41

www.it-ebooks.info

http://www.it-ebooks.info/

additional drawback that you need to keep in mind when using large numbers of
rows inserted with a single insert statement: most databases have limits on the
maximum query size. The Sqoop export will fail if the remote database server does
not accept the generated query.
The third batching mechanism does not try to achieve better performance by putting
multiple rows together as the previous two options did. The value specified in
sqoop.ex port.statements.per.transaction determines how many insert statements
will be issued on the database prior to committing the transaction and starting a new
one. Higher values of this property lead to longer-lived transactions and remove the
overhead introduced by creating and finishing the transaction. Using higher values
usually helps to improve performance. However, the exact behavior depends on the
underlying da‐ tabase and its functionality. If your database requires a special table-
level write lock for inserting rows into a table, using a higher value for statements per
transaction might lead to significantly decreased performance.

As each method uses a different means for improving the export performance, you
can combine all of them together. Each database system and user environment is
different. There aren’t best practices that can be broadly applied across all use cases.
Our recom‐ mendation is to start with enabling --batch import and specify the
number of rows per statement to roughly equal the maximum allowed query size.
From that starting point, experiment with different values.

5.3. Exporting with All-or-Nothing Semantics
Problem
You need to ensure that Sqoop will either export all data from Hadoop to your
database or export no data (i.e., the target table will remain empty).

Solution
You can use a staging table to first load data to a temporary table before making
changes to the real table. The staging table name is specified via the --staging-table
parameter. In the below example, we set it to staging_cities:

sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--staging-table staging_cities

42 | Chapter 5: Export

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
When using a staging table, Sqoop will first export all data into this staging table instead
of the main table that is present in the parameter --table. Sqoop opens a new trans‐ action
to move data from the staging table to the final destination, if and only if all parallel tasks
successfully transfer data. On one hand, this approach guarantees all-or-nothing
semantics for the export operation, but it also exposes additional limitations on the
database side. As Sqoop will export data into the staging table and then move it to the
final table, there is a period of time where all your data is stored twice in the database
(one copy in the staging table and one in the final table). You must have suf‐ ficient free
space on your system to accommodate two copies in order to use this method. As the data
is first loaded somewhere else and then moved to the final table, using a staging table will
always be slower than exporting directly to the final table.

Sqoop requires that the structure of the staging table be the same as that of the target
table. The number of columns and their types must be the same; otherwise, the export
operation will fail. Other characteristics are not enforced, as Sqoop gives the user the
ability to take advantage of advanced database features. You can store the staging
table in a different logical database (on the same physical box) or in a different file
group. Some extended attributes do not make a difference to Sqoop: your target table
might be partitioned whereas the staging table might not, or both tables might use
different storage engines.

Ultimately, it’s the user’s responsibility to make sure the data export
is valid when the tables are not defined in exactly the same way.

The staging table is not automatically created by Sqoop and must exist prior to starting
the export process. In addition, it needs to be empty in order to end up with consistent
data. You can specify the parameter --clear-staging-table to instruct Sqoop to au‐
tomatically clean the staging table for you. If supported by the database, Sqoop will use a
TRUNCATE operation to clean up the staging table as quickly as possible.

5.4. Updating an Existing Data Set
Problem
You previously exported data from Hadoop, after which you ran additional
processing that changed it. Instead of wiping out the existing data from the database,
you prefer to just update any changed rows.

5.4. Updating an Existing Data Set | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
You can take advantage of the update feature that will issue UPDATE instead of
INSERT statements. The update mode is activated by using the parameter --update-
key that contains the name of a column that can identify a changed row—usually the
primary key of a table. For example, the following command allows you to use the
column id of table cities:

sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--update-key id

Discussion
The parameter --update-key is used to instruct Sqoop to update existing rows rather than
insert new ones. This parameter requires a comma-separated list of columns that should
be used to uniquely identify a row. All of those columns will be used in the WHERE
clause of the generated UPDATE query. All other table columns will be used in the SET
part of the query. For example, for a table containing four columns (c1, c2, c3, and c4),
calling Sqoop with the --update-key c2,c4 will generate the following update query:

UPDATE table SET c1 = ?, c3 = ?WHERE c2 = ? and c3 = ?

It’s very important to understand the structure of the query to see how the update mode
will export data from Hadoop. First of all, the columns used to identify the row will never
be updated because they are not part of the SET clause. Also, if your data in Hadoop
contains some completely new rows, the WHERE clause will not match any rows on the
database side. Such an operation on the database side is fully valid, but it results in no
updated rows. Therefore, new rows are not exported in update mode at all.

5.5. Updating or Inserting at the Same Time
Problem
You have data in your database from a previous export, but now you need to
propagate updates from Hadoop. Unfortunately, you can’t use the update mode, as
you have a considerable number of new rows and you need to export them as well.

Solution
If you need both updates and inserts in the same job, you can activate the so-called
upsert mode with the --update-mode allowinsert parameter. For example:

44 | Chapter 5: Export

www.it-ebooks.info

http://www.it-ebooks.info/

sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--update-key id \
--update-mode allowinsert

Discussion
The ability to conditionally insert a new row or update an existing one is an advanced
database feature known as upsert. This feature is not available on all database
systems nor supported by all Sqoop connectors. Currently it’s available only for
Oracle and non-direct MySQL exports.
Each database implements the upsert feature a bit differently. With Oracle, Sqoop uses a
MERGE statement that specifies an entire condition for distinguishing whether an insert
or update operation should be performed. With MySQL, Sqoop uses an ON
DUPLICATE KEY UPDATE clause that does not accept any user-specified conditions; it
decides whether to update or insert based on the table’s unique key.

The upsert feature will never delete any rows: this update method won’t work as ex‐
pected if you’re trying to sync data in your database with arbitrarily altered data from
Hadoop. If you need to perform a full sync including inserts, updates, and deletes,
you should export the entire data set using normal export without any update features
en‐ abled. This of course requires an empty output table, so you must truncate it prior
to running the export. If you can’t do that as your applications are actively using the
table, you can temporarily export the data to a different table and then swap the two
tables once the Sqoop export is successful.

See Also
MySQL’s behavior with upsert mode is further described in Recipe 7.6.

5.6. Using Stored Procedures
Problem
Your database already has a workflow for ingesting new data that heavily uses stored
procedures instead of direct INSERT statements.

Solution
You can switch from INSERT statements to stored procedures very easily. Instead of
using the --table parameter to specify the target table, use the --call parameter followed

5.6. Using Stored Procedures | 45

www.it-ebooks.info

http://www.it-ebooks.info/

by the name of the stored procedure that should be called. In the example below, we
use the stored procedure named populate_cities:

sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--call populate_cities

Discussion
Using a stored procedure in Sqoop export is very straightforward. Instead of issuing
an INSERT statement, Sqoop will call your stored procedure with the value for each
column of the input data as a separate parameter. For example, when exporting into
MySQL, Sqoop uses the following query:

CALL populate_cities(?, ?, ?)

There are a couple of gotchas that you should keep in mind when using stored proce‐
dures for export. Sqoop is a specialized bulk transfer tool that will run several
concurrent export tasks, all calling stored procedures in a parallel manner. Sqoop
does not impose any limitation on the stored procedure complexity. Complex
procedures may induce heavy load on the database server, negatively affecting its
performance. You are advised to use this feature with a very simple stored procedure
or rather prepare the data on the Hadoop side properly so that it can be inserted
directly into the final tables, bypassing the advanced logic in the stored procedure.

5.7. Exporting into a Subset of Columns
Problem
You have data in Hadoop that you need to export. Unfortunately, the corresponding
table in your database has more columns than the HDFS data.

Solution
You can use the --columns parameter to specify which columns (and in what order)
are present in the Hadoop data. For example, to limit the export to columns country
and city, use the following command:

sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--columns country,city

46 | Chapter 5: Export

www.it-ebooks.info

http://www.it-ebooks.info/

Note the absence of whitespace with the --columns parameter.

Discussion
By default, Sqoop assumes that your HDFS data contains the same number and
ordering of columns as the table you’re exporting into. The parameter --columns is
used to specify either a reordering of columns or that only a subset of table columns
is available in the input files. The parameter accepts a comma-separated list of
column names and can be particularly helpful if you’re exporting data to different
tables or your table has changed between the import and export operations.

There is a limitation to keep in mind when using the --columns parameter while ex‐
porting only to a subset of table columns. As Sqoop uses INSERT statements to
transfer data from Hadoop, the database must allow inserting new rows with only
specified columns.

Columns that are not being exported must either allow NULL values
or contain a default value that your DB engine could use.

5.8. Encoding the NULL Value Differently
Problem
Your Hadoop processing uses custom string constants to encode missing values, and
you need Sqoop to properly use them rather than insisting on the default null.

Solution
You can override the NULL substitution characters by setting the --input-null-string
and --input-null-non-string parameters to any value. For example, use the following
command to override it to \N:

sqoop export \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--input-null-string '\\N' \
--input-null-non-string '\\N'

5.8. Encoding the NULL Value Differently | 47

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Similar to import mode, Sqoop in export mode allows you to override the default
string constant used for encoding missing values in the database, the so-called NULL
value. Sqoop has different parameters for specifying the substitution string for import
and export.

The export variants of parameters always start with the word input,
whereas the import parameters do not.

Specifically for text-based columns, defined as VARCHAR, CHAR, NCHAR, TEXT,
and a few others, you can use the parameter --input-null-string. Independent of this
param‐ eter, for all other column data types you can use the --input-null-non-string
pa‐ rameter. Some of the connectors might not support different substitution strings
for different column types and so might require you to specify the same value for
both parameters.

If, in your workflow, your data is first imported to Hadoop and sub‐
sequently exported back, it’s important to keep the parameters of the
import and associated export job in sync; otherwise, you might end up
with failing jobs or even corrupted data. This is especially the case
when you’re using Sqoop to integrate with a downstream system like
Hive that uses different NULL substitution constants.

See Also
Details about NULL substitution characters are described in Recipe 2.10.

5.9. Exporting Corrupted Data
Problem
The input data is not clean. Sqoop fails on the export command with the following
exception:

java.io.IOException: Can't export data, please check task tracker logs

48 | Chapter 5: Export

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Check your map task logs to see what is happening. You can view them by opening
the JobTracker (or ResourceManager if you’re using YARN) web interface and then
search‐ ing for your Sqoop job.

Discussion
Sqoop export will fail if your data is not in the format that Sqoop expects. If some of
your rows have fewer or more columns than expected, you might see that exception.
To help you triage the corrupted row, Sqoop will print out very detailed information
about the incident into the task log, for example:

java.lang.NumberFormatException: For input string: "A"
...
TextExportMapper: On input: A,Czech Republic,Koprivnice
TextExportMapper: On input file: /user/root/corrupted_cities/input.corrupted
TextExportMapper: At position 0
TextExportMapper:
TextExportMapper: Currently processing split:
TextExportMapper: Paths:/user/root/corrupted_cities/input.corrupted:0+1
TextExportMapper:

The example shows a corrupted file when we artificially changed the first column of
the table cities from an integer constant to the letter A. Sqoop has reported which
excep‐ tion was thrown, in which input file it happened, where exactly in the file it
occurred, and finally the entire row that it is currently processing. Unfortunately,
Sqoop currently does not offer the ability to skip corrupted rows, so you must fix
them prior to running the export job.

5.9. Exporting Corrupted Data | 49

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Hadoop Ecosystem Integration

The previous chapters described the various use cases where Sqoop enables highly
ef‐ ficient data transfers between Hadoop and relational databases. This chapter will
focus on integrating Sqoop with the rest of the Hadoop ecosystem: we will show you
how to run Sqoop from within a specialized Hadoop scheduler named Oozie and how
to load your data into Hadoop’s data warehouse system, Apache Hive, and Hadoop’s
database, Apache HBase.

6.1. Scheduling Sqoop Jobs with Oozie
Problem
You are using Oozie in your environment to schedule Hadoop jobs and would like to
call Sqoop from within your existing workflows.

Solution
Oozie includes special Sqoop actions that you can use to call Sqoop in your workflow.
For example:

<workflow-app name="sqoop-workflow" xmlns="uri:oozie:workflow:0.1">
...
<action name="sqoop-action">

<sqoop xmlns="uri:oozie:sqoop-action:0.2">
<job-tracker>foo:8021</job-tracker>
<name-node>bar:8020</name-node>
<command>import --table cities --connect ...</command>

</sqoop>
<ok to="next"/>
<error to="error"/>

</action>

51

www.it-ebooks.info

http://www.it-ebooks.info/

...
</workflow-app>

Discussion
Starting from version 3.2.0, Oozie has built-in support for Sqoop. You can use the
special action type in the same way you would execute a MapReduce action. You
have two options for specifying Sqoop parameters. The first option is to use one tag,
<command>, to list all the parameters, for example:

<command>import --table cities --username sqoop --password sqoop ...</command>

In this case, Oozie will take the entire content of the <command> tag and split it by
spaces into a list of parameters. This list is then passed as is into Sqoop.

It’s important to note that Oozie will not do any escaping as in a shell environment. For
example, the fragment --table "my table" will be split into three separate parameters: --
table, "my, and table". This obviously won’t work if any of your parameters them‐ selves
contain spaces, so Oozie offers a second way of entering parameters. Instead of using one
<command> tag for the entire Sqoop command line, you can use multiple <arg> tags,
one for each parameter. The previous example written with <arg> would be:

<arg>import</arg>
<arg>--table</arg>
<arg>cities</arg>
<arg>--username</arg>
<arg>sqoop</arg>
<arg>--password</arg>
<arg>sqoop</arg>
...

The content of each <arg> tag is considered to be one parameter regardless of how many
spaces it contains; this is especially useful for entering queries as <arg>SELECT * FROM
cities</arg>, which is considered to be one single parameter. Having spaces inside of a
<command> tag might not be obvious, especially when you’re using variables to para‐
metrize your workflow. The preferred way to use Sqoop in Oozie is with <arg> tags.

6.2. Specifying Commands in Oozie
Problem
Your Sqoop command line works when directly executed from the command line.
You see warnings or exceptions when running from Oozie. Below are several
common exceptions:

Character parameter '|' has multiple characters; only the first will be used.
Got error creating database manager: java.io.IOException:

No manager for connect string: "jdbc:teradata..."

52 | Chapter 6: Hadoop Ecosystem Integration

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
You do not need to escape your parameters when using Oozie. All escape sequences
and the surrounding single and double quotes must be removed. Consider, for
example, the following Sqoop execution in a shell:

sqoop import --password "spEci@l\$" --connect 'jdbc:x:/yyy;db=sqoop'

Enter it in the following form in order to have the same behavior in Oozie:

<command>sqoop import --password spEci@l$ --connect jdbc:x:/yyy;db=sqoop pass:
[<phrase role='keep-together'></command></phrase>]

Discussion
This is due to the way Oozie executes Sqoop commands. Normally, when you enter your
Sqoop command in a shell like Bash, it will evaluate all the parameters and change them
prior to passing them to Sqoop. For example, if you need to use a semicolon (;) in your
parameter, you have to escape it in a shell using the backslash (forming \;). Your shell
will automatically transform that to a single semicolon prior to passing the parameter to
Sqoop. Similarly, you might need to enclose some of your parameters into single or
double quotes on the command line to enter parameters with spaces; the shell will remove
the enclosing quotes before passing the parameter to Sqoop.

Oozie, on the other hand, does not use a shell to execute Sqoop. It will directly pass
all the parameters as they are without any modifications. To get Sqoop to behave the
same way, you need to remove all the escaping that you’ve introduced on account of
the shell. One small exception is Oozie’s built-in expression language, which will
still be interpreted.

6.3. Using Property Parameters in Oozie
Problem
You are using Sqoop parameters entered with -D, for example -Dsqoop.export.state
ments.per.transaction=1. However, it seems that they are ignored when you use
them in Oozie.

Solution
You need to put property parameters entered with -D in the configuration section of
the Sqoop action, for example:

<workflow-app name="sqoop-workflow" xmlns="uri:oozie:workflow:0.1">
...
<action name="sqoop-action">

<sqoop xmlns="uri:oozie:sqoop-action:0.2">

6.3. Using Property Parameters in Oozie | 53

www.it-ebooks.info

http://www.it-ebooks.info/

<job-tracker>foo:8021</job-tracker>
<name-node>bar:8020</name-node>
<configuration>
<property>
<name>sqoop.export.statements.per.transaction</name>
<value>1</value>

</property>
</configuration>
<command>import --table cities --connect ...</command>

</sqoop>
<ok to="next"/>
<error to="error"/>

</action>
...

</workflow-app>

Discussion
Property parameters entered with -D are processed differently than the usual Sqoop
parameters. Whereas the normal command-line parameters are passed directly and
are fully processed by Sqoop, the property parameters are preprocessed before the
Sqoop execution and put into a Hadoop configuration object that Sqoop will load and
use. Since Oozie is not using the Sqoop shell script but directly calling the Sqoop
binaries, there is no preprocessing stage. The -D parameters are not loaded when they
are speci‐ fied inside the <command> or <arg> tags. Oozie has a very generic way
of altering the default configuration object using the <configuration> tag. You need
to put all -D parameters that you’re using into the configuration section in order to
properly prop‐ agate them into Sqoop.

6.4. Installing JDBC Drivers in Oozie
Problem
Sqoop works correctly when executed from the command line, but in Oozie it cannot
find the JDBC drivers.

Solution
You need to install the JDBC drivers into Oozie separately. You have two options:
install the driver either into your workflow’s lib/ directory or into the shared action
library location usually found at /user/oozie/share/lib/sqoop/.

Discussion
Due to licensing, Sqoop does not ship with any JDBC drivers. You have to manually
download the drivers from the applicable vendors’ websites and install them into Sqoop,

54 | Chapter 6: Hadoop Ecosystem Integration

www.it-ebooks.info

http://www.it-ebooks.info/

usually by copying the JAR files into the lib/ directory. Oozie doesn’t use your local
installation of Sqoop, even when it’s available on the same machine as the Oozie server.
It always uses the version available in its share libs, which is a special location on HDFS
where Oozie keeps libraries for special actions. This share lib path is customizable and
can be changed in the oozie.service.WorkflowAppService.system.libpath prop‐
erty. The default value is /user/${user.name}/share/lib, where ${user.name} will be
substituted with the user that is running the Oozie server.
You have two options for installing the additional JDBC drivers for Oozie. The first
and simpler method is to put them directly into the shared lib location in Sqoop’s
own subfolder (by default, /user/${user.name}/share/lib/sqoop). This directory is
shared across all Sqoop actions in all workflows, so you have to do it only once. The
second option requires you to install the JDBC driver JAR files separately into each
workflow’s lib/ directory. As this second method requires multiple copies of the same
files, it’s preferable to use the shared lib directory instead.

See Also
You can find details about where to retrieve JDBC drivers in Recipe 1.2.

6.5. Importing Data Directly into Hive
Problem
You would like Sqoop to import your data directly into Hive.

Solution
Sqoop supports importing into Hive. Add the parameter --hive-import to your com‐
mand to enable it:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--hive-import

Discussion
The biggest advantage of using Sqoop for populating tables in Hive is that it can auto‐
matically populate the metadata for you. If the table in Hive does not exist yet, Sqoop
will simply create it based on the metadata fetched for your table or query. If the table
already exists, Sqoop will import data into the existing table. If you’re creating a new
Hive table, Sqoop will convert the data types of each column from your source table to

6.5. Importing Data Directly into Hive | 55

www.it-ebooks.info

http://www.it-ebooks.info/

a type compatible with Hive. Usually this conversion is straightforward: for example, JDBC

types VARCHAR, CHAR, and other string-based types are all mapped to Hive STRING.

Sometimes the default mapping doesn’t work correctly for your needs; in those cases,
you can use the parameter --map-column-hive to override it. This parameter expects
a comma-separated list of key-value pairs separated by the equal sign (=) in order to
specify which column should be matched to which type in Hive. For example, if you
want to change the Hive type of column id to STRING and column price to
DECIMAL, you can specify the following Sqoop parameters:

sqoop import \
...
--hive-import \
--map-column-hive id=STRING,price=DECIMAL

During a Hive import, Sqoop will first do a normal HDFS import to a temporary loca‐
tion. After a successful import, Sqoop generates two queries: one for creating a table and
another one for loading the data from a temporary location. You can specify any
temporary location using either the --target-dir or --warehouse-dir parameter. It’s
important not to use Hive’s warehouse directory (usually /user/hive/warehouse) for the
temporary location, as it may cause issues with loading data in the second step.

If your table already exists and contains data, Sqoop will append to the newly
imported data. You can change this behavior by using the parameter --hive-overwrite,
which will instruct Sqoop to truncate an existing Hive table and load only the newly
imported one. This parameter is very helpful when you need to refresh Hive’s table
data on a periodic basis.

See Also
When you’re overriding Hive type, you might also need to override the Java mapping
described in Recipe 2.8.

6.6. Using Partitioned Hive Tables
Problem
You want to import data into Hive on a regular basis (for example, daily), and for
that purpose your Hive table is partitioned. You would like Sqoop to automatically
import data into the partition rather than only to the table.

Solution
Sqoop supports Hive partitioning out of the box. In order to take advantage of this
functionality, you need to specify two additional parameters: --hive-partition-key,

56 | Chapter 6: Hadoop Ecosystem Integration

www.it-ebooks.info

http://www.it-ebooks.info/

which contains the name of the partition column, and --hive-partition-value, which
specifies the desired value. For example, if your partition column is called day and
you want to import your data into the value 2013-05-22, you would use the
following command:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--hive-import \
--hive-partition-key day \
--hive-partition-value "2013-05-22"

Discussion
Sqoop mandates that the partition column be of type STRING. The current
implemen‐ tation is limited to a single partition level. Unfortunately, you can’t use
this feature if your table has more than one level of partitioning (e.g., if you would
like a partition by day followed by a partition by hour). This limitation will most
likely be removed in future Sqoop releases.
Hive’s partition support is implemented with virtual columns that are not part of the
data itself. Each partition operation must contain the name and value of the partition.
Sqoop can’t use your data to determine which partition this should go into. Instead
Sqoop relies on the user to specify the parameter --hive-partition-value with an
appropriate value.

Sqoop won’t accept a column name for this parameter.

6.7. Replacing Special Delimiters During Hive Import

Problem
You’ve imported the data directly into Hive using Sqoop’s --hive-import feature.
When you call SELECT count(*) FROM your_table query to see how many rows
are in the imported table, you get a larger number than is stored in the source table on
the relational database side.

6.7. Replacing Special Delimiters During Hive Import| 57

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
This issue is quite often seen when the data contains characters that are used as
Hive’s delimiters. You can instruct Sqoop to automatically clean your data using --
hive-drop-import-delims, which will remove all \n, \t, and \01 characters from all
string-based columns:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--hive-import \
--hive-drop-import-delims

If removing the special characters is not an option in your use case, you can take ad‐
vantage of the parameter --hive-delims-replacement, which will accept a replace‐
ment string. Instead of removing separators completely, they will be replaced with a
specified string. The following example will replace all \n, \t, and \01 characters with
the string SPECIAL:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--hive-import \
--hive-delims-replacement "SPECIAL"

Discussion
Sqoop will, by default, import data into comma-separated text files where each line
represents one row. However, if your data contains the new-line character (\n), such a
row will create two separate lines that will consequently be processed as two separate
rows by Hive. Consequently, Hive will show a higher row count than your source table.
Other default parameters like \t and \01 might also cause parsing issues; however, the
new-line character is the most common issue. You can instruct Sqoop to clean up your
data either with --hive-drop-import-delims or --hive-delims-replacement parameters.

Even though both parameters contain hive in their names, they are not restricted to
working in tandem with the --hive-import parameter. They can be used in any import
job using text files to ensure that the output files have one line per imported row.
Also, as they target the default delimiters, using them with custom delimiters is not
recom‐ mended, as they will always remove or substitute only the default delimiters.

58 | Chapter 6: Hadoop Ecosystem Integration

www.it-ebooks.info

http://www.it-ebooks.info/

6.8. Using the Correct NULL String in Hive
Problem
You’ve imported your data into Hive using Sqoop and now you’re trying to query it.
However, you can see that some columns contain the correct NULL value but some con‐
tain the string literal null and are not selected using the expression column IS NULL.

Solution
Due to differences in the default NULL substitution string between Sqoop and Hive,
you have to override the Sqoop default substitution strings to be compatible with
Hive. For example:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--hive-import \
--null-string '\\N' \
--null-non-string '\\N'

Discussion
Hive, by default, expects that the NULL value will be encoded using the string
constant \N. Sqoop, by default, encodes it using the string constant null. To rectify
the mismatch, you’ll need to override Sqoop’s default behavior with Hive’s.
This issue with different NULL substitution strings is very tricky to debug.
Depending on the way Hive parses data, it seems to be working sometimes and at
other times does not. When Hive is not able to parse certain columns, it will return
NULL instead of throwing an exception and failing the entire query execution. Let’s
investigate this a bit further with an example. Consider the following table:

CREATE TABLE tbl(id int, txt varchar(50));
INSERT INTO tbl VALUES (NULL, NULL);

The table tbl has two columns, one numeric and one text, with a row that has NULL
stored in both columns. Without any special parameters, Sqoop will import this table
as a file with a single row null,null.
When Hive reads this line, it will first separate each column using the comma as a
separator. Subsequently, it will start processing the value for each column. The first
column is of type int and contains the string constant null, which is not a valid number
value. Instead of throwing a parsing exception at this point, Hive will substitute NULL for
this cell. The second column is of type string and contains the string constant

6.8. Using the Correct NULL String in Hive |
59

www.it-ebooks.info

http://www.it-ebooks.info/

null, which is a fully valid string value. It’s returned as is without any conversion to
NULL. The result can be seen in the following example:

hive> SELECT * FROM tbl;
NULL null

Similarly, when you export data from Hive into your relational database, you should
use the parameters --input-null-string and --input-null-non-string and set both to
value \N. Table 6-1 contains a list of recommended parameters for NULL substitution
strings for both import and export:
Table 6-1. Recommended parameters for import and export

Import Export
--null-string '\\N' --input-null-string '\\N'

--null-non-string '\\N' --input-null-non-string '\\N'

See Also
Details about NULL substitution strings are described in Recipes 2.10 and 5.8.

6.9. Importing Data into HBase
Problem
Instead of importing data into an HDFS file or a Hive table, you would like to
transfer it into HBase, Hadoop’s real-time database.

Solution
Sqoop has out-of-the-box support for HBase. To enable import into HBase, you need
to supply two additional parameters: --hbase-table and --column-family. The pa‐
rameter --hbase-table specifies the name of the table in HBase to which you want to
import your data. The parameter --column-family specifies into which column family
Sqoop will import your table’s data. For example, you can import the table cities into
HBase with the same table name and use the column family name world:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--hbase-table cities \
--column-family world

60 | Chapter 6: Hadoop Ecosystem Integration

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
To insert data into HBase there are three mandatory parameters: the table name, a
column family name within the table, and the id of the row into which you are
inserting data. Sqoop uses one table and one column family per import job, so you
have to specify them using the --hbase-table and --column-family parameters on the
command line. Unlike importing into Hive, Sqoop does not use a default table name
when importing into HBase. Rather, you have to specify a valid table name with the -
-hbase-table parameter.
To identify each individual row in HBase, Sqoop defaults to the column name
specified in the --split-by parameter or the column that was automatically identified
to serve this purpose (usually the primary key of the table). You can override this
behavior using the --hbase-row-key parameter.
Each input row from your source table will be transformed into a single PUT
operation and inserted into HBase. Each column except the row key will be
converted into text and inserted as a cell value.

Both the HBase table and the column family must exist prior to run‐
ning the Sqoop import command. If you want Sqoop to create the
table automatically, you’ll need to specify the parameter --create-
hbase-table.

6.10. Importing All Rows into HBase
Problem
You’ve imported your table directly into HBase, but it seems that there are fewer
rows than in your source table.

Solution
You might need to enable inserting the row key into the value using the property
sqoop.hbase.add.row.key, for example:

sqoop import \
-Dsqoop.hbase.add.row.key=true \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--hbase-table cities \
--column-family world

6.10. Importing All Rows into HBase | 61

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
HBase does not allow the insertion of empty values: each cell needs to have at least
one byte. Sqoop serialization, however, skips all columns that contain a NULL value,
re‐ sulting in skipping rows containing NULL value in all columns. This explains
why Sqoop imports fewer rows than are available in your source table. The property
sqoop.hbase.add.row.key instructs Sqoop to insert the row key column twice, once
as a row identifier and then again in the data itself. Even if all other columns contain
NULL, at least the column used for the row key won’t be null, which will allow the
insertion of the row into HBase.

6.11. Improving Performance When Importing into HBase

Problem
Imports into HBase take significantly more time than importing as text files in HDFS.

Solution
Create your HBase table prior to running Sqoop import, and instruct HBase to create
more regions with the parameter NUMREGIONS. For example, you can create the
HBase table cities with the column family world and 20 regions using the following
command:

hbase> create 'cities', 'world', {NUMREGIONS => 20, SPLITALGO => 'HexString
Split'}

Discussion
By default, every new HBase table has only one region, which can be served by only
one Region Server. This means that every new table will be served by only one
physical node. Sqoop does parallel import of your data into HBase, but the parallel
tasks will bottleneck when inserting data into one single region. Eventually the
region will split up as it fills, allowing Sqoop to write to two servers, which does not
help significantly. Over time, enough region splitting will occur to help spread the
load across your entire HBase cluster. It will, however, be too late. Your Sqoop
import by then has already taken a significant performance hit. Our recommendation
is, prior to running the Sqoop im‐ port, create the HBase table with a sufficient
number of regions to spread the load across your entire HBase cluster.

62 | Chapter 6: Hadoop Ecosystem Integration

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7
Specialized Connectors

Due to its versatility, Sqoop transfers data from a variety of relational database
systems, such as Oracle, MySQL, PostgreSQL, and Microsoft SQL Server, as well as
from enter‐ prise data warehouses, such as Netezza and Teradata. While working
with these database systems, you may encounter issues specific to a system vendor.
This chapter guides you through common installation, connection, and syntax issues.

7.1. Overriding Imported boolean
Values in PostgreSQL Direct Import
Problem
PostgreSQL direct imports boolean values as TRUE or FALSE strings. If your
subsequent processing expects different values, you need to override those defaults.

Solution
Specify the extra parameters --boolean-true-string and --boolean-false-string to
override the default value to a different string. For example, to use 0 for false and 1
for true, you could use the following Sqoop command:

sqoop import \
--connect jdbc:postgresql://postgresql.example.com/database \
--username sqoop \
--password sqoop \
--direct \
--table table_with_booleans \
-- \
--boolean-true-string 1 \
--boolean-false-string 0

63

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
The PostgreSQL direct connector uses the COPY (SELECT QUERY) TO STDOUT clause
for retrieving data from your database that will by default use the string constants TRUE and
FALSE when importing data from Boolean and Bit columns. The PostgreSQL direct
connector only supports import and delegates the export to the nondirect JDBC con‐
nector. Therefore, both parameters, --boolean-true-string and --boolean-false-
string, are applicable only to import and will be ignored during export operation.

See Also
The reason for the extra -- between the Sqoop arguments and extra arguments is
explained in Recipe 1.4.

7.2. Importing a Table Stored in
Custom Schema in PostgreSQL
Problem
You are taking advantage of custom schemas in PostgreSQL and you need Sqoop to
import and export tables from there.

Solution
Use the extra parameter --schema for specifying a custom schema name. For
example, to import data from table cities stored in schema us you can use the
following command:

sqoop import \
--connect jdbc:postgresql://postgresql.example.com/database \
--username sqoop \
--password sqoop \
--table cities \
-- \
--schema us

Discussion
Sqoop does not have a notion of custom schemas, and so it supports only tables stored in
the default schema named public. You need to specify the parameter --schema with a
schema name if your table is stored in a different schema. Alternatively, you can include
your custom schema in the search_path for the user account that you’re using for Sqoop.
For example, to set the default search path to schemas public and us for user sqoop, you
would execute the following query to the PostgreSQL server:

64 | Chapter 7: Specialized Connectors

www.it-ebooks.info

http://www.it-ebooks.info/

ALTER USER sqoop SET search_path = public,us;

7.3. Exporting into PostgreSQL Using pg_bulkload

Problem
You are using the pg_bulkload utility to load data to your PostgreSQL server. Since
Sqoop utilizes mysqlimport for MySQL, can Sqoop also utilize pg_bulkload for
PostgreSQL?

Solution
Sqoop offers a specialized connector for PostgreSQL that takes advantage of the
pg_bulkload utility. You can use the following Sqoop command to make use of this
connector:

sqoop import \
--connect jdbc:postgresql://postgresql.example.com/database \
--username sqoop \
--password sqoop \
--connection-manager org.apache.sqoop.manager.PGBulkloadManager \
--table cities

Discussion
pg_bulkload is a third-party utility not distributed with PostgreSQL. You need to
man‐ ually download and install it. It allows a user to load data into a PostgreSQL
server at a high speed by bypassing the write-ahead log and shared buffers. Using the
pg_bulk load utility with Sqoop is very simple, as Sqoop has built-in support for it.

As with other direct connectors, you need to have the pg_bulkload utility available
on all nodes in your Hadoop cluster because Sqoop’s tasks can be executed on any
Task‐ Tracker node. You can specify the path to the utility with the pgbulkload.bin
property. For example, if you installed the utility in /usr/local/bin/pg_bulkload, you
can use the following Sqoop command:

sqoop import \
-Dpgbulkload.bin=/usr/local/bin/pg_bulkload \
--connect jdbc:postgresql://postgresql.example.com/database \
--username sqoop \
--password sqoop \
--connection-manager org.apache.sqoop.manager.PGBulkloadManager \
--table cities

See Also
More information about mysqlimport for MySQL is in Recipe 2.7.

7.3. Exporting into PostgreSQL Using pg_bulkload |
65

www.it-ebooks.info

http://www.it-ebooks.info/

7.4. Connecting to MySQL
Problem
While importing data from MySQL, Sqoop throws an exception about a
communication failure:

ERROR manager.SqlManager: Error executing statement:
com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link
failure

Solution
First, rule out connectivity and permission issues for the user to access the database
over the network. You may need to set the property interactiveClient=true in the
JDBC connection string or increase the value for the wait_timeout property on the
MySQL server side.

Discussion
Verify that you can connect to the database from the node where you are running
Sqoop by using the following command in your shell:

mysql --host=<IP Address> --database=test --user=<username> --
password=<password>

If this works, it rules out any problem with the client network configuration or
security/ authentication configuration. Please note that Sqoop will also require
database con‐ nectivity from all nodes in your Hadoop cluster.

The MySQL configuration option wait_timeout can cause connections to close when
they are idle for too long. As Sqoop is reusing the same connection on the client side,
you might experience communication failures if the value of wait_timeout property
is too low. One solution is to set the property interactiveClient=true in the JDBC
connection string, which uses an alternative timeout period. Another solution is to
increase the value for the wait_timeout property on the MySQL side.

7.5. Using Direct MySQL Import into Hive
Problem
You are using direct import from MySQL into Hive. You’ve noticed that the Hive
shell correctly displays NULL values as the string NULL; however, you are not able
to select those rows using the IS NULL condition in queries.

66 | Chapter 7: Specialized Connectors

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
You need to disable direct import and use the JDBC method by omitting the --direct
parameter, so that you can instruct Sqoop to use Hive-specific NULL substitution
strings. For example:

sqoop import \
--connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table cities \
--hive-import \
--null-string '\\N' \
--null-non-string '\\N'

Discussion
The MySQL direct connector uses a native utility called mysqldump to perform a highly
efficient data transfer between the MySQL server and Hadoop cluster. This utility un‐
fortunately does not support using custom NULL substitution strings and will always
import missing values as a string constant NULL. This is very confusing on the Hive side,
as the Hive shell will display the value as NULL as well. It won’t be perceived as a
missing value, but as a valid string constant. You need to turn off direct mode (by
omitting the --direct option) in order to override the default NULL substitution string.

See Also
More details about NULL values are available in Recipes 2.10 and 5.8.

7.6. Using the upsert Feature When Exporting into MySQL

Problem
You’ve modified data sets in Hadoop and you want to propagate those changes back to
your MySQL database. Your transformations both update existing rows and create new
ones. While using Sqoop’s upsert functionality in the --update-mode allowinsert
parameter, you notice that Sqoop doesn’t use any of the columns specified in --update-
key in order to determine whether to update an existing row or insert a new one.

Solution
You need to create a unique key on all columns that you are going to use with the --
update-key parameter. For example, to create a unique key on the column city of the
cities table, you would execute the following MySQL query:

ALTER TABLE cities ADD UNIQUE KEY (city);

7.6. Using the upsert Feature When Exporting into MySQL |
67

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
The MySQL database does not support the MERGE SQL operator as Oracle does.
Instead, MySQL provides the ON DUPLICATE KEY UPDATE clause that Sqoop uses
when exporting in upsert mode. The MERGE operator allows you to specify a condition
to determine whether an update or insert operation should be performed. MySQL’s clause
will always try to insert. Only if the insert fails because such an operation would violate a
unique key constraint does it update the existing row instead. Since MySQL does not
allow you to specify a condition, the table’s unique key is always used. Since Sqoop uses
the ON DUPLICATE KEY UPDATE clause, columns specified in the --update-key
parameter are not used for determining what operation should be performed. This is quite
confusing, as you always have to specify this parameter in order to enable update mode,
yet the columns are not used in upsert mode.

See Also
The functionality of upsert and its Sqoop implementation are further explained in
Recipe 5.5.

7.7. Importing from Oracle
Problem
Sqoop can’t find any columns when importing data from Oracle. For example, you
see the following exception:

java.lang.IllegalArgumentException: Attempted to generate class with no columns!

Solution
Make sure that both the table and the username are specified with the correct case.
Usually, specifying both the table and usernames in uppercase will resolve this issue.
In addition, if a different user created the transferred table, you will need to specify
this user in the --table parameter in the form user.table_name. For example, to
import table cities created by user kathleen from Oracle using user sqoop, you
would execute the following Sqoop command:

sqoop import \
--connect jdbc:oracle:thin:@oracle.example.com:1521/ORACLE \
--username SQOOP \
--password sqoop \
--table KATHLEEN.cities

68 | Chapter 7: Specialized Connectors

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
The Oracle connector uses the following catalog query for retrieving table structure
information (number of columns, their names, and associated data types):

SELECT COLUMN_NAME FROM ALL_TAB_COLUMNS
WHERE OWNER = ? AND TABLE_NAME = ? ORDER BY COLUMN_ID

As the equals operator is case sensitive, you must enter both the table name and
owner in the same way as is recorded in the database catalog.

By default, Oracle will automatically uppercase all table and user‐
names if they are not explicitly enclosed in double quotes during cre‐
ation. Sqoop will use the current username if you don’t specify the
explicit table owner inside the --table parameter.

7.8. Using Synonyms in Oracle
Problem
You need to import or export an Oracle table using a synonym rather than a real table
name.

Solution
In order to reference Oracle synonyms, you need to switch to the Generic JDBC
Con‐ nector because the specialized Oracle connector does not support them. You
can instruct Sqoop to use the Generic JDBC Connector by specifying the parameter -
-connection-manager with the full class name of the connector. For example, to
import synonym CIT, you would use the following Sqoop command:

sqoop import \
--connect jdbc:oracle:thin:@oracle.example.com:1521/ORACLE \
--username SQOOP \
--password sqoop \
--table CIT \
--driver oracle.jdbc.OracleDriver \
--connection-manager org.apache.sqoop.manager.GenericJdbcManager

Discussion
The built-in Oracle connector queries the catalog object ALL_TAB_COLUMNS in
order to retrieve a table’s column names and associated data types. Unfortunately,
Oracle is stor‐ ing synonyms in a different catalog object and thus the Connector
can’t fetch the met‐ adata properly, resulting in import or export failure.

7.8. Using Synonyms in Oracle | 69

www.it-ebooks.info

http://www.it-ebooks.info/

The Generic JDBC Connector does not use catalog tables and views, and so it doesn’t
have issues with synonyms. Instead it will issue a query with the clause WHERE 1=0
that won’t transfer any data as the condition is always false but will return correct
metadata for transported data. Returned metadata will contain the basic information
required, like column count, names, and associated types; however, it lacks any advanced
infor‐ mation like whether the table is partitioned or not. Although the Generic JDBC
Con‐ nector works quite nicely here, it can’t take full advantage of your database server.

7.9. Faster Transfers with Oracle
Problem
Sqoop does a great job transferring data between Oracle and Hadoop. Is there a faster
and more optimal way of exchanging data with Oracle?

Solution
You should consider using OraOop, a specialized connector for Oracle developed
and maintained by Quest Software, now a division of Dell. You can download the
connector from the Cloudera website.

Discussion
OraOop is a highly specialized connector for the Oracle database. Instead of splitting
data into equal ranges using one column (usually the table’s primary key), OraOop
utilizes the concept of rowid. In doing so, the connector ensures that no two parallel
running tasks will read data from the same Oracle block. This lowers disk operations
on the database server, significantly improving performance. You are encouraged to
download, install, and use the OraOop connector instead of the built-in one.

See Also
Detailed instructions about the installation of special connectors are covered in
Recipe 1.3.

7.10. Importing into Avro with OraOop
Problem
You are importing a table containing a DATE column from Oracle database into
Avro format, but you’re getting the following exception:

org.apache.avro.UnresolvedUnionException: Not in union ["long","null"]:

70 | Chapter 7: Specialized Connectors

www.it-ebooks.info

http://bit.ly/19FMsxo
http://www.it-ebooks.info/

Solution
You have two options to overcome this issue. The first is to set the property
oraoop.timestamp.string to the value false to disable OraOop’s default date-to-
string mapping.

sqoop import \
-Doraoop.timestamp.string=false \
--connect jdbc:oracle:thin:@oracle.example.com:1521/ORACLE \
--username SQOOP \
--password sqoop \
--table cities \
--as-avrodatafile

The second option is to map all DATE columns to String using the --map-column-
java parameter. For example, if your table contains two DATE columns, namely
CREATED and UPDATED, you would use the following Sqoop command:

sqoop import \
-Doraoop.timestamp.string=false \
--connect jdbc:oracle:thin:@oracle.example.com:1521/ORACLE \
--username SQOOP \
--password sqoop \
--table cities \
--as-avrodatafile \
--map-column-java CREATED=String,UPDATED=String

Discussion
Avro encoding doesn’t have an indicator to say which field is next. It just encodes
one field after another and in the order they appear in the schema definition. Since
there is no way for the parser to know that a field has been skipped, there is no such
thing as an optional field in Avro. Instead, if you want to be able to leave out a value,
you can use a union type, like union { null, long }. Unions are encoded with an extra
byte to inform the parser which of the possible union types to use, followed by the
value itself. By making a union with the null type, you can make a field optional.
Sqoop uses unions to encode database NULL values. In every generated Avro schema,
all columns are en‐ coded as a union of null with a real type in order to allow correct
processing of missing values.

When importing into an Avro file, Sqoop represents DATE values as type Long, so
Avro schema union { null, long } will be generated. However, OraOop automatically
converts all DATE values into String, and String can’t be stored inside the union
{ null, long } Avro schema, resulting in the Not in union exception. There are two
options to work around this behavior. The first is to disable the implicit mapping to
String in OraOop by setting the property oraoop.timestamp.string to the value

7.10. Importing into Avro with OraOop | 71

www.it-ebooks.info

http://www.it-ebooks.info/

false. The second option is to force Sqoop to generate a different schema by mapping
all DATE columns into String as OraOop expects.

7.11. Choosing the Proper Connector for Oracle

Problem
You are not sure when to use OraOop, the built-in Oracle connector, or the Generic
JDBC Connector.

Solution
For the best performance, use the OraOop connector. If OraOop does not work for your
use case, the next best alternative is the built-in connector. If those two connectors do not
work in your environment, your last resort is the Generic JDBC Connector.

The Generic JDBC Connector is slower than even the built-in Oracle
Connector.

Discussion
There are three connectors available for use when you need to transfer data to or
from the Oracle database: the Generic JDBC Connector, the built-in Oracle
connector, and OraOop. The Generic JDBC Connector and the built-in Oracle
connector are bundled within Sqoop, and you can use them out of the box. OraOop is
not distributed with Sqoop, and you would need to manually download and install it.
The JDBC driver is a dependency for all three connectors. You will always need to
install the JDBC driver. Sqoop will automatically try to use the most optimal
connector avail‐ able, so OraOop will be used automatically when it’s installed. If
you need to condi‐ tionally disable OraOop on a per-job basis, you can set the
property oraoop.dis abled to true. For example, use the following command to
disable OraOop after it’s been installed:

sqoop import \
-Doraoop.disabled=true \
--connect jdbc:oracle:thin:@oracle.example.com:1521/ORACLE \
--username SQOOP \
--password sqoop \
--table cities

If you would prefer to explicitly choose which connector will be used rather than the
implicit selection, you can do that using the following set of parameters.

72 | Chapter 7: Specialized Connectors

www.it-ebooks.info

http://www.it-ebooks.info/

Choose the OraOop connector:

sqoop import \
--connection-manager com.quest.oraoop.OraOopConnManager \
--connect jdbc:oracle:thin:@oracle.example.com:1521/ORACLE \
--username SQOOP \
--password sqoop \
--table cities

Choose the built-in Oracle connector:

sqoop import \
--connection-manager org.apache.sqoop.manager.OracleManager \
--connect jdbc:oracle:thin:@oracle.example.com:1521/ORACLE \
--username SQOOP \
--password sqoop \
--table cities

And finally, choose the Generic JDBC Connector:

sqoop import \
--connection-manager org.apache.sqoop.manager.GenericJdbcManager \
--driver oracle.jdbc.OracleDriver \
--connect jdbc:oracle:thin:@oracle.example.com:1521/ORACLE \
--username SQOOP \
--password sqoop \
--table cities

7.12. Exporting into Teradata
Problem
You are doing a Sqoop export to Teradata using the Generic JDBC Connector and it
fails with the following exception:

Syntax error: expected something between ')' and ','.)

Solution
Set the parameter -Dsqoop.export.records.per.statement=1:

sqoop export \
-Dsqoop.export.records.per.statement=1 \
--connect jdbc:teradata://teradata.example.com/DATABASE=database \
--username sqoop \
--password sqoop \
--table cities\
--export-dir cities

7.12. Exporting into Teradata | 73

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Sqoop, by default, creates INSERT statements for multiple rows in one query, which
is a quite common SQL extension implemented by most of the database systems.
Unfortu‐ nately, Teradata does not support this extension, and therefore you need to
disable this behavior in order to export data into Teradata.

See Also
Property sqoop.export.records.per.statement was further described in Recipe 5.2.

7.13. Using the Cloudera Teradata Connector

Problem
You have a Teradata appliance as your enterprise data warehouse system and you
need to import and export data from there to Hadoop and vice versa. You have used
Sqoop with the Generic JDBC Connector. Is there a more optimal solution?

Solution
Download, install, and use the Cloudera Teradata Connector, which is available for
free on the Cloudera website.

Discussion
The Cloudera Teradata Connector is a specialized connector for Teradata that is not
part of the Sqoop distribution. You need to download and install it manually. This
connector takes advantage of Teradata FastLoad and FastExport over JDBC to
provide the best available performance when transferring data. You should install
this connector if you need to transfer data with Teradata.

See Also
Detailed instructions about the installation of special connectors are covered in
Recipe 1.3.

7.14. Using Long Column Names in Teradata
Problem
Table-based import is failing with an exception about an invalid name:

74 | Chapter 7: Specialized Connectors

www.it-ebooks.info

http://www.cloudera.com/downloads
http://www.it-ebooks.info/

[Error 3737] [SQLState 42000] Name requires more than 30 bytes in LATIN
internal form.

Solution
You can use SQL projection to rename all columns longer than 28 characters to have
a maximum of 28 characters. For example, to rename the column
REALLY_LONG_COL UMN_NAME_30CHAR to a shorter name, you can use the --
query import instead of the --table import.

sqoop import \
--connect jdbc:teradata://teradata.example.com/DATABASE=database \
--username sqoop \
--password sqoop \
--query "SELECT REALLY_LONG_COLUMN_NAME_30CHAR AS

shorter_column_name \ FROM table"

Discussion
Teradata has an internal 30-character limit on the column and table names. Some of
the Teradata technologies and tools prepend each column name with a special prefix
that counts toward the 30-character limit. In the case of using FastLoad over JDBC,
the effective limit is 28 characters as the Teradata JDBC driver automatically adds a
prefix V_ to each column. As this limitation is imposed by Teradata itself, there is
not much that Sqoop can do besides allow you to use the Generic JDBC Connector
instead of the Cloudera Teradata Connector.

Using the Generic JDBC Connector will significantly decrease
performance.

7.14. Using Long Column Names in Teradata| 75

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors
Kathleen Ting is a customer operations engineering manager at Cloudera, where she
helps customers deploy and use the Hadoop ecosystem in production. She has spoken
on Hadoop, ZooKeeper, and Sqoop at many big data conferences, including Hadoop
World, ApacheCon, and OSCON. She’s contributed to several projects in the open
source community and is a committer and PMC member on Sqoop.
Jarek Jarcec Cecho is a software engineer at Cloudera, where he develops software to
help customers better access and integrate with the Hadoop ecosystem. He has led the
Sqoop community in the architecture of the next generation of Sqoop, known as Sqoop
2.He’s contributed to several projects in the open source community and is a
committer and PMC member on Sqoop, Flume, and MRUnit.

Colophon
The animal on the cover of Apache Sqoop Cookbook is the Great White Pelican
(Pelecanus onocrotalus).
The cover image is from Meyers Kleines. The cover font is Adobe ITC Garamond.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.it-ebooks.info/

