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Preface

Enumerative combinatorics has undergone enormous development since the publication of
the first edition of this book in 1986. It has become more clear what are the essential topics,
and many interesting new ancillary results have been discovered. This second edition is an
attempt to bring the coverage of the first volume more up-to-date and to impart a wide
variety of additional applications and examples.

The main difference between this volume and the previous is the addition of ten new sections
(six in Chapter 1 and four in Chapter 3) and over 350 new exercises. In response to complaints
about the difficulty of assigning homework problems whose solutions are included, I have
added some relatively easy exercises without solutions, marked by an asterisk. There are
also a few organizational changes, the most notable being the transfer of the section on
P-partitions from Chapter 4 to Chapter 3, and extending this section to the theory of
(P,w)-partitions for any labeling w. In addition, the old Section 4.6 has been split into
Sections 4.5 and 4.6.

There will be no second edition of volume 2 nor a volume 3. Since the references in volume 2
to information in volume 1 are no longer valid for this second edition, I have included a table
entitled “First Edition Numbering” which gives the conversion between the two editions for
all numbered results (theorems, examples, exercises, etc., but not equations).

Exercise 4.12 has some sentimental meaning for me. This result, and related results con-
nected to other linear recurrences with constant coefficients, is a product of my earliest
research, done around the age of 17 when I was a student at Savannah High School.

“I have written my work, not as an essay which is to win the applause of the
moment, but as a possession for all time.”

It is ridiculous to compare Enumerative Combinatorics with History of the Peloponnesian
War, but I can appreciate the sentiment of Thucydides. I hope this book will bring enjoyment
to many future generations of mathematicians and aspiring mathematicians as they are
exposed to the beauties and pleasures of enumerative combinatorics.
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Chapter 1

What is Enumerative Combinatorics?

1.1 How to Count

The basic problem of enumerative combinatorics is that of counting the number of elements
of a finite set. Usually we are given an infinite collection of finite sets S; where 7 ranges over
some index set I (such as the nonnegative integers N), and we wish to count the number f(7)
of elements in each 5; “simultaneously.” Immediate philosophical difficulties arise. What
does it mean to “count” the number of elements of S;? There is no definitive answer to
this question. Only through experience does one develop an idea of what is meant by a
“determination” of a counting function f(i). The counting function f(i) can be given in
several standard ways:

1. The most satisfactory form of f(i) is a completely explicit closed formula involving only
well-known functions, and free from summation symbols. Only in rare cases will such a
formula exist. As formulas for f(i) become more complicated, our willingness to accept
them as “determinations” of f(i) decreases. Consider the following examples.

1.1.1 Example. For each n € N, let f(n) be the number of subsets of the set [n] =
{1,2,...,n}. Then f(n) = 2", and no one will quarrel about this being a satisfactory
formula for f(n).

1.1.2 Example. Suppose n men give their n hats to a hat-check person. Let f(n) be the
number of ways that the hats can be given back to the men, each man receiving one hat, so
that no man receives his own hat. For instance, f(1) = 0, f(2) = 1, f(3) = 2. We will see
in Chapter 2 (Example 2.2.1) that

f(n) :n!Z (_'1)2 (1.1)

o!

This formula for f(n) is not as elegant as the formula in Example 1.1.1, but for lack of
a simpler answer we are willing to accept (1.1) as a satisfactory formula. It certainly has
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the virtue of making it easy (in a sense that can be made precise) to compute the values
f(n). Moreover, once the derivation of (1.1) is understood (using the Principle of Inclusion-
Exclusion), every term of (1.1) has an easily understood combinatorial meaning. This enables
us to “understand” (1.1) intuitively, so our willingness to accept it is enhanced. We also
remark that it follows easily from (1.1) that f(n) is the nearest integer to n!/e. This is
certainly a simple explicit formula, but it has the disadvantage of being “non-combinatorial”;
that is, dividing by e and rounding off to the nearest integer has no direct combinatorial
significance.

1.1.3 Example. Let f(n) be the number of n x n matrices M of 0’s and 1’s such that every
row and column of M has three 1’s. For example, f(0) =1, f(1) = f(2) =0, f(3) = 1. The
most explicit formula known at present for f(n) is

(=1)7(8 +37)12* 37
al Bly12 67 ’

f(n) =6"n!? Z (1.2)

where the sum ranges over all (n 4+ 2)(n + 1)/2 solutions to « + 4+ v = n in nonnegative
integers. This formula gives very little insight into the behavior of f(n), but it does allow
one to compute f(n) much faster than if only the combinatorial definition of f(n) were
used. Hence with some reluctance we accept (1.2) as a “determination” of f(n). Of course
if someone were later to prove that f(n) = (n — 1)(n — 2)/2 (rather unlikely), then our
enthusiasm for (1.2) would be considerably diminished.

1.1.4 Example. There are actually formulas in the literature (“nameless here for evermore”)
for certain counting functions f(n) whose evaluation requires listing all (or almost all) of the
f(n) objects being counted! Such a “formula” is completely worthless.

2. A recurrence for f(i) may be given in terms of previously calculated f(j)’s, thereby
giving a simple procedure for calculating f(i) for any desired i € I. For instance, let f(n)
be the number of subsets of [n] that do not contain two consecutive integers. For example,
for n = 4 we have the subsets 0, {1}, {2}, {3}, {4}, {1,3}, {1,4}, {2,4}, so f(4) = 8. Tt is
easily seen that f(n) = f(n — 1) + f(n — 2) for n > 2. This makes it trivial, for example,
to compute f(20) = 17711. On the other hand, it can be shown (see Section 4.1 for the

underlying theory) that
1
n)=-—
f(n) 7
where 7 = (1 ++/5), 7 = 3(1 — v/5). This is an explicit answer, but because it involves
irrational numbers it is a matter of opinion (which may depend on the context) whether it
is a better answer than the recurrence f(n) = f(n — 1)+ f(n — 2).

(Tn+2 . 7—_n+2)

)

3. An algorithm may be given for computing f(i). This method of determining f subsumes
the previous two, as well as method 5 below. Any counting function likely to arise in practice
can be computed from an algorithm, so the acceptability of this method will depend on the
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elegance and performance of the algorithm. In general, we would like the time that it takes
the algorithm to compute f(i) to be “substantially less” than f(i) itself. Otherwise we are
accomplishing little more than a brute force listing of the objects counted by f(i). It would
take us too far afield to discuss the profound contributions that computer science has made
to the problem of analyzing, constructing, and evaluating algorithms. We will be concerned
almost exclusively with enumerative problems that admit solutions that are more concrete
than an algorithm.

4. An estimate may be given for f(i). If I = N, this estimate frequently takes the form
of an asymptotic formula f(n) ~ g(n), where g(n) is a “familiar function.” The notation
f(n) ~ g(n) means that lim, .., f(n)/g(n) = 1. For instance, let f(n) be the function of
Example 1.1.3. It can be shown that

f(n) ~ e 236"(3n)!.
For many purposes this estimate is superior to the “explicit” formula (1.2).

5. The most useful but most difficult to understand method for evaluating f (i) is to give
its generating function. We will not develop in this chapter a rigorous abstract theory of
generating functions, but will instead content ourselves with an informal discussion and
some examples. Informally, a generating function is an “object” that represents a counting
function f(i). Usually this object is a formal power series. The two most common types of
generating functions are ordinary generating functions and exponential generating functions.
If I =N, then the ordinary generating function of f(n) is the formal power series

> fn)an,
n>0
while the exponential generating function of f(n) is the formal power series
xn
> fn) T
n>0

(If I = P, the positive integers, then these sums begin at n = 1.) These power series are
called “formal” because we are not concerned with letting x take on particular values, and
we ignore questions of convergence and divergence. The term x™ or 2™ /n! merely marks the
place where f(n) is written.

If F(x) =3, .0an2", then we call a, the coefficient of 2 in F'(z) and write
a, = [z"|F(z).
Similarly, if F(z) =}_, -, a,2"/n!, then we write
a, = nl[z"|F(z).

In the same way we can deal with generating functions of several variables, such as

m .n

ZZZf(l,m,n)xyn!z

>0 m>0 n>0
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(which may be considered as “ordinary” in the indices [, m and “exponential” in n), or even
of infinitely many variables. In this latter case every term should involve only finitely many
of the variables. A simple generating function in infinitely many variables is x14+xo+x3+- - -.

Why bother with generating functions if they are merely another way of writing a counting
function? The answer is that we can perform various natural operations on generating
functions that have a combinatorial significance. For instance, we can add two generating
functions, say in one variable with I = N, by the rule

(Z Wm) + (Z bnx”) = (an +b,)a"

n>0 n>0 n>0

<Z an%> + (Z bn%> = > (an+ b))

n>0 n>0 n>0

Similarly, we can multiply generating functions according to the rule

(£} () - S

n>0 n>0 n>0

where ¢, = Y, aib,_;, or

" " "
where d, = Y7 (")azb,—;, with (%) = nl/il(n —4)!. Note that these operations are just
what we would obtain by treating generating functions as if they obeyed the ordinary laws
of algebra, such as 2%/ = 2"/, These operations coincide with the addition and multipli-
cation of functions when the power series converge for appropriate values of z, and they
obey such familiar laws of algebra as associativity and commutativity of addition and mul-
tiplication, distributivity of multiplication over addition, and cancellation of multiplication
(i.e., if F(x)G(x) = F(x)H(z) and F(x) # 0, then G(x) = H(x)). In fact, the set of all
formal power series ) ., a,2™ with complex coefficients a,, (or more generally, coefficients
in any integral domain R, where integral domains are assumed to be commutative with a
multiplicative identity 1) forms a (commutative) integral domain under the operations just
defined. This integral domain is denoted C[[z]] (or more generally, R[[x]]). Actually, C[[z]],
or more generally K[[z]] when K is a field, is a very special type of integral domain. For
readers with some familiarity with algebra, we remark that C[[z]] is a principal ideal domain
and therefore a unique factorization domain. In fact, every ideal of C[[z]] has the form (z™)
for some n > 0. From the viewpoint of commutative algebra, C|[[z]] is a one-dimensional
complete regular local ring. Moreover, the operation [2"] : C[[z]] — C of taking the coeffi-
cient of 2™ (and similarly [z"/nl]) is a linear functional on Cl[z]]. These general algebraic
considerations will not concern us here; rather we will discuss from an elementary viewpoint
the properties of C[[z]] that will be useful to us.
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There is an obvious extension of the ring C[[z]] to formal power series in m variables
Z1,...,Tm. The set of all such power series with complex coefficients is denoted C[[z1, . . ., ,,]]
and forms a unique factorization domain (though not a principal ideal domain for m > 2).

It is primarily through experience that the combinatorial significance of the algebraic op-
erations of C[[z]] or C[[z1,...,z,]] is understood, as well as the problems of whether to
use ordinary or exponential generating functions (or various other kinds discussed in later
chapters). In Section 3.18 we will explain to some extent the combinatorial significance of
these operations, but even then experience is indispensable.

If F(z) and G(z) are elements of Cl[x]] satisfying F'(z)G(z) = 1, then we (naturally) write
G(x) = F(z)~'. (Here 1 is short for 1+ 0z + 0z* + ---.) It is easy to see that F(z)™!
exists (in which case it is unique) if and only if ag # 0, where F(z) = ) ., a,2". One
commonly writes “symbolically” ag = F(0), even though F(z) is not considered to be a
function of x. If F(0) # 0 and F(2)G(x) = H(x), then G(z) = F(x) 'H(z), which we
also write as G(z) = H(z)/F(x). More generally, the operation ~! satisfies all the familiar
laws of algebra, provided it is only applied to power series F'(z) satisfying F'(0) # 0. For
instance, (F(z)G(z))™! = F(z)"'G(z)™!, (F(z)™')™' = F(z), and so on. Similar results
hold for C[[zy, ..., zp)].

1.1.5 Example. Let (3} ., a"2") (1 — az) = Y., ., 2", where a is nonzero complex
number. (We could also take a to be an indeterminate, in which case we should extend the
coefficient field to C(«), the field of rational functions over C in the variable a.) Then by
definition of power series multiplication,

- 1, n=0
n = a" —a(@™ ) =0, n>1.

Hence )7 . a"z™ = (1 — ax)™", which can also be written

n_.n 1
Zax T 1—az

n>0

This formula comes as no surprise; it is simply the formula (in a formal setting) for summing
a geometric series.

Example 1.1.5 provides a simple illustration of the general principle that, informally speaking,
if we have an identity involving power series that is valid when the power series are regarded
as functions (so that the variables are sufficiently small complex numbers), then this identity
continues to remain valid when regarded as an identity among formal power series, provided
the operations defined in the formulas are well-defined for formal power series. It would
be unnecessarily pedantic for us to state a precise form of this principle here, since the
reader should have little trouble justifying in any particular case the formal validity of our
manipulations with power series. We will give several examples throughout this section to
illustrate this contention.
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1.1.6 Example. The identity

(Z —) (zw%) - -

n>0 n>0

is valid at the function-theoretic level (it states that ee™® = 1) and is well-defined as a
statement involving formal power series. Hence (1.3) is a valid formal power series identity.
In other words (equating coefficients of 2" /n! on both sides of (1.3)), we have

zn:(—l)’“(Z) = Gon- (1.4)

k=0

To justify this identity directly from (1.3), we may reason as follows. Both sides of (1.3)
converge for all x € C, so we have

> (i(—U’“(Z)) %T —1, forallzeC.

n>0 \k=0

But if two power series in z represent the same function f(x) in a neighborhood of 0, then
these two power series must agree term-by-term, by a standard elementary result concerning
power series. Hence (1.4) follows.

1.1.7 Example. The identity

z+1)" z"
Z%:ezﬁ

n>0 n>0

is valid at the function-theoretic level (it states that e**' = e - e*), but does not make
sense as a statement involving formal power series. There is no formal procedure for writing
Y msol@ + 1)"/n! as a member of C[[z]]. For instance, the constant term of ) _ (z +
1)"/nlis > ., 1/n!, whose interpretation as a member of C[[z]] involves the consideration
of convergence.

Although the expression ) . (z+1)"/n! does not make sense formally, there are nevertheless
certain infinite processes that can be carried out formally in C[[z]]. (These concepts extend
straightforwardly to Cl[zy,...,z,]], but for simplicity we consider only C[[z]].) To define
these processes, we need to put some additional structure on C[[z]]—namely, the notion of
convergence. From an algebraic standpoint, the definition of convergence is inherent in the
statement that C[[z]] is complete in a certain standard topology that can be put on C[[z]].
However, we will assume no knowledge of topology on the part of the reader and will instead
give a self-contained, elementary treatment of convergence.

If Fi(x), F5(x),... is a sequence of formal power series, and if F'(z) = ) ., a,z" is another
formal power series, we say by definition that F;(z) converges to F(x) as i — oo, written

14



Fi(z) — F(x) or lim;_, Fi(z) = F(x), provided that for all n > 0 there is a number §(n)
such that the coefficient of 2" in F;(z) is a,, whenever i > d(n). In other words, for every n
the sequence
[z"|Fy (), [2"]Fy(x), ...

of complex numbers eventually becomes constant (or stabilizes) with value a,. An equiv-
alent definition of convergence is the following. Define the degree of a nonzero formal
power series F(z) = ) _,a,x", denoted deg F(x), to be the least integer n such that
a, # 0. Note that deg F(z)G(z) = deg F(z) + deg G(x). Then F;(z) converges if and
only if lim; . deg(Fii1(z) — Fi(x)) = oo, and Fj(x) converges to F(z) if and only if
lim; o, deg(F(x) — Fi(z)) = oc.

We now say that an infinite sum » ;- Fj(x) has the value F'(z) provided that Z;:o Fi(z) —
F(x). A similar definition is made for the infinite product [[;-, F;(z). To avoid unimportant
technicalities we assume that in any infinite product [[,, F}(), each factor Fj(x) satisfies
Fi(0) = 1. -

For instance, let Fj(x) = aja?. Then for ¢ > n, the coefficient of 2™ in Z;:o Fi(x) is ay,.
Hence ..o Fj(x) is just the power series , ;a,2". Thus we can think of the formal
power series »_ ., a,x" as actually being the “sum” of its individual terms. The proofs of
the following two elementary results are left to the reader.

1.1.8 Proposition. The infinite series .. Fj(x) converges if and only if

lim deg F}j(x) = oc.
j—o0

1.1.9 Proposition. The infinite product [];,(1 + G;(z)), where G;(0) = 0, converges if
and only if lim;_ .., deg G,(z) = oc.

It is essential to realize that in evaluating a convergent series 2j>0 F;(z) (or similarly a
product [];5, Fj()), the coefficient of 2™ for any given n can be computed using only finite
processes. For if j is sufficiently large, say j > d(n), then deg F;j(z) > n, so that

é(n)
Y Fi(@) = Y Fio)

The latter expression involves only a finite sum.

The most important combinatorial application of the notion of convergence is to the idea
of power series composition. If F(z) = ) _,a,2™ and G(x) are formal power series with
G(0) = 0, define the composition F(G(z)) to be the infinite sum > ., a,G(x)". Since
deg G(z)" = n - deg G(x) > n, we see by Proposition 1.1.8 that F'(G(z)) is well-defined as
a formal power series. We also see why an expression such as e!™® does not make sense
formally; namely, the infinite series > .,(1 + x)"/n! does not converge in accordance with
the above definition. On the other hand, an expression like e¢" ! makes good sense formally,

since it has the form F'(G(z)) where F(z) = S2"/nl and G(x) = -, z"/n!.
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1.1.10 Example. If F(z) € C[[z]] satisfies F'(0) = 0, then we can define for any A € C the
formal power series

1+ Fa)yr=>" <A) F(x)", (1.5)

n
n>0

where (2) =AA—1)---(A=n+1)/nl. In fact, we may regard X\ as an indeterminate and
take (1.5) as the definition of (1 + F(z))* as an element of C[[z, \]] (or of C[\][[z]]; that is,
the coefficient of 2™ in (1+ F(z))" is a certain polynomial in \). All the expected properties
of exponentiation are indeed valid, such as

(1+ F(x)™* = (14 F(z)) 1+ F(x))",

regarded as an identity in the ring C[[z, A, u]], or in the ring C[[z]] where one takes A, u € C.

If F(z) =)_,>0 2", define the formal derivative F'(z) (also denoted 48 or DF(z)) to be
the formal power series

F'(z) = Znanx”_l = Z(n + Day 2"

n>0 n>0

It is easy to check that all the familiar laws of differentiation that are well-defined formally
continue to be valid for formal power series, In particular,

(F+G) = F'+d&
(FGQ) = F'G+FG
F(G(x)) = G'(2)F'(G(x)).

We thus have a theory of formal calculus for formal power series. The usefulness of this
theory will become apparent in subsequent examples. We first give an example of the use of
the formal calculus that should shed some additional light on the validity of manipulating
formal power series F'(x) as if they were actual functions of z.

1.1.11 Example. Suppose F(0) = 1, and let G(x) be the power series (easily seen to be
unique) satisfying
G'(z) = F'(z)/F(z), G(0)=0. (1.6)

From the function-theoretic viewpoint we can “solve” (1.6) to obtain F'(z) = exp G(x), where

by definition
exp G(z) = Z Glz) .

n!
n>0

Since G(0) = 0 everything is well-defined formally, so (1.6) should remain equivalent to
F(z) = expG(x) even if the power series for F(z) converges only at x = 0. How can
this assertion be justified without actually proving a combinatorial identity? Let F(x) =
14,51 an2™. From (1.6) we can compute explicitly G(z) = ) o, by2™, and it is quickly
seen that each b, is a polynomial in finitely many of the a;’s. It then follows that if exp G(x) =
1+ > ,5; cpx”, then each ¢, will also be a polynomial in finitely many of the a;’s, say

16



¢n = pnlai, as, ..., ay), where m depends on n. Now we know that F'(x) = exp G(x) provided
14,51 anx™ converges. If two Taylor series convergent in some neighborhood of the origin
represent the same function, then their coefficients coincide. Hence a,, = p,(a1,as, ..., an)
provided 1+ )" ., a,z" converges. Thus the two polynomials a, and p,(a1,...,a,) agree
in some neighborhood of the origin of C™, so they must be equal. (It is a simple result
that if two complex polynomials in m variables agree in some open subset of C™, then they
are identical.) Since a,, = pp(a1,as,...,an) as polynomials, the identity F'(z) = exp G(z)
continues to remain valid for formal power series.

There is an alternative method for justifying the formal solution F'(x) = exp G(x) to (1.6),
which may appeal to topologically inclined readers. Given G(z) with G(0) = 0, define F'(z) =
exp G(z) and consider a map ¢ : C[[z]] — C[[z]] defined by ¢(G(z)) = G'(z) — P;(%). One
easily verifies the following: (a) if G converges in some neighborhood of 0 then ¢(G(x)) = 0;
(b) the set G of all power series G(x) € C[[z]] that converge in some neighborhood of 0 is
dense in C[[z]], in the topology defined above (in fact, the set C[z] of polynomials is dense);
and (c) the function ¢ is continuous in the topology defined above. From this it follows that

#(G(x)) = 0 for all G(z) € C[[z]] with G(0) = 0.

We now present various illustrations in the manipulation of generating functions. Through-
out we will be making heavy use of the principle that formal power series can be treated as
if they were functions.

1.1.12 Example. Find a simple expression for the generating function F(z) = -, a,2",
where ag = a1 =1, a, = ap_1 + an_o if n > 2. We have

F(x) = Zan:ﬂ”: 1+x+2&nx"

n>0 n>2
= l4+z+ g (ap_1 + ap_o)z"
n>2
= l+ao+ax E Ap_12" 4 22 E Y
n>2 n>2

= l+a+z(F(r)—1)+2°F(2).

Solving for F(x) yields F'(z) = 1/(1 — x — z*). The number a,, is just the Fibonacci number
F,+1. For some combinatorial properties of Fibonacci numbers, see Exercises 1.35-1.42.
For the general theory of rational generating functions and linear recurrences with constant
coefficients illustrated in the present example, see Section 4.1.

1.1.13 Example. Find a simple expression for the generating function F'(z) = ) ., a,z"/nl,
where ag = 1, -

(pi1 = Ap +nay_1, n>0. (1.7)

(Note that if n =0 we get a; = ag + 0 - a_1, so the value of a_; is irrelevant.) Multiply the

17



recurrence (1.7) by 2"/n! and sum on n > 0. We get

xn
zw7=z%+zml
n

n>0 ’ n>0 n>0
== § &n _F E Ap— 1
n>0 n>1

The left-hand side is just F’(z), while the right-hand side is F'(x) + xF(x). Hence F'(z) =
(14 x)F(z). The unique solution to this differential equation satisfying F'(0) = 1 is F'(x) =
exp (x + %xQ) (As shown in Example 1.1.11, solving this differential equation is a purely
formal procedure.) For the combinatorial significance of the numbers a,,, see equation (5.32).

NoTE. With the benefit of hindsight we wrote the recurrence a,,1 = a, + na,_1 with
indexing that makes the computation simplest. If for instance we had written a,, = a,_1 +
(n—1)a,_», then the computation would be more complicated (though still quite tractable).
In converting recurrences to generating function identities, it can be worthwhile to consider
how best to index the recurrence.

1.1.14 Example. Let p(n) be the Mobius function of number theory; that is, pu(1) = 1,
wu(n) = 0 if n is divisible by the square of an integer greater than one, and u(n) = (—1)" if
n is the product of r distinct primes. Find a simple expression for the power series

F(z) = [ —am)y-im, (1.8)

First let us make sure that F(z) is well-defined as a formal power series. We have by
Example 1.1.10 that

(1 — g™y Hm/n — ; (‘“(:”)/ ”) (=1)'z™.

Note that (1 — z™)* =1+ H(x), where deg H(x) = n. Hence by Proposition 1.1.9 the
infinite product (1. 8) converges, so F'(x) is well-defined. Now apply log to (1.8). In other
words, form log F'(x), where

"
log(1+x) =) (—1)" 1;,
n>1

the power series expansion for the natural logarithm at z = 0. We obtain

log F(z) = logH 1 — gn)~Hm)/n

n>1
= = log(1 — &)/
n>1
_ Z pi(n) log(1 — 2
n
n>1
p(n) ™
O NE
n>1 i>1



The coefficient of 2™ in the above power series is
1
dlm
where the sum is over all positive integers d dividing m. It is well-known that
1 1, m=1
m ;u(d) N { 0, otherwise.

Hence log F(z) = z, so F(z) = e”. Note that the derivation of this miraculous formula
involved only formal manipulations.

1.1.15 Example. Find the unique sequence ag = 1, ay, as, ... of real numbers satisfying

n

> artn =1 (1.9)

k=0

for all n € N. The trick is to recognize the left-hand side of (1.9) as the coefficient of 2™ in
(ano @nxn>2- Letting F'(v) = _, -, a,2", we then have

F(x)2:Zx”: L

1—2a
n>0

Hence

SO

1-3-5---(2n—1)
2np| ’

Note that a, can also be rewritten as 47" (2:) The identity

(27;7’) = (—1)™4" (_711/2) (1.10)

can be useful for problems involving (2:)
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Now that we have discussed the manipulation of formal power series, the question arises as
to the advantages of using generating functions to represent a counting function f(n). Why,
for instance, should a formula such as

Zf(”)% = exp (x+%2) (1.11)

n>0

be regarded as a “determination” of f(n)? Basically, the answer is that there are many stan-
dard, routine techniques for extracting information from generating functions. Generating
functions are frequently the most concise and efficient way of presenting information about
their coefficients. For instance, from (1.11) an experienced enumerative combinatorialist can
tell at a glance the following:

1. A simple recurrence for f(n) can be found by differentiation. Namely, we obtain

Infl

Y f)— = (1+2)e ™ =(1+2)Y f(n)=.

= (n—1)!
Equating coefficients of x™/n! yields
f(n+1)=f(n)+nf(n—1), n>1

Note that in Example 1.1.13 we went in the opposite direction, i.e., we obtained the gener-
ating function from the recurrence, a less straightforward procedure.

2. An explicit formula for f(n) can be obtained from e*+@*/2) = ¢¢**/2, Namely,

Zf(n)% = e = (Z%) (Z ;n!>

n>0 n>0 n>0

" 2n)! "
a (Z H) (Z (Z”n)' (Zn)!) ’

n>0

1= 3 (a5 ) 2

ieven

so that

3. Regarded as a function of a complex variable, exp (a: + %) is a nicely behaved entire

function, so that standard techniques from the theory of asymptotic analysis can be used
to estimate f(n). As a first approximation, it is routine (for someone sufficiently versed in
complex variable theory) to obtain the asymptotic formula

]_ n 1
n/2 ,—o+y/n—z
n)~—m e 2 4, 112

No other method of describing f(n) makes it so easy to determine these fundamental proper-
ties. Many other properties of f(n) can also be easily obtained from the generating function;
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for instance, we leave to the reader the problem of evaluating, essentially by inspection of

(1.11), the sum
I W0 (1.13)

1=0

(see Exercise 1.7). Therefore we are ready to accept the generating function exp (x + %)

as a satisfactory determination of f(n).

This completes our discussion of generating functions and more generally the problem of
giving a satisfactory description of a counting function f(n). We now turn to the question
of what is the best way to prove that a counting function has some given description. In
accordance with the principle from other branches of mathematics that it is better to exhibit
an explicit isomorphism between two objects than merely prove that they are isomorphic, we
adopt the general principle that it is better to exhibit an explicit one-to-one correspondence
(bijection) between two finite sets than merely to prove that they have the same number
of elements. A proof that shows that a certain set S has a certain number m of elements
by constructing an explicit bijection between S and some other set that is known to have
m elements is called a combinatorial proof or bijective proof. The precise border between
combinatorial and non-combinatorial proofs is rather hazy, and certain arguments that to
an inexperienced enumerator will appear non-combinatorial will be recognized by a more
facile counter as combinatorial, primarily because he or she is aware of certain standard
techniques for converting apparently non-combinatorial arguments into combinatorial ones.
Such subtleties will not concern us here, and we now give some clear-cut examples of the
distinction between combinatorial and non-combinatorial proofs. We use the notation #5
or |S| for the cardinality (number of elements) of the finite set S.

1.1.16 Example. Let n and k be fixed positive integers. How many sequences (X1, X, ..., Xj)
are there of subsets of the set [n] = {1,2,...,n} such that X;NX,N---NX, = 07 Let f(k, n)
be this number. If we were not particularly inspired we could perhaps argue as follows. Sup-
pose X;NXoN---NXpy =T, where #T =i. fY; = X; =T, then Y1 N---NY,_y =0
and Y; C [n] —T. Hence there are f(k — 1,n — i) sequences (Xj,...,X;_1) such that
XiNXyN---NX,_; =T. For each such sequence, X, can be any of the 2"~% subsets
of [n] —T. As is probably familiar to most readers and will be discussed later, there are
(") = n!/il(n —©)! i-element subsets T of [n]. Hence

n

flkon) =Y (7;) =ik — 1,n— ). (1.14)

i=0
Let Fi(z) =3 50 f(k,n)z"/n!. Then (1.14) is equivalent to

Fi(z) = e Fj,_1(2x).
Clearly Fi(x) = e®. It follows easily that

Fp(r) = exp(x+2x+4da+---+ 28 1)
= exp((2" - )x)

= ) (2" - 1)“%.

n>0
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Hence f(k,n) = (2% —1)". This argument is a flagrant example of a non-combinatorial proof.
The resulting answer is extremely simple despite the contortions involved to obtain it, and
it cries out for a better understanding. In fact, (2% — 1)" is clearly the number of n-tuples
(Z1,Za,...,Zy,), where each Z; is a subset of [k] not equal to [k]. Can we find a bijection
6 between the set S, of all (X;,..., X}) C [n]* such that X; N---N X, = ), and the set
Tyn of all (Zy,...,7,) where [k] # Z; C [k]? Given an element (Zy,...,Z,) of Tj,, define
(X1,..., X)) by the condition that i € X if and only if j € Z;. This rule is just a precise
way of saying the following: the element 1 can appear in any of the X;’s except all of them,
so there are 2% — 1 choices for which of the X;’s contain 1; similarly there are 2¥ — 1 choices
for which of the X;’s contain 2,3, ..., n, so there are (2¥ —1)" choices in all. Thus the crucial
point of the problem is that the different elements of [n] behave independently, so we end up
with a simple product. We leave to the reader the (rather dull) task of rigorously verifiying
that 6 is a bijection, but this fact should be intuitively clear. The usual way to show that
is a bijection is to construct explicitly a map ¢ : Tj, — Skn, and then to show that ¢ = 6~ 1;
for example, by showing that ¢0(X) = X and that 6 is surjective. Caveat: any proof that
is bijective must not use a priori the fact that #Sy, = #7Tk,!

Not only is the above combinatorial proof much shorter than our previous proof, but it
also makes the reason for the simple answer completely transparent. It is often the case, as
occurred here, that the first proof to come to mind turns out to be laborious and inelegant,
but that the final answer suggests a simpler combinatorial proof.

1.1.17 Example. Verify the identity

é (CZL) (nb—z) - (aib)’ (1.15)

where a,b, and n are nonnegative integers. A non-combinatorial proof would run as fol-
lows. The left-hand side of (1.15) is the coefficient of z™ in the power series (polynomial)

(Xm0 (52 <2j20 (;’) xj). But by the binomial theorem,

SO (S0F) - 0o

— (1 4 x)a—l—b
(a + b) "
=2 =",
n
n>0
so the proof follows. A combinatorial proof runs as follows. The right-hand side of (1.15) is

the number of n-element subsets X of [a + b]. Suppose X intersects [a] in ¢ elements. There
are () choices for X N|a], and (niz) choices for the remaining n —i elements X N{a+1,a+

2,...,a+b}. Thus there are (‘Z) (nﬁz) ways that X N [a] can have i elements, and summing
over ¢ gives the total number (“:b) of n-element subsets of [a + b].

There are many examples in the literature of finite sets that are known to have the same
number of elements but for which no combinatorial proof of this fact is known. Some of
these will appear as exercises throughout this book.
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1.2 Sets and Multisets

We have (finally!) completed our description of the solution of an enumerative problem, and
we are now ready to delve into some actual problems. Let us begin with the basic problem
of counting subsets of a set. Let S = {x1,zs,...,2,} be an n-element set, or n-set for short.
Let 25 denote the set of all subsets of S, and let {0,1}" = {(e1,€2,...,6,) : & = 0 or 1}.
Since there are two possible values for each &;, we have #{0,1}" = 2". Define a map
0:25— {0,1}" by O(T) = (c1, €z, . ..,n), where
o 1, if x; € T
i_{ 0, ifw; &T.
For example, if n = 5 and T' = {x9, 24,25}, then 6(T) = (0,1,0,1,1). Most readers will
realize that 6(T) is just the characteristic vector of T. It is easily seen that 6 is a bijection,
so that we have given a combinatorial proof that #2° = 2. Of course there are many

alternative proofs of this simple result, and many of these proofs could be regarded as
combinatorial.

Now define (}j) (sometimes denoted S*) or otherwise, and read “S choose k”) to be the

set of all k-element subsets (or k-subsets) of S, and define (Z) = #(}3), read “n choose k”

(ignore our previous use of the symbol (7)) and called a binomial coefficient. Our goal is to

prove the formula
1) (n — 1
(n) _nn—1)---(n—k+ ) (1.16)

k k!

Note that if 0 < k < n then the right-hand side of equation (1.16) can be rewritten n!/k!(n—
k)!. The right-hand side of (1.16) can be used to define (}) for any complex number (or
indeterminate) n, provided k£ € N. The numerator n(n —1)---(n — k + 1) of (1.16) is read
“n lower factorial k7 and is denoted (n);. CAVEAT. Many mathematicians, especially those
in the theory of special functions, use the notation (n)y =n(n+1)---(n+k—1).

We would like to give a bijective proof of (1.16), but the factor k! in the denominator
makes it difficult to give a “simple” interpretation of the right-hand side. Therefore we use
the standard technique of clearing the denominator. To this end we count in two ways the
number N (n, k) of ways of choosing a k-subset T" of S and then linearly ordering the elements
of T. We can pick T in (Z) ways, then pick an element of T in k£ ways to be first in the
ordering, then pick another element in £ — 1 ways to be second, and so on. Thus

N(n, k) = (Z) k.

On the other hand, we could pick any element of S in n ways to be first in the ordering,
then another element in n — 1 ways to be second, on so on, down to any remaining element
in n — k4 1 ways to be kth. Thus

N(n,k)=n(n—1)---(n—k+1).
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We have therefore given a combinatorial proof that

(Z)k!:n(n—l)---(n—k—i—l),

and hence of equation (1.16).

A generating function approach to binomial coefficients can be given as follows. Regard
T1,...,T, as independent indeterminates. It is an immediate consequence of the process of
multiplication (one could also give a rigorous proof by induction) that

(L+a)(d+azg) - (L+a) =Y J[ = (1.17)

TCS x; €T

If we put each z; = x, then we obtain

o)=Y J[z=Y +*"= (Z)a:k (1.18)

TCS z;€T TCS k>0

since the term z* appears exactly ( ) times in the sum ZTCS z#T. This reasoning is an
instance of the simple but useful observation that if S is a collection of finite sets such that
S contains exactly f(n) sets with n elements, then

Zx#s = Zf(n)x

Ses n>0

Somewhat more generally, if g : N — C is any function, then

D 9#S)a* = g(n)f(n)x

Ses n>0

Equation (1.18) is such a simple result (the binomial theorem for the exponent n € N) that
it is hardly necessary to obtain first the more refined (1.17). However, it is often easier in
dealing with generating functions to work with the most number of variables (indeterminates)
possible and then specialize. Often the more refined formula will be more transparent, and
its various specializations will be automatically unified.

Various identities involving binomial coefficients follow easily from the identity (1 4+ z)" =
> k>0 ( )ac and the reader will find it instructive to find combinatorial proofs of them. (See
Exercise 1.3 for further examples of binomial coefficient identities.) For instance, put x = 1
to obtain 2" = 37, ., (7); put © = —1 to obtain 0 = Zkzo(—l)k(;;) if n > 0; differentiate

and put z = 1 to obtain n2"~t =37 'k (1), and so on.

There is a close connection between subsets of a set and compositions of a nonnegative
integer. A composition of n can be thought of as an expression of n as an ordered sum of
integers. More precisely, a composition of n is a sequence a = (ay, . . ., a) of positive integers
satisfying > a; = n. For instance, there are eight compositions of 4; namely,

I+1+1+1 3+1

2+1+1 1+3
1+24+1 2+2
1+1+4+2 4.

24



If exactly £ summands appear in a composition «, then we say that a has k parts, and we call
a a k-composition. If o = (aq, aq, . .., ax) is a k-composition of n, then define a (k— 1)-subset
Sa of [n —1] by

Sa = {al,al +6L2,...,6L1 +6L2+"'+6L1€_1}.

The correspondence « +— S, gives a bijection between all k-compositions of n and (k — 1)-
subsets of [n — 1]. Hence there are (Zj) k-compositions of n and 2"~! compositions of
n > 0. The inverse bijection S, — « is often represented schematically by drawing n dots
in a row and drawing vertical bars between k — 1 of the n — 1 spaces separating the dots.
This procedure divides the dots into k linearly ordered (from left-to-right) “compartments”

whose number of elements is a k-composition of n. For instance, the compartments
NI N I P (1.19)

correspond to the 6-composition (1,2, 1, 1,3,2) of 10. The diagram (1.19) illustrates another
very general principle related to bijective proofs — it is often efficacious to represent the
objects being counted geometrically.

A problem closely related to compositions is that of counting the number N (n, k) of solutions
to x1+x9+- - -+xr = n in nonnegative integers. Such a solution is called a weak composition
of n into k parts, or a weak k-composition of n. (A solution in positive integers is simply a
k-composition of n.) If we put y; = z;+ 1, then N(n, k) is the number of solutions in positive
integers to y; +yo + - - - + yr = n+ k, that is, the number of k-compositions of n + k. Hence
N(n, k) = (”ﬁ;l) A further variant is the enumeration of N-solutions (that is, solutions
where each variable lies in N) to 1 + x5+ - - - + 25 < n. Again we use a standard technique,
viz., introducing a slack variable y to convert the inequality xy + 22 + -+ 4+ x < n to the
equality z1+xo+- - -+, +y = n. An N-solution to this equation is a weak (k+1)-composition

of n, so the number N(n, k + 1) of such solutions is ("“kzl)_l) = ("Zk)

A k-subset T of an n-set S is sometimes called a k-combination of S without repetitions. This
suggests the problem of counting the number of k-combinations of S with repetitions; that is,
we choose k elements of S, disregarding order and allowing repeated elements. Denote this
number by ((Z)), which could be read “n multichoose k.” For instance, if S = {1,2,3} then
the combinations counted by ((2)) are 11, 22, 33, 12, 13, 23. Hence ((3)) = 6. An equivalent

but more precise treatment of combinations with repetitions can be mQade by introducing the
concept of a multiset. Intuitively, a multiset is a set with repeated elements; for instance,
{1,1,2,5,5,5}. More precisely, a finite multiset M on a set S is a pair (S,v), where v
is a function v : S — N such that )  _cv(x) < co. One regards v(x) as the number of
repetitions of x. The integer ) _ov(x) is called the cardinality, size, or number of elements
of M and is denoted |M|, #M, or card M. If S = {xy,...,z,} and v(z;) = a;, then we call
a; the multiplicity of z; in M and write M = {z{*,...,2%}. If #M = k then we call M
a k-multiset. The set of all k-multisets on S is denoted ((i)) If M'" = (S,v) is another
multiset on S, then we say that M’ is a submultiset of M if v/(x) < v(z) for all x € S. The
number of submultisets of M is [],.q(v(x) + 1), since for each x € S there are v(z) + 1
possible values of /(). It is now clear that a k-combination of S with repetition is simply
a multiset on S with k£ elements.
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Although the reader may be unaware of it, we have already evaluated the number ((")) If

k
S ={y1,...,yn} and we set z; = v(y;), then we see that ((})) is the number of solutions in
nonnegative integers to xy + x5 + - - - + z,, = k, which we have seen is (nﬁzl) = (n+1]§_1)'

There are two elegant direct combinatorial proofs that ((")) = ("Jr]]j_l). For the first, let

k
1 <a <ay<---<a, <n+k—1bea k-subset of [n + k —1]. Let b = a; —i + 1.
Then {by,ba,...,bx} is a k-multiset on [n]. Conversely, given a k-multiset 1 < b; < by <
- < b < non [n|, then defining a; = b; + i — 1 we see that {aj,as,...,ar} is a k-subset

of [n + k — 1]. Hence we have defined a bijection between << [Z] )) and ([””L]]j_l]), as desired.
This proof illustrates the technique of compression, where we convert a strictly increasing
sequence to a weakly increasing sequence.

Our second direct proof that ((Z)) = ("Jr]]j*l) is a “geometric” (or “balls into boxes” or “stars

and bars”) proof, analogous to the proof above that there are (Zj) k-compositions of n.
There are (”Jr]’j*l) sequences consisting of k dots and n — 1 vertical bars. An example of such

a sequence for £ =5 and n = 7 is given by

The n — 1 bars divide the k£ dots into n compartments. Let the number of dots in the

ith compartment be v(i). In this way the diagrams correspond to k-multisets on [n], so

((Z)) = (””L]]j_l). For the example above, the multiset is {3,3,4,7,7}.

The generating function approach to multisets is instructive. In exact analogy to our treat-
ment of subsets of a set S = {x1,...,2,}, we have

(1+IB1+CU%+"')(1-1-552+1’§+"')"'(1+1’n+$i+"'): Z Hxiu(xi)’
M=(S,) z:€S

where the sum is over all finite multisets M on S. Put each z; = x. We get

Ltazta®+-) = ) grledtivin
M=(S,v)

=Y o

M=(S,v)

= X ()

k>0

But

l+z+a’4+--)"=1—-z)"= Z <_]€n) (—1)*z*, (1.20)

k>0

so (1) == = ("**~1). The elegant formula

() -0 (7) a2

26



is no accident; it is the simplest instance of a combinatorial reciprocity theorem. A poset
generalization appears in Section 3.15.3, while a more general theory of such results is given
in Chapter 4.

The binomial coefficient (Z) may be interpreted in the following manner. Each element of
an n-set S is placed into one of two categories, with k£ elements in Category 1 and n — k
elements in Category 2. (The elements of Category 1 form a k-subset T of S.) This suggests
a generalization allowing more than two categories. Let (aq,as,...,a,) be a sequence of
nonnegative integers summing to n, and suppose that we have m categories C1,...,C,,.
Let <a1,a27,1...,am) denote the number of ways of assigning each element of an n-set S to one
of the categories C',...,C,, so that exactly a; elements are assigned to C;. The notation
is somewhat at variance with the notation for binomial coefficients (the case m = 2), but
no confusion should result when we write (Z) instead of (kr’;:k) The number <a1,a27,1...,am)
is called a multinomial coefficient. It is customary to regard the elements of S as being n
distinguishable balls and the categories as being m distinguishable boxes. Then ( " )

a1,a2,...,Gm

is the number of ways to place the balls into the boxes so that the ¢th box contains a; balls.

The multinomial coefficient can also be interpreted in terms of “permutations of a multiset.”
If S'is an n-set, then a permutation w of S can be defined as a linear ordering wy, wo, . . . , w, of
the elements of S. Think of w as a word wyws - - - w, in the alphabet S. If S = {x,...,x,},
then such a word corresponds to the bijection w : S — S given by w(zx;) = w;, so that a
permutation of S may also be regarded as a bijection S — S. Much interesting combinatorics
is based on these two different ways of representing permutations; a good example is the
second proof of Proposition 5.3.2.

We write &g for the set of permutations of S. If S = [n] then we write &,, for &p,). Since
we choose w; in n ways, then ws in n — 1 ways, and so on, we clearly have #&g5 = nl.
In an analogous manner we can define a permutation w of a multiset M of cardinality n
to be a linear ordering wy,wy, ..., w, of the “elements” of M; that is, if M = (S,v) then
the element z € S appears exactly v(z) times in the permutation. Again we think of w
as a word wyws - - -w,. For instance, there are 12 permutations of the multiset {1,1,2,3};
namely, 1123, 1132, 1213, 1312, 1231, 1321, 2113, 2131, 2311, 3112, 3121, 3211. Let &),
denote the set of permutations of M. If M = {z7*,... 2%} and #M = n, then it is clear
that

4GS, — ( " ) (1.22)
a1, a2, ...,0mn

Indeed, if z; appears in position j of the permutation, then we put the element j of [n] into
Category 1.

Our results on binomial coefficients extend straightforwardly to multinomial coefficients. In

particular, we have
|
n n!
= (1.23)
1,02, ..., 05 arlas! -+ ay,!

Among the many ways to prove this result, we can place a; elements of S into Category 1
in (:1) ways, then ay of the remaining n — a; elements of [n] into Category 2 in (";;1) ways,
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L rord

Figure 1.1: Six lattice paths

etc., yielding

(ah%é- ->am) - (:1) (” ;2‘“) (n o _a.n;. . aml) (1.24)

n!

alag! - -a,!”

Equation (1.24) is often a useful device for reducing problems on multinomial coefficients to
binomial coefficients. We leave to the reader the (easy) multinomial analogue (known as the
multinomial theorem) of equation (1.18), namely,

n
(@t at ) =) (a& a)x‘fl-~-w5$7
1, W2y .-y Um

a1+ tam=n

where the sum ranges over all (ay,...,a,) € N™ satisfying a; + - -+ + a,, = n. Note that

(1 o 1) = n!, the number of permutations of an n-element set.

Binomials and multinomial coefficients have an important geometric interpretation in terms
of lattice paths. Let S be a subset of Z?. More generally, we could replace Z¢ by any lattice
(discrete subgroup of full rank) in R?, but for simplicity we consider only Z<¢. A lattice path L
in Z? of length k with steps in S is a sequence vy, v1, . .., v; € Z¢ such that each consecutive
difference v; — v;_1 lies in S. We say that L starts at vy and ends at v, or more simply that
L goes from vy to vy. Figure 1.1 shows the six lattice paths in Z? from (0,0) to (2,2) with
steps (1,0) and (0, 1).

1.2.1 Proposition. Let v = (ay,...,aq) € N¢ and let ¢; denote the ith unit coordinate
vector in Z2. The number of lattice paths in Z¢ from the origin (0,0, ...,0) to v with steps

€1,...,€q 18 given by the multinomial coefficient (a;jx‘i)

Proof. Let vg,vy,...,v, be a lattice path being counted. Then the sequence v; — vy, v9 —
v1,...,0 — Up_1 is simply a sequence consisting of a; €;’s in some order. The proof follows
from equation (1.22). O

Proposition 1.2.1 is the most basic result in the vast subject of lattice path enumeration.
Further results in this area will appear throughout this book.
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1.3 Cycles and Inversions

Permutations of sets and multisets are among the richest objects in enumerative combina-
torics. A basic reason for this fact is the wide variety of ways to represent a permutation
combinatorially. We have already seen that we can represent a set permutation either as a
word or a function. In fact, for any set S the function w : [n] — S given by w(i) = w; corre-
sponds to the word wyws - - - w,. Several additional representations will arise in Section 1.5.
Many of the basic results derived here will play an important role in later analysis of more
complicated objects related to permutations.

A second reason for the richness of the theory of permutations is the wide variety of in-
teresting “statistics” of permutations. In the broadest sense, a statistic on some class C of
combinatorial objects is just a function f : C — S, where S is any set (often taken to be
N). We want f(z) to capture some combinatorially interesting feature of x. For instance, if
x is a (finite) set, then f(x) could be its number of elements. We can think of f as refining
the enumeration of objects in C. For instance, if C consists of all subsets of an n-set S and
f(z) = #, then f refines the number 2" of subsets of S into a sum 2" = >, (}), where
(”) is the number of subsets of S with %k elements. In this section and the next two we will

k
discuss a number of different statistics on permutations.

Cycle Structure

If we regard a set permutation w as a bijection w : S — S, then it is natural to con-
sider for each z € S the sequence z,w(z),w?(z),.... Eventually (since w is a bijection
and S is assumed finite) we must return to x. Thus for some unique ¢ > 1 we have
that w’(z) = = and that the elements x,w(x),...,w* !(x) are distinct. We call the se-
quence (z,w(z), ..., w" " (x)) a eycle of w of length £. The cycles (z,w(z),...,w"(z)) and
(wi(x), w™ (), ..., w(z),z,...,w"(z)) are considered the same. Every element of S
then appears in a unique cycle of w, and we may regard w as a disjoint union or product of
its distinct cycles Ci, ..., Cy, written w = C - - - Cy. For instance, if w : [7] — [7] is defined
by w(l) =4, w(2) =2, w(3) =7, w(4) = 1, w(5) = 3, w(6) =6, w(7) =5 (or w = 4271365
as a word), then w = (14)(2)(375)(6). Of course this representation of w in disjoint cycle
notation is not unique; we also have for instance w = (753)(14)(6)(2).

A geometric or graphical representation of a permutation w is often useful. A finite directed
graph or digraph D is a triple (V, E,¢), where V- = {x,...,x,} is a set of vertices, F is a
finite set of (directed) edges or arcs, and ¢ is a map from E to V' x V. If ¢ is injective then
we call D a simple digraph, and we can think of £ as a subset of V' x V. If e is an edge with
¢(e) = (z,y), then we represent e as an arrow directed from z to y. If w is permutation of
the set S, then define the digraph D,, of w to be the directed graph with vertex set S and
edge set {(x,y) : w(z) =y}. In other words, for every vertex x there is an edge from x to
w(z). Digraphs of permutations are characterized by the property that every vertex has one
edge pointing out and one pointing in. The disjoint cycle decomposition of a permutation
of a finite set guarantees that D, will be a disjoint union of directed cycles. For instance,
Figure 1.2 shows the digraph of the permutation w = (14)(2)(375)(6).
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4 5 7

Figure 1.2: The digraph of the permutation (14)(2)(375)(6)

We noted above that the disjoint cycle notation of a permutation is not unique. We can
define a standard representation by requiring that (a) each cycle is written with its largest
element first, and (b) the cycles are written in increasing order of their largest element. Thus
the standard form of the permutation w = (14)(2)(375)(6) is (2)(41)(6)(753). Define @ to
be the word (or permutation) obtained from w by writing it in standard form and erasing
the parentheses. For example, with w = (2)(41)(6)(753) we have w = 2416753. Now observe
that we can uniquely recover w from @ by inserting a left parenthesis in @ = ajas---a,
preceding every left-to-right maximum or record (also called outstanding element); that is,
an element a; such that a;, > a; for every j < ¢. Then insert a right parenthesis where
appropriate; that is, before every internal left parenthesis and at the end. Thus the map
w — W is a bijection from &,, to itself, known as the fundamental bijection. Let us sum up
this information as a proposition.

1.3.1 Proposition. (a) The map S, > &, defined above is a bijection.

(b) If w € &, has k cycles, then w has k left-to-right mazima.

If w e &g where #S = n, then let ¢; = ¢;(w) be the number of cycles of w of length i. Note
that n = > ic;. Define the type of w, denoted type(w), to be the sequence (cy,...,c,). The
total number of cycles of w is denoted c¢(w), so c(w) = ¢y (w) + -+ - + ¢, (w).

1.3.2 Proposition. The number of permutations w € Sg of type (ci,...,¢,) is equal to
n!/1%¢i12%¢! - - - nre, ).

Proof. Let w = wiwsy---w, be any permutation of S. Parenthesize the word w so that
the first ¢; cycles have length 1, the next ¢, have length 2, and so on. For instance, if
(c1,...,¢9) = (1,2,0,1,0,0,0,0,0) and w = 427619583, then we obtain (4)(27)(61)(9583).
In general we obtain the disjoint cycle decomposition of a permutation w’ of type (cy, ..., ¢,).
Hence we have defined a map ® : G5 — &5, where &S is the set of all u € &g of type
c=(cy,...,c,). Given u € 6§, we claim that there are 1¢¢;12%¢,! - - - n¢,! ways to write
it in disjoint cycle notation so that the cycle lengths are weakly increasing from left to right.
Namely, order the cycles of length ¢ in ¢;! ways, and choose the first elements of these cycles
in 7% ways. These choices are all independent, so the claim is proved. Hence for each u € &§
we have #®1(u) = 19¢,!12%¢,! - - - n¢,!, and the proof follows since #&g5 = n!. O

NoTE. The proof of Proposition 1.3.2 can easily be converted into a bijective proof of the
identity
n! = 1%¢,12%¢y! - - - nme,,! (#65) ,

30



analogous to our bijective proof of equation (1.16).

Proposition 1.3.2 has an elegant and useful formulation in terms of generating functions.
Suppose that w € &,, has type (c1,...,c,). Write

ttype(w) — til t;Q L tfl”’

and define the cycle indicator or cycle index of G,, to be the polynomial

Do = Zo(tr, o t) = % $ et (1.25)
weS,
(Set Zy = 1.) For instance,
Z1 = t
7 = S(E+t)

1
Zy = 6(ti’ + 3tyty + 2t3)
— i 4 2 2
Zy = 51 (t] + 6t1ta + 8tits + 3t5 + 6ty).

1.3.3 Theorem. We have

x? x3
Zan” = exp (t1x+t2§+t3§+---). (1.26)
n>0

Proof. We give a naive computational proof. For a more conceptual proof, see Exam-
ple 5.2.10. Let us expand the right-hand side of equation (1.26):

exp (;ﬁ%) = []exp (t%)
7 - HZt]Z‘T—] (1.27)

Hence the coefficient of t{* - - - tS»z™ is equal to 0 unless > ic; = n, in which case it is equal
to

1 1 n!
16101!26262! . 516101!26262!
Comparing with Proposition 1.3.2 completes the proof. O

Let us give two simple examples of the use of Theorem 1.3.3. For some additional examples,
see Exercises 5.10 and 5.11. A more general theory of cycle indicators based on symmetric
functions is given in Section 7.24. Write F'(t;z) = F(t1,ts,...;x) for the right-hand side of
equation (1.26).
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1.3.4 Example. Let eg(n) be the number of permutations w € &,, satisfying w® = 1. A
permutation w satisfies w® = 1 if and only if all its cycles have length 1,2,3 or 6. Hence

eg(n) =nl Z,(t; = 1if i|6, t; = 0 otherwise).

There follows

Zeﬁ(n)x—‘ = F(t; =11if i|6, t; = 0 otherwise)
= n!
2?3 af

For the obvious generalization to permutations w satisfying w” = 1, see equation (5.31).

1.3.5 Example. Let Ej(n) denote the expected number of k-cycles in a permutation w €
S,,. It is understood that the expectation is taken with respect to the uniform distribution
on G, so .
Ey(n) = — > a(w),
weG,
where ¢;(w) denotes the number of k-cycles in w. Now note that from the definition (1.25)
of Z,, we have

0

E - —Zn t goee . 7t7’l 1.
k(n) atk ( 1 ) ti=1
Hence
0 22 23
ZEk(n)xn = —exp|thix+to— +tlg—+---
I 2 3 ti=1
n>0 -
- M
= ——€eX X — — e
KO 2 3

2
= 5 exp log(1 —z)~

1
|
kl—=x

k
= %Zx”

n>0

It follows that Ex(n) = 1/k for n > k. Can the reader think of a simple explanation
(Exercise 1.120)7

Now define ¢(n, k) to be the number of permutations w € &,, with exactly k cycles. The
number s(n, k) := (=1)""*c(n, k) is known as a Stirling number of the first kind, and c(n, k)
is called a signless Stirling number of the first kind.

1.3.6 Lemma. The numbers c(n, k) satisfy the recurrence
c(n,k)=(n—1ecn—1,k)+cn—1,k—1), nk>1,
with the initial conditions c¢(n,k) =0 if n < k or k =0, except ¢(0,0) = 1.
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Proof. Choose a permutation w € &,,_; with £ cycles. We can insert the symbol n after
any of the numbers 1,2,...,n — 1 in the disjoint cycle decomposition of w in n — 1 ways,
yielding the disjoint cycle decomposition of a permutation w’ € &,, with k cycles for which
n appears in a cycle of length at least 2. Hence there are (n — 1)c(n — 1, k) permutations
w' € &, with k cycles for which w'(n) # n.

On the other hand, if we choose a permutation w € &,,_; with £ — 1 cycles we can extend
it to a permutation w’ € &,, with k cycles satisfying w’(n) = n by defining

' () :{ w(i), ifie[n—1]

n, if 1 =n.

Thus there are ¢(n — 1,k — 1) permutations w’ € &,, with k cycles for which w'(n) = n, and
the proof follows. O

Most of the elementary properties of the numbers ¢(n, k) can be established using Lemma 1.3.6
together with mathematical induction. However, combinatorial proofs are to be preferred
whenever possible. An illuminating illustration of the various techniques available to prove
elementary combinatorial identities is provided by the next result.

1.3.7 Proposition. Let t be an indeterminate and fir n > 0. Then

n

> eln k)t =t(t+1)(t+2) - (t+n—1). (1.28)
k=0

First proof. This proof may be regarded as “semi-combinatorial” since it is based directly
on Lemma 1.3.6, which had a combinatorial proof. Let

E,t)=tt+1)---(t+n—1)= zn:b(n, k)tk.

Clearly b(n,k) = 0if n =0 or kK = 0, except b(0,0) = 1 (an empty product is equal to 1).
Moreover, since

F.it) = (t+n—1)F,_1(t)

3
—_

= Y bn—1k=1Dt"+ (n—=1)> b(n—1,k)t*,
k=1 0

i

there follows b(n,k) = (n — 1)b(n — 1,k) + b(n — 1,k — 1). Hence b(n, k) satisfies the same
recurrence and initial conditions as ¢(n, k), so they agree. O

Second proof. Our next proof is a straightforward argument using generating functions. In
terms of the cycle indicator Z,, we have

n

D eln k)tF =nlZ, (Lt ...

k=0
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Hence substituting ¢; = ¢ in equation (1.26) gives

ch(n,k)th_ = expt(z+ v + L )
n! 2 3
n>0 k=0
expt(log(l —z)™1)
(1—a)"
n _t n
- ser())
n>0
xn
= D Ht+1). . (tFn—1)=,
>0 n!
and the proof follows from taking coefficient of z™ /n!. 0

Third proof. The coefficient of t* in F,(t) is

Z a1Qs -+ Qp_f, (1.29)

1<ai<az<-<@p_p<n—1
where the sum is over all (") (n — k)-subsets {ai,...,a,_4} of [n —1]. (Though irrelevant
here, it is interesting to note that this sum is just the (n—k)th elementary symmetric function
of 1,2,...,n—1.) Clearly (1.29) counts the number of pairs (S, f), where S € GZ:}J) and
f: 8 — [n—1] satisfies f(i) <i. Thus we seek a bijection ¢ : Q@ — &,, 1 between the set
of all such pairs (5, f), and the set &, of w € &,, with k cycles.

Given (S, f) € Q where S = {ay,...,apt}< C[n—1],define T ={j €[n] : n—j & S}. Let
the elements of [n] — T be by > by > -+ > b,_x. Define w = ¢(95, f) to be that permutation
that when written in standard form satisfies: (i) the first (=greatest) elements of the cycles
of w are the elements of T, and (ii) for i € [n — k] the number of elements of w preceding b;
and larger than b; is f(a;). We leave it to the reader to verify that this construction yields
the desired bijection. O

1.3.8 Example. Suppose that in the above proof n =9, k =4, S = {1,3,4,6,8}, f(1) =1
f(3) =2, f(4) =1, f(6) =3, f(8) =6. Then T' = {2,4,7,9}, [9] - T = {1, 3,5,6,8}, and
w = (2)(4)(753)(9168).

Fourth proof of Proposition 1.3.7. There are two basic ways of giving a combinatorial proof
that two polynomials are equal: (i) showing that their coefficients are equal, and (ii) showing
that they agree for sufficiently many values of their variable(s). We have already established
Proposition 1.3.7 by the first technique; here we apply the second. If two polynomials in
a single variable ¢ (over the complex numbers, say) agree for all ¢ € P, then they agree as
polynomials. Thus it suffices to establish (1.28) for all ¢ € P.

Let t € P, and let C'(w) denote the set of cycles of w € &,,. The left-hand side of (1.28)
counts all pairs (w, f), where w € &,, and f : C(w) — [t]. The right-hand side counts integer
sequences (ay, asg, ..., a,) where 0 < a; <t+mn —i— 1. (There are historical reasons for this
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restriction of a;, rather than, say, 1 < a; < t+i—1.) Given such a sequence (ay, as,...,a,),
the following simple algorithm may be used to define (w, f). First write down the number n
and regard it as starting a cycle C; of w. Let f(C}) = a,+1. Assumingn,n—1,...,n—i+1
have been inserted into the disjoint cycle notation for w, we now have two possibilities:

i. 0 <a,_; <t—1. Then start a new cycle C; with the element n — ¢ to the left of the
previously inserted elements, and set f(C;) = a,—; + 1.

ii. a,_; =t+ k where 0 < k <i— 1. Then insert n — ¢ into an old cycle so that it is not
the leftmost element of any cycle, and so that it appears to the right of £ 4+ 1 of the
numbers previously inserted.

This procedure establishes the desired bijection. O

1.3.9 Example. Suppose n =9, t =4, and (ay,...,a9) = (4,8,5,0,7,5,2,4,1). Then w is
built up as follows:

Note that if we set t = 1 in the preceding proof, we obtain a combinatorial proof of the
following result.

1.3.10 Proposition. Let n,k € P. The number of integer sequences (ai, ..., a,) such that
0 <a; <n—1iand exactly k values of a; equal 0 is c(n, k)

Note that because of Proposition 1.3.1 we obtain “for free” the enumeration of permutations
by left-to-right maxima.

1.3.11 Corollary. The number of w € &,, with k left-to-right mazima is c(n, k).

Corollary 1.3.11 illustrates one benefit of having different ways of representing the same

object (here a permutation)—different enumerative problems involving the object turn out
to be equivalent.

Inversions

The fourth proof of Proposition 1.3.7 (in the case t = 1) associated a permutation w € &,,
with an integer sequence (ay,...,a,), 0 < a; < n —i. There is a different method for
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accomplishing this which is perhaps more natural. Given such a vector (ay,...,a,), assume
that n,n —1,...,n —i+ 1 have been inserted into w, expressed this time as a word (rather
than a product of cycles). Then insert n — i so that it has a,_; elements to its left. For
example, if (ay,...,a9) = (1,5,2,0,4,2,0,1,0), then w is built up as follows:

9

98

798

7968
79685
479685
4739685
47396285
417396285.

Clearly a; is the number of entries j of w to the left of ¢ satisfying j > i. A pair (w;, w;) is
called an inversion of the permutation w = wywsy---w, if ¢ < j and w; > w;. The above
sequence [(w) = (ay,...,a,) is called the inversion table of w. The above algorithm for
constructing w from its inversion table I(w) establishes the following result.

1.3.12 Proposition. Let
T, ={(a1,...,a,) : 0<a; <n—i}=[0,n—1] x [0,n—2] x---x[0,0].
The map I : &,, — T, that sends each permutation to its inversion table is a bijection.

Therefore, the inversion table I(w) is yet another way to represent a permutation w. Let us
also mention that the code of a permutation w is defined by code(w) = I(w™!). Equivalently,
if w = w;---w, and code(w) = (c1,...,¢,), then ¢; is equal to the number of elements w;
to the right of w; (i.e., i < j) such that w; > w;. The question of whether to use I(w) or
code(w) depends on the problem at hand and is clearly only a matter of convenience. Often
it makes no difference which is used, such as in obtaining the next corollary.

1.3.13 Corollary. Let inv(w) denote the number of inversions of the permutation w € &,,.
Then '
Y™ =1+ +q+¢) - A+q+d+-+¢"). (1.30)
wGGn

Proof. 1f I(w) = (a4, ..., a,) then inv(w) = a; + - - - + a,. hence

Z qinv(w) — nz:l nzf Ce 20: qa1+a2+...+an
weS, 01=0 a3—0 =
n—1 n—2 0
= (Z qa1> (Z qa2> (Z qan) ’
a1=0 az=0 0
as desired. ]
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The polynomial (1+¢)(1+q+¢*) - - (14+q+---+¢" ') is called “the g-analogue of n!” and
is denoted (m)!. Moreover, we denote the polynomial 1 +¢q+---+¢" ' = (1 —¢")/(1 —q)
by (n) and call it “the g-analogue of n,” so that

(n)! = (1)(2) - (n).

In general, a g-analogue of a mathematical object is an object depending on the variable
g that “reduces to” (an admittedly vague term) the original object when we set ¢ = 1.
To be a “satisfactory” g-analogue more is required, but there is no precise definition of
what is meant by “satisfactory.” Certainly one desirable property is that the original object
concerns finite sets, while the ¢g-analogue can be interpreted in terms of subspaces of finite-
dimensional vector spaces over the finite field IF,. For instance, n! is the number of sequences
=S S C--CS, = [n] of subsets of [n]. (The symbol C denotes strict inclusion,
so #S; = i.) Similarly if ¢ is a prime power then (n)! is the number of sequences 0 =
Vwcvic---CV,= IFZ of subspaces of the n-dimensional vector space Ff} over F, (so
dim V; = 7). For this reason (n)! is regarded as a satisfactory g-analogue of n!. We can also
regard an i-dimensional vector space over I, as the g-analogue of an i-element set. Many
more instances of g-analogues will appear throughout this book, especially in Section 1.10.
The theory of binomial posets developed in Section 3.18 gives a partial explanation for the
existence of certain classes of g-analogues including (m)!.

We conclude this section with a simple but important property of the statistic inv.

1.3.14 Proposition. For any w = wyws - - - w, € &, we have inv(w) = inv(w™).

Proof. The pair (i,7) is an inversion of w if and only if (w;, w;) is an inversion of w™'. [
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1.4 Descents

In addition to cycle type and inversion table, there is one other fundamental statistic associ-
ated with a permutation w € 6,,. If w = wyws---w, and 1 <17 <n — 1, then 7 is a descent
of w if w; > w;1 1, while 7 is an ascent if w; < w;1. (Sometimes it is desirable to also define
n to be a descent, but we will adhere to the above definition.) Define the descent set D(w)
of w by

D(w) ={i : w; > w1} C[n—1].

If S C [n— 1], then denote by a(S) (or a,(S) if necessary) the number of permutations
w € &, whose descent set is contained in S, and by B(S) (or £,(S)) the number whose
descent set is equal to S. In symbols,

a(S) = #Hwes, : Dw)C S} (1.31)
B(S) = #Hwes, : D(w)=S}. (1.32)

Clearly

a(S) =Y B(T). (1.33)

TCS

As explained in Example 2.2.4, we can invert this relationship to obtain

B(S) = SO (=1)#ENa(T). (1.34)

TCS

1.4.1 Proposition. Let S = {s1,...,sk}< C [n—1]. Then

n
a(S) = ( ) (1.35)
81,82 — 81,83 — 82,...,T — Sk
Proof. To obtain a permutation w = wywsy - --w, € &, satisfying D(w) C S, first choose
wy < wp < --- < Wy, in (5”1) ways. Then choose ws, 11 < wg, 42 < -+ + < Wy, in (:2:8’811) ways,
and so on. We therefore obtain
n\/n—s n—s n—s
S1 S9 — 51 S3 — 89 n — Sg
B n
B S1,82 — 51,83 — S2,...,10 — Sk ’
as desired. O

1.4.2 Example. Let n > 9. Then

Bn(3,8) = a,(3,8) — an(3) — an(8) + an(0)
(o) ()
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Two closely related descent sets are of special combinatorial interest. We say that a per-
mutation w = wyws -+ -w, € &, (or more generally any sequence of distinct numbers) is
alternating (or zigzag or down-up) if wy > we < wy > wy < ---. Equivalently, D(w) =
{1,3,5,...}N[n—1]. The alternating permutations in &, are 2143, 3142, 3241, 4132, 4231.
Similarly, w is reverse alternating (or up-down) if w; < we > w3 < wy > - -. Equivalently,
D(w) = {2,4,6,...} N [n —1]. The reverse alternating permutations in &4 are 1324, 1423,
2314, 2413, 3412. The number of alternating permutations w € &,, is denoted E, (with
Ey = 1) and is called an Euler number. (Originally (—1)"E,, was called an Euler number.)
Since w is alternating if and only if n +1 —wy,n+1 — wsy,...,n+ 1 — w, is reverse al-
ternating, it follows that FE,, is also the number of reverse alternating permutations in G,,.
We will develop some properties of alternating permutations and Euler numbers in various
subsequent sections, especially Section 1.6.

NOTE. Some mathematicians define alternating permutations to be our reverse alternating
permutations, while others define them to be permutations which are either alternating or
reverse alternating according to our definition.

For the remainder of this section we discuss some additional permutation statistics based
on the descent set. The first of these is the number of descents of w, denoted des(w). Thus
des(w) = #D(w). Let

Ag(z) = ) attdst) (1.36)

weSy
d
= ) A(d, k)2*.
k=1

Hence A(d, k) is the number of permutations w € &, with exactly & — 1 descents. The
polynomial Ay(x) is called an Fulerian polynomial, while A(d, k) is an Fulerian number. We
set A(0, k) = dox. The first few Eulerian polynomials are

Ag(z) = 1

Ai(z) = =z

Ay(x) = x4+ a2
As(z) = z4422 423

x4+ 1122 +112° + 2*
= x4+ 2622 + 662> + 262* + 2°

A5 €T
Ag(x) = x4 572% + 30222 + 3022 + 572° + 26
As(x) = x4 1202% + 119123 + 24162 + 11912° + 1202° + 27

=~
AAAA/@AAAA
S N e e e e e N

8

= 1+ 2472 + 429323 + 156192 + 156192° + 42932°
+24727 + 28,

&

The bijection w — @ of Proposition 1.3.1 yields an interesting alternative description of the
Eulerian numbers. Suppose that

w = (a/17 as, ... 7ai1)(a/i1+17 ai1+27 ey aig) Tt (aik_l-f—l? aik_1+27 ... 7a/d)
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is a permutation in &, written in standard form. Thus ay,a;,41,...,a;,_,+1 are the largest
elements of their cycles, and a; < a;,+1 < -+ < a;,_,+1. It follows that if w(a;) # a;41, then
a; < a;y1. Hence a; < a;q or i = d if and only if w(a;) > a;, so that

d—des(w) =#{i € [d] : w(i) >i}.

A number i for which w(i) > i is called a weak excedance of w, while a number ¢ for which
w(i) > i is called an ezcedance of w. One easily sees that a permutation w = wywsy - - - wy has
k weak excedances if and only if the permutation ujus - - - ug defined by u; =d+1 — wg_;41
has d — k excedances. Moreover, w has d — 1 — j descents if and only if wgqwg_1 - - -w; has j
descents. We therefore obtain the following result.

1.4.3 Proposition. The number of permutations w € &Sy with k excedances, as well as the
number with k + 1 weak excedances, is equal to the Fulerian number A(d, k + 1).

The next result gives a fundamental property of Eulerian polynomials related to generating
functions.

1.4.4 Proposition. For every d > 0 we have

> miam = _Ad@) (1.37)

_ \dr1
= (1 —z)dt

Proof. The proof is by induction on d. Since »_ 2™ =1/(1 — ), the assertion is true for
d = 0. Now assume that equation (1.37) holds for some d > 0. Differentiate with respect to
x and multiply by x to obtain

S MO

Hence it suffices to show that
Agii(z) = 2(1 —2)Al(x) + (d+ 1)z Ay(z).
Taking coefficients of ¥ on both sides and simplifying yields
Ald+1,k) =KkA(d, k) + (d — k+2)A(d, k — 1). (1.39)

The left-hand side of equation (1.39) counts permutations in &,y with & — 1 descents. We
can obtain such a permutation uniquely in one of two ways. For the first way, choose a
permutation w = wy - - - wy € &4 with k£ — 1 descents, and insert d+ 1 after w; if i € D(w), or
insert d+1 at the end. There are k ways to insert d+1, so we obtain by this method kA(d, k)
permutations in &,y; with £ — 1 descents. For the second way, choose w = wy ---wy € Gy
with &k — 2 descents, and insert d 4+ 1 after w; if i € D(w), or insert d 4+ 1 at the beginning,.
There are d — k + 2 ways to insert d + 1, so we obtain a further (d — k + 2)A(d,k — 1)
permutations in G441 with k£ —1 descents. We have verified that the recurrence (1.39) holds,
so the proof follows by induction. O
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The appearance of the expression m? in equation (1.37) suggests that there might be a more

conceptual proof involving functions f : [d] — [m]. We give such a proof at the end of this
section.

We can also give a formula for the exponential generating function of the Eulerian polyno-
mials themselves. For this purpose define Ag(x) = 1.

1.4.5 Proposition. We have

ZAd(x)% __dor (1.40)

1 — ge(l=2)t’
>0

Proof. Perhaps the simplest proof at this point is to multiply equation (1.37) by t?/d! and
sum on d > 0. We get (using the convention 0° = 1, which is often “correct” in enumerative
combinatorics)

Ad(x) td d mtd
DRCICIRGREE e
d>0 d>0 m>0
_ meemt

m>0
1
1 —zet’

Now multiply both sides by 1 — x and substitute (1 — )t for ¢ to complete the proof. (A
more conceptual proof will be given in Section 3.19.) O

A further interesting statistic associated with the descent set D(w) is the major indez (orig-
inally called the greater index), denoted maj(w) (originally ¢(w)) and defined to be the sum

of the elements of D(w):
maj(w) = Z i.
)

i€D(w

We next give a bijective proof of the remarkable result that inv and maj are equidistributed,
i.e., for any k,

#{we S, : inv(w) =k} =#{w € &, : maj(w) = k}. (1.41)

Note that in terms of generating functions, equation (1.41) takes the form

Z qinv(w) _ Z qmaj(w)'

weS, weG,

1.4.6 Proposition. We have

D gt = ()l (1.42)

’wEGn
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Proof. We will recursively define a bijection ¢ : G,, — &,, as follows. Let w = wy---w, €
S,,. We will define words (or sequences) 71, . . ., ¥, where 7 is a permutation of {wy, . .., wy}.

First let 7, = w;. Assume that 7, has been defined for some 1 < k < n. If the last letter
of v (which turns out to be wy) is greater (respectively, smaller) than wyq, then split
v, after each letter greater (respectively, smaller) than wy, ;. These splits divide ~; into
compartments. Cyclically shift each compartment of ~; one unit to the right, and place
wgy1 at the end. Let 4,1 be the word thus obtained. Set ¢(w) = 7,.

1.4.7 Example. Before analyzing the map ¢, let us first give an example. Let w =
683941725 € Gy. Then ; = 6. It is irrelevant at this point whether 6 < wy or 6 > wy
since there can be only one compartment, and v, = 68. Now 8 > w3 = 3, so we split 68 after
numbers greater than 3, getting 6 | 8. Cyclically shifting the two compartments of length
one leaves them unchanged, so 73 = 683. Now 3 < wy = 9, so we split 683 after numbers
less than 9. We get 6|8 | 3 and 4 = 6839. Now 9 > w; = 4, so we split 6839 after numbers
greater than 4, giving 6|8|39. The cyclic shift of 39 is 93, so 75 = 68934. Continuing in this
manner gives the following sequence of v;’s and compartments:

6

6|8
6813
6/8]3 9
618]9]3]4

6)8 9 3]4]1
6]3|8]9]4]17
6 3|8 9 4]71]2
36489 17 25

Hence p(w) = 364891725. Note that maj(w) = inv(p(w)) = 18.

Returning to the proof of Proposition 1.4.6, we claim that ¢ is a bijection transforming maj
to inv, i.e.,
maj(w) = inv(p(w)). (1.43)

We have defined inv and maj for permutations w € &,,, but precisely the same definition
can be made for any sequence w = wy - - - w, of integers. Namely,

inv(w) = #{(,j) i <j, wi>w;}

maj(w) = Z i

1IWi>Wi4

Let n = wyws - - - wg. We then prove by induction on k that inv(y) = maj(n), from which
the proof follows by letting £ = n.

Clearly inv(7y;) = maj(n;) = 0. Assume that inv(y;) = maj(n) for some k < n. First
suppose that the last letter wy of ~ is greater than wy,;. Thus k € D(w), so we need
to show that inv(yx11) = k + inv(;). The last letter of any compartment C' of 7y is the
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largest letter of the compartment. Hence when we cyclically shift this compartment we
create #C' — 1 new inversions. Each compartment contains exactly one letter larger than
Wg11, S0 when we append w1 to the end of ~, the number of new inversions (i, k + 1) is
equal to the number m of compartments. Thus altogether we have created

d#HC -1 +m=k

c

new inversions, as desired. The proof for the case wy < wy; is similar and will be omitted.

It remains to show that ¢ is a bijection. To do so we define ¢~ 1. Let v = vjvy---v, € &,,.
We want to find a (unique) w = wyws - - - w,, € &, so that p(w) = v. Let §,,_1 = vivg -+ v,
and w, = v,. Now suppose that o and wyy1, wr s, ..., w, have been defined for some
1 <k < n. If the first letter of 0y is greater (respectively, smaller) than w1, then split Jj
before each letter greater (respectively, smaller) than wg, ;. Then in each compartment of
0 thus formed, cyclically shift the letters one unit to the left. Let the last letter of the word
thus formed be wy, and remove this last letter to obtain d,_;. It is easily verified that this
procedure simply reverses the procedure used to obtain v = ¢(w) from w, completing the
proof. O

Proposition 1.4.6 establishes the equidistribution of inv and maj on &,,. Whenever we have
two equidistributed statistics f,g: S — N on a set S, we can ask whether a stronger result
holds, namely, whether f and g have a symmetric joint distribution. This means that for all
7, k we have

HreS: flx)=j, glo) =kt =3{z €5 : f(z) =k, g(z) = j}. (1.44)

This condition can be restated in terms of generating functions as

3 @) = 37 goyf @),

zeSs zeSs

The best way to prove (1.44) is to find a bijection ¢ : S — S such that for all x € S, we
have f(z) = g(¢(x)) and g(z) = f(¢(x)). In other words, 1 interchanges the two statistics
f and g.

Our next goal is to show that inv and maj have a symmetric joint distribution on &,,. We
will not give an explicit bijection ¢ : &,, — &,, interchanging inv and maj, but rather we
will deduce it from a surprising property of the bijection ¢ defined in the proof of Propo-
sition 1.4.6. To explain this property, define the inverse descent set ID(w) of w € &,, by
ID(w) = D(w™!). Alternatively, we may think of ID(w) as the “reading set” of w as follows.
We read the numbers 1,2,...,n in w from left-to-right in their standard order, going back
to the beginning of w when necessary. For instance, if w = 683941725, then we first read
12, then 345, then 67, and finally 89. The cumulative number of elements in these reading
sequences, excluding the last, form the reading set of w. It is easy to see that this reading
set is just ID(w). For instance, ID(683941725) = {2,5,7}.

We can easily extend the definition of ID(w) to arbitrary sequences wyws - - - w,, of distinct
integers. (We can even drop the condition that the w;’s are distinct, but we have no need
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here for such generality.) Simply regard w = wjws - - -w,, as a permutation of its elements
written in increasing order, i.e., if S = {wq,...,w,} = {uy,...,u,}~, then identify w with
the permutation of S defined by w(u;) = w;. We can then write w™' as a word in the
same way as w and hence can define ID(w) as the descent set of w™! written as a word. For
instance, if w = 74285, then w™! = 54827 and ID(w) = {1, 3}. We can obtain the same result
by reading w in the increasing order of its elements as before, obtaining reading sequences
ULUD =+ Ujyy Ujg41 " Ujgy - - - ,uij+1 s Uy, and then obtaining ID(w) = {il, ig, Ce ,ij} (the
cumulative numbers of elements in the reading sequences). For instance, with w = 74285
the reading sequences are 2, 45, 78, giving ID(w) = {1, 3} as before.

1.4.8 Theorem. Let ¢ be the bijection defined in the proof of Proposition 1.4.6. Then for
alw € &, ID(w) = ID(¢(w)). In other words, ¢ preserves the inverse descent set.

Proof. Preserve the notation of the proof of Proposition 1.4.6. We prove by induction on
k that ID(yx) = ID(m), from which the proof follows by setting k& = n. Clearly ID(v;) =
ID(n;) = (0. Assume that ID(7;) = ID(n;) for some k& < n. First suppose that the last letter
wy, of vy, is greater than wy 1, so that the last letter of any compartment C' of 74 is the unique
letter in the compartment larger than wy,;. Consider the reading of n;.1. It will proceed
just as for n until we encounter the largest letter of ny less than wy, 1, in which case we next
read wy1 and then return to the beginning. Exactly the same is true for reading 41, so by
the induction hypothesis the reading sets of 1.1 and ;41 are the same up to this point. Let
L be the set of remaining letters to be read. The letters in L are those greater than wy..
The reading words of these letters are the same for 7, and 74 by the induction hypothesis.
But the letters of L appear in the same order in 7; and 141 by definition of ;. Moreover,
they also appear in the same order in 7y, and 7,1 since each such letter appears in exactly
one compartment, so cyclic shifts (or indeed any permutations) within each compartment of
v does not change their order in ;1. Hence the reading words of the letters in L are the
same for 71 and g1, so the proof follows for the case wy > wy.1. The case wy < wyyq is
similar and will be omitted. O

Let imaj(w) = maj(w™!) = > icib(w) i As an immediate corollary to Theorem 1.4.8 we get
the symmetric joint distribution of three pairs of permutations statistics including (inv, maj),
thereby improving Proposition 1.4.6. For further information about the bidistribution of
(maj,imaj), see Exercise 4.47 and Corollary 7.23.9.

1.4.9 Corollary. The three pairs of statistics (inv, maj), (inv,imaj), and (maj,imaj) have
symmetric joint distributions.

Proof. Let f be any statistic on &,,, and define g by g(w) = f(w™!). Clearly (f,g) have
a symmetric joint distribution, of which (maj,imaj) is a special case. By Theorem 1.4.8
¢ transforms maj to inv while preserving imaj, so (inv,imaj) have a symmetric joint dis-
tribution. It then follows from Proposition 1.3.14 that (inv, maj) have a symmetric joint
distribution. O

We conclude this section by discussing a connection between permutations w € &, and
functions f : [n] — N (the set N could be replaced by any totally ordered set) in which the
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descent set plays a leading role.

1.4.10 Definition. Let w = wjwy---w, € &,. We say that the function f : [n] — N is
w-compatible if the following two conditions hold.

(a) f(wi) > flwa) = -+ > f(wy)
(b) f(w;) > f(wizq) if w; > wiyq (Le., if 1 € D(w))

1.4.11 Lemma. Given f : [n] — N, there is a unique permutation w € &,, for which f is
w-compatible.

Proof. An ordered partition or set composition of a (finite) set S is a vector (By, Ba, ..., By)
of subsets B; C S such that B; # 0, B;N B; = for i # j, and B; U---U B, = S. Clearly
there is a unique ordered partition (By, ..., By) of [n] such that f is constant on each B;
and f(By) > f(By) > --- > f(By) (where f(B;) means f(m) for any m € B;). Then w
is obtained by arranging the elements of B; in increasing order, then the elements of By in
increasing order, and so on. O

The enumeration of certain natural classes of w-compatible functions is closely related to the
statistics des and maj, as shown by the next lemma. Further enumerative results concerning
w-compatible functions appear in Subsection 3.15.1. For w € &,, let A(w) denote the set
of all w-compatible functions f : [n] — N; and for w € S, let A,,(w) denote the set of
w-compatible functions f : [d] — [m], i.e., A, (w) = A(w) N [m] @, where in general if X and
Y are sets then YX denotes the set of all functions f : X — Y. Note that Ay(w) = 0.

1.4.12 Lemma. (a) For w € &, and m > 0 we have

= (T () e

. lerdes(w)

m>1

(If 0 < m < des(w), then we set <<m7d§S(w)>> =0.)

and

(b) For f: [n] = N write |f| =Y, f(i). Then for w € &,, we have

graiw)

.
2 4 (-l —¢¥)--(1—g")

feA(w)

(1.47)

Proof. The basic idea of both proofs is to convert “partially strictly decreasing” sequences
to weakly decreasing sequences similar to our first direct proof in Section 1.2 of the formula

((Z)) = (””L]]j_l). We will give “proofs by example” that should make the general case clear.

(a) Let w = 4632715. Then f € A,,(w) if and only if
m > f(4) = f(6) > f(3) > f(2) = f(7) > f(1) = f(5) = 1. (1.48)
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Let g(5) = f(5), g(1) = f(1), 9(7) = f(T)—1,9(2) = f(2)-1,9(3) = f(3)=2, g(6) = f(6)—3,
g(4) = f(4) — 3. In general, g(j) = f(j) — h;, where h; is the number of descents of w to the
right of j. Equation (1.48) becomes

m—32>g(4)>g(6) >g(3)>g(2) >g(7) >g(1) > g(5) > 1.

Clearly the number of such g is ((";°)) ?) (( >>, and (1.45) follows. There are

numerous ways to obtain equation (1.46) from ( 45) e.g, by observing that

<(m - cCiZeS(w))) = (—1)mdes(w)=l (m __SZSJ(rwl))— 1)

and using (1.20).
(b) Let w = 4632715 as in (a). Then f € A(w) if and only

f(4) = f(6) > f(3) > f(2) = f(7) > f(1) = f(5) = 0. (1.49)
Defining ¢ as in (a), equation (1.49) becomes

9(4) = g(6) = g(3) = g(2) = g(7) = ¢g(1) = g(5) = 0.
Moreover, 3 f(i) = > g(i) + 10 = 3~ g(4) + maj(w). Hence

Z M = gmai) IO+ a(5)
feA(w 9(4)29(6)29(3)29(2)29(7)29(1) 29(5)0

The latter sum is easy to evaluate in a number of ways, e.g., as an iterated geometric
progression (that is, first sum on g(4) > ¢(6), then on g(6) > ¢(3), etc.). It also is equivalent
to equation (1.76). The proof follows. O

Let N denote the set of all functions f : [n] — N, and let A(w) denote those f € NI that
are compatible with w € G,,. Lemma 1.4.11 then says that we have a disjoint union

NI = () yes, A(w). (1.50)

It also follows that
m ¥ = Jwes, Am(w). (1.51)

We now are in a position to give more conceptual proofs of Propositions 1.4.4 and 1.4.6.
Take the cardinality of both sides of (1.51), multiply by 2™, and sum on m > 0. We get

Zmdxm = Z #A,(w) - x

m>0 weSy

The proof of Proposition 1.4.4 now follows from equation (1.46). Similarly, by (1.50) we

have Z q\fl Z Z q

feNI(n] weS, feA(w
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The left-hand side is clearly 1/(1 — ¢)™, while by equation (1.47) the right-hand side is

maj(w)

2 .

_ —a?).-- (1 =qgn)’
2 =g —=¢)--(1—-q")
Hence .

1 > wce., gmaiw)

I-g" (Q-q9)1l-¢)(1-g")
Multiplying by (1 — ¢)(1 — ¢*) - - - (1 — ¢") and simplifying gives Proposition 1.4.6.
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Figure 1.3: The permutation matrix of the permutation w = 795418362

1.5 (Geometric Representations of Permutations

We have seen that a permutation can be regarded as either a function, a word, or a sequence
(the inversion table). In this section we will consider four additional ways of representing
permutations and will illustrate the usefulness of each such representation.

The first representation is the most obvious, viz., a permutation matrix. Specifically, if
w € &, then define the n x n matrix P,, with rows and columns indexed by [n], as follows:

L itw) =
(Pu)ij = { 0, otherwise.

The matrix P, is called the permutation matriz corresponding to w. Clearly a square (0, 1)-
matrix is a permutation matrix if and only if it has exactly one 1 in every row and column.
Sometimes it is more convenient to replace the 0’s and 1’s with some other symbols. For
instance, the matrix P, could be replaced by a n x n grid, where each square indexed by
(i,w(i)) is filled in. Figure 1.3 shows the matrix P, corresponding to w = 795418362,
together with the equivalent representation as a grid with certain squares filled in.

To illustrate the use of permutation matrices as geometric objects per se, define a decreasing
subsequence of length k of a permutation w = w;---w, € &, to be a subsequence w;, >
Wiy > -+ > w;, (so iy <idg < -+ < iy by definition of subsequence). (Increasing subsequence
is similarly defined, though we have no need for this concept in the present example.) Let
f(n) be the number of permutations w € &,, with no decreasing subsequence of length three.
For instance, f(3) = 5 since 321 is the only excluded permutation. Let w be a permutation
with no decreasing subsequence of length three, and let P, be its permutation matrix, where
for better visualization we replace the 1’s in P, by X’s. Draw a lattice path L,, from the
upper-left corner of P, to the lower right corner, where each step is one unit to the right
(east) or down (south), and where the “outside corners” (consisting of a right step followed
by a down step) of L, occur at the top and right of each square on or above the main
diagonal containing an X. We trust that Figure 1.4 will make this definition clear; it shows
the five paths for w € G3 as well as the path for w = 412573968. It is not hard to see that
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Figure 1.4: Lattice paths corresponding to 321-avoiding permutations

the lattice paths so obtained are exactly those that do not pass below the main diagonal.
Conversely, it is also not hard to see that given a lattice path L not passing below the main
diagonal, there is a unique permutation w € &,, with no decreasing subsequence of length
three for which L = L,,.

We have converted our permutation enumeration problem to a much more tractable lattice
path counting problem. It is shown in Corollary 6.2.3 that the number of such paths is the

Catalan number C, = #1 (2:), so we have shown that

f(n) =Ch. (1.52)

The growth diagrams discussed in Section 7.13 show a more sophisticated use of permutation
matrices.

NoTE. The Catalan numbers form one of the most interesting and ubiquitous sequences in
enumerative combinatorics; see Chapter 6, especially Corollary 6.2.3 and Exercise 6.19, for
further information.

An object closely related to the permutation matrix P, is the diagram of w € &,,. Represent
the set [n] x [n] as an n x n array of dots, using matrix coordinates, so the upper-left dot
represents (1, 1), the dot to its right is (1,2), etc. If w(z) = j, then from the point (7, j) draw
a horizonal line to the right and vertical line to the bottom. Figure 1.5 illustrates the case
w = 314652. The set of dots that are not covered by lines is called the diagram D, of w.
For instance, Figure 1.5 shows that

D314652 = {(1a 1)7 (1a 2)7 (3a 2)7 (4a 2)7 (4a 5)7 (5a 2)}
The dots of the diagram are circled for greater clarity.

It is easy to see that if a; denotes the number of elements of D,, in column j, then the
inversion table of w is given by I(w) = (ai,as,...,a,). Similarly, if ¢; is the number of
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Figure 1.5: The diagram of the permutation w = 314652

elements in the ith row of D,, then code(w) = (c1,¢q,...,¢,). If Df denotes the transpose
(relection about the main diagonal) of D,,, then D! = D, 1.

As an illustration of the use of the diagram D,,, define a permutation w = w; ---w, € &,
to be 132-avoiding if there does not exist ¢ < j < k with w; < wy < w;. In other words,
no subsequence of w of length three has its terms in the same relative order as 132. Clearly
this definition can be generalized to define u-avoiding permutations, where v € &;. For
instance, the permutations considered above with no decreasing subsequence of length three
are just 321-avoiding permutations.

It is not hard to see that w is 132-avoiding if and only if there exists integers Ay > Ay > --- >0
such that for all © > 0 the ith row of D,, consists of the first \; dots in that row. In symbols,

Dy ={(1,4) : 1 <j < A}

Equivalently, if (i,7) € D, and ¢ < i, j/ < j, then (i',j') € D,. In the terminology
of Section 1.7, the sequence A = (A1, Ag,...) is a partition of > X\; = inv(w), and D, is
the Ferrers diagram of A. In this sense diagrams of permutations are generalizations of
diagrams of partitions. Note that in any n x n diagram D,,, where w € &,,, there are at
least ¢ dots in the ¢th row that do not belong to D,,. Hence if w is 132-avoiding then the
corresponding partition A = (Aq,...\,) satisfies \; < n —i. Conversely, it is easy to see
that if A satisfies \; < n — ¢ then the Ferrers diagram of X is the diagram of a (necessarily
132-avoiding) permutation w € &,. Hence the number of 132-avoiding permutations in
G, is equal to the number of integer sequences Ay > --- > A\, > 0 such that \; < n — .
It follows from Exercise 6.19(s) that the number of such sequences is the Catalan number
C, = #1 (2:) (There is also a simple bijection with the lattice paths that we put in one-to-
one correspondence with 321-avoiding permutations. In fact, the lattice path construction
we applied to 321-avoiding permutations works equally well for 132-avoiding permutations
if our paths go from the upper right to lower left; see Figure 1.6.) Hence by equation (1.52)
the number of 132-avoiding permutations in &,, is the same as the number of 321-avoiding
permutations in G,,, i.e., permutations in &,, with no decreasing subsequence of length three.
Simple symmetry arguments (e.g., replacing wyws - - - w, with w,, -+ -wow;) then show that
for any u € &3, the number of u-avoiding permutations w € G,, is C,,.

Since #D,, = inv(w), the above characterization of diagrams of 132-avoiding permutations
w € G, yields the following refinement of the enumeration of such w.
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Figure 1.6: Lattice paths corresponding to 132-avoiding permutations in &3

TwW

Figure 1.7: The definition of T'(w)

1.5.1 Proposition. Let Si32(n) denote the set of 132-avoiding w € &,,. Then

Z qinv(w) _ Z q|>\\’
A

wES132 (n)

where A ranges over all integer sequences Ay > - -+ > A\, > 0 satisfying \; < n—1, and where

Al =22
For further information on the sums appearing in Proposition 1.5.1, see Exercise 6.34(a).

We now consider two ways to represent a permutation w as a tree T' and discuss how the
structure of T" interacts with the combinatorial properties of w. Let w = wyws - - - w,, be any
word on the alphabet P with no repeated letters. Define a binary tree T'(w) as follows. If
w =0, then T(w) = 0. If w # (), then let 7 be the least element (letter) of w. Thus w can
be factored uniquely in the form w = uiv. Now let i be the root of T'(w), and let T'(u) and
T'(v) be the left and right subtrees of i; see Figure 1.7. This procedure yields an inductive
definition of T'(w). The left successor of a vertex j is the least element k to the left of j in w
such that all elements of w between k and j (inclusive) are > j, and similarly for the right
SUCCesSor.

1.5.2 Example. Let w = 57316284. Then T'(w) is given by Figure 1.8.

The correspondence w +— T'(w) is a bijection between &,, and increasing binary trees on n
vertices; that is, binary trees with n vertices labelled 1,2,...,n such that the labels along
any path from the root are increasing. To obtain w from T'(w), read the labels of w in
symmetric order, i.e., first the labels of the left subtree (in symmetric order, recursively),
then the label of the root, and then the labels of the right subtree.
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Figure 1.8: The increasing binary tree T'(57316284)

Let w = wyws -+ -w, € 6S,,. Define the element w,; of w to be

a double rise or double ascent , if w;_ 1 < w; < w1,
a double fall or double descent , if w;_1 > w; > w;14
a peak , if w;_1 < w; > wiiq
a valley, if w;_1 > w; < wiiq,

where we set wy = w,1 = 0. It is easily seen that the property listed below of an element ¢
of w corresponds to the given property of the vertex i of T'(w).

Vertex i of T'(w)
has precisely the

Element ¢ of w successors below
double rise right
double fall left
valley left and right
peak none

From this discussion of the bijection w +— T'(w), a large number of otherwise mysterious
properties of increasing binary trees can be trivially deduced. The following proposition
gives a sample of such results. Exercise 1.61 provides a further application of T'(w).

1.5.3 Proposition. (a) The number of increasing binary trees with n vertices is n!.

(b) The number of such trees for which exactly k vertices have left successors is the Eulerian
number A(n,k + 1).

(¢) The number of complete (i.e., every vertex is either an endpoint or has two successors)
increasing binary trees with 2n + 1 vertices is equal to the number Fo, .1 of alternating
permutations in Sopyq.
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8

Figure 1.9: The unordered increasing tree T"(57316284)

Let us now consider a second way to represent a permutation by a tree. Given w =
wywsy - - w, € 6&,, construct an (unordered) tree T"(w) with vertices 0,1,...,n by defin-
ing vertex i to be the successor of the rightmost element j of w which precedes i and which
is less than 7. If there is no such element j, then let ¢ be the successor of the root 0.

1.5.4 Example. Let w = 57316284. Then 7"(w) is given by Figure 1.9.

The correspondence w — T'(w) is a bijection between &,, and increasing trees on n + 1
vertices. It is easily seen that the successors of 0 are just the left-to-right minima (or
retreating elements) of w (i.e., elements w; such that w; < w; for all j < 4, where w =
wyws - - - wy,). Moreover, the endpoints of T"(w) are just the elements w; for which i € D(w)
or ¢ = n. Thus in analogy to Proposition 1.5.3 (using Proposition 1.3.1 and the obvious
symmetry between left-to-right maxima and left-to-right minima) we obtain the following
result.

1.5.5 Proposition. (a) The number of unordered increasing trees on n + 1 vertices is n!.

(b) The number of such trees for which the root has k successors is the signless Stirling
number c(n, k).

(¢c) The number of such trees with k endpoints is the Eulerian number A(n, k).
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1.6 Alternating permutations, Euler numbers, and the
cd-index of G,

In this section we consider enumerative properties of alternating permutations, as defined in
Section 1.4. Recall that a permutation w € G, is alternating if D(w) = {1,3,5,...}N[n—1],
and reverse alternating if D(w) = {2,4,6,...} N[n —1].

1.6.1 Basic properties

Recall that E, denotes the number of alternating permutations (or reverse alternating per-
mutations) w € &,, (with £y = 1) and is called an Euler number. The exponential generating
function for Euler numbers is very elegant and surprising.

1.6.1 Proposition. We have

n
T
E E,— = secx+tanx
n!
n>0
2 3 4 5 6 7 8

i i T i
= Db Gy + 25 575 + 1657 + 615 + 2720 + 13855 + -

Note that secz is an even function (i.e, sec(—z) = secx), while tanz is odd (tan(—z) =
—tanx). It follows from Proposition 1.6.1 that

xQn
ZEQnW = Ssecx (153)
n>0
.T2n+1
ZE2n+1m = tanz. (154)

For this reason FEs, is sometimes called a secant number and Es, 1 a tangent number.

Proof of Proposition 1.6.1. Let 0 < k < n. Choose a k-subset S of [n] in (}) ways, and
set S = [n] —S. Choose a reverse alternating permutation u of S in Ej, ways, and choose a
reverse alternating permutation v of S in E,_j, ways. Let w be the concatenation u”,n+1, v,
where u” denotes the reverse of u (i.e., if u = uy -+ -ug then v = uyg---uy). When n > 2,
we obtain in this way every alternating and every reverse alternating permutation w exactly
once. Since there is a bijection between alternating and reverse alternating permutations of
any finite (ordered) set, the number of w obtained is 2F,, 1. Hence

21 =Y <Z) EyEny, n>1. (1.55)

k=0

Set y = >, -0 Enx”/nl. Taking into account the initial conditions Ey = E; = 1, equa-
tion (1.55) becomes the differential equation

2y =y*+1, y(0)=1.
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The unique solution is y = sec x + tan x. O

NoOTE. The clever counting of both alternating and reverse alternating permutations in
the proof of Proposition 1.6.1 can be avoided at the cost of a little elegance. Namely, by
considering the position of 1 in an alternating permutation w, we obtain the recurrence

En+1 = Z (n) EjEn—ju ’TLZ 1.

1<j<n J
j odd

This recurrence leads to a system of differential equations for the power series » -, Es,x* /(2n)!
and 7 - Bop12® ™ /(2n 4 1)\,

Note that equations (1.53) and (1.54) could in fact be used to define sec z and tanz in terms
of alternating permutations. We can then try to develop as much trigonometry as possible
(e.g., the identity 1 + tan?z = sec? x) using this definition, thereby defining the subject of
combinatorial trigonometry. For the first steps in this direction, see Exercise 5.7.

It is natural to ask whether Proposition 1.6.1 has a more conceptual proof. The proof above
does not explain why we ended up with such a simple generating function. To be even more
clear about this point, rewrite equation (1.53) as

3 B, L S (1.56)
— (2n)! I
- 20" G

n>0

Compare this equation with the exponential generating function for the number of permu-
tations in &,, with descent set [n — 1]:

" 1
)R (1.57)

n>0

Could there be a reason why having descents in every second position corresponds to taking
every second term in the denominator of (1.57) and keeping the signs alternating? Possibly
the similarity between (1.56) and (1.57) is just a coincidence. All doubts are dispelled,
however, by the following generalization of equation (1.56). Let fix(n) denote the number of
permutations w € G,, satisfying

D(w) = {k,2k,3k,...} N [n—1]. (1.58)
Then

kn
3 fulkn) e = —. (1.59)
— (kn)! . T
§ 20"

n>0

Such a formula cries out for a more conceptual proof. One such proof is given in Section 3.19.
Exercise 2.22 gives a further proof for k = 2 (easily extended to any k) based on Inclusion-
Exclusion. Another enlightening proof, less elegant but more straightforward than the one
in Section 3.19, is the following.
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Proof of equation (1.59). We have

L _ 1
xkn - xkn
—1)" 1— _1)yn1
n=0 n>1
xkn J

- (-1t ——

b
kN kN

RRELepe (k k )(_1)]” lle'

j>0 N>j aj+-+aj=N ai,...,Ra; ( )
a; 21
Comparing (carefully) with equations (1.34) and (1.35) completes the proof. -

A similar proof can be given of equation (1.54) and its extension to permutations in Sy, ;
with descent set {k,2k,3k,...}N[kn+i—1] for 1 <i < k—1. Details are left as an exercise
(Exercise 1.146).

1.6.2 Flip equivalence of increasing binary trees

Alternating permutations appear as the number of equivalence classes of certain naturally de-
fined equivalence relations. (For an example unrelated to this section, see Exercise 3.127(b).)
We will give an archetypal example in this subsection. In the next subsection we will give a
similar result which has an application to the numbers (3,(S) of permutations w € &,, with
descent set S.

Recall that in Section 1.5 we associated an increasing binary tree T'(w) with a permutation
w € 6,,. The flip of a binary tree at a vertex v is the binary tree obtained by interchanging
the left and right subtrees of v. Define two increasing binary trees 7" and 7" on the vertex
set [n] to be equivalent if T" can be obtained from T' by a sequence of flips. Clearly this
definition of equivalence is an equivalence relation, and the number of increasing binary
trees equivalent to 7" is 2" (") where ¢(T') is the number of endpoints of 7. The equivalence
classes are in an obvious bijection with increasing (1-2)-trees on the vertex set [n], that is,
increasing (rooted) trees so that every non-endpoint vertex has one or two children. (These
are not plane trees, i.e., the order in which we write the children of a vertex is irrelevant.)
Figure 1.10 shows the five increasing (1,2)-trees on four vertices, so f(4) = 5. Let f(n)
denote the number of equivalence classes, i.e., the number of increasing (1,2)-trees on the
vertex set [n].

1.6.2 Proposition. We have f(n) = E,, (an Euler number).

Proof. Perhaps the most straightforward proof is by generating functions. Let

x" x? x3

2
n>1
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Figure 1.10: The five increasing (1,2)-trees with four vertices

w

Then v/ =) o, f(n+1)z"/n!. Every increasing (1,2)-tree with n + 1 vertices is either (a)
a single vertex (n = 0), (b) has one subtree of the root which is an increasing (1,2)-tree
with n vertices, or (c¢) has two subtrees of the root, each of which is an increasing (1,2)-tree,
with n vertices in all. The order of the two subtrees is irrelevant. From this observation
we obtain the differential equation y’ = 1+ y + $y% y(0) = 0. The unique solution is
y =secx + tanx — 1, and the proof follows from Proposition 1.6.1. 0

ALGEBRAIC NOTE. Let 7, be the set of all increasing binary tree with vertex set [n].
For T € 7, and 1 < i < n, let w;T be the flip of T" at vertex i. Then clearly the w;’s
generate a group isomorphic to (Z/2Z)" acting on 7,,, and the orbits of this action are the
flip equivalence classes.

1.6.3 Min-max trees and the cd-index

We now consider a variant of the bijection w — T'(w) between permutations and increasing
binary trees defined in Section 1.5 that has an interesting application to descent sets of
permutations. We will just sketch the basic facts and omit most details of proofs (all of which
are fairly straightforward). We define the min-maz tree M(w) associated with a sequence
w = ajay - - -a, of distinct integers as follows. First, M(w) is a binary tree with vertices
labelled ay,as,...,a,. Let j be the least integer for which either a; = min{as,...,a,}
or a; = max{ay,...,a,}. Define a; to be the root of M(w). Then define (recursively)
M(ay,...,aj_1) to be the left subtree of a;, and M(a;1,...,a,) to be the right subtree.
Figure 1.11(a) shows M (5,10,4,6,7,2,12,1,8,11,9,3). Note that no vertex of a min-max
tree M (w) has only a left successor. Note also that every vertex v is either the minimum or
maximum element of the subtree with root v.

Given the min-max tree M(w) where w = a; - - a,, we will define operators ¢, 1 < i < n,
that permute the labels of M(w), creating a new min-max tree ¢; M (w). The operator v
only permutes the label of the vertex of M (w) labelled a; and the labels of the right subtree
of this vertex. (Note that the vertex labelled a; depends only on ¢ and the tree M (w), not
on the permutation w.) All other vertices are fixed by ;. In particular, if a; is an endpoint
then ¢; M (w) = M(w). We denote by M,, the subtree of M (w) consisting of a; and the right
subtree of a;. Thus q; is either the minimum or maximum element of M, . Suppose that a; is
the minimum element of M,,. Then replace a; with the largest element of M, , and permute
the remaining elements of M, so that they keep their same relative order. This defines
;M (w). Similarly suppose that a; is the maximum element of the subtree M,, with root a;.
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(b)

Figure 1.11: (a) The min-max tree M = M(5,10,4,6,7,2,12,1,8,11,9,3); (b) The trans-
formed tree ¢ M = M(5,10,4,6,7,2,1,3,9,12,11,8)

Then replace a; with the smallest element of M,,,, and permute the remaining elements of M,,
so that they keep their same relative order. Again this defines ¢; M (w). Figure 1.11(b) shows
that ;M (5,10,4,6,7,2,12,1,8,11,9,3) = M (5,10,4,6,7,2,1,3,9,12,11,8). We have a; =
12, so 17 permutes vertex 12 and the vertices on the right subtree of 12. Vertex 12 is
replaced by 1, the smallest vertex of the right subtree. The remaining elements 1,3,8,9,11
get replaced with 3,8,9,11,12 in that order.

Fact #1. The operators ; are commuting involutions and hence generate an (abelian)
group &, isomorphic to (Z/27)"™), where 1(w) is the number of internal vertices of M(w).
Those 1; for which a; is not an endpoint are a minimal set G, of generators for &,,. Hence
there are precisely 2°) different trees M (w) for i € B, given by 1, - - b, M (w) where
{4, ...y, } ranges over all subsets of G.

Given a permutation w € &,, and an operator ¢ € &,, we define the permutation 1w by
WM (w) = M(1pw). Define two permutations v, w € &,, to be M-equivalent, denoted v X w,

if v = ¢Yw for some ¢ € &,,. Clearly X is an equivalence relation, and by Fact #1 the size
of the equivalence class [w] containing w is 24®).

There is a simple connection between the descent sets of w and y;w.
Fact #2. Let a; be an internal vertex of M(w) with only a right child. Then

[ Dw)u{i}, ifi¢ D(w)
m%w—{DW%{&iHEDW)

Let a; be an internal vertex of M(w) with both a left and right child. Then exactly one of
i — 1,4 belongs to D(w), and we have

(D(w)U {i}) —{i—1}, if i & D(w)

D(yyw) = { (D(w)U {i —1}) — {3}, if i € D(w).

Note that if a; is a vertex with two children, then a;_; will always be an endpoint on the left
subtree of a;. It follows that the changes in the descent sets described by Fact #2 take place
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independently of each other. (In fact, this independence is equivalent to the commutativity
of the 1;’s.) The different descent sets D(w), where w ranges over an M-equivalence class,
can be conveniently encoded by a noncommutative polynomial in the letters a and b. Given
aset S C [n—1], define its characteristic monomial (or variation) to be the noncommutative
monomial

Ug = €169+ * €p_1, (1.60)
where
e 4@ ifig S
1 b, ifieS.
For instance, up 37485216y = ababbba.
Now let w = ajas---a, € S,, and let c¢,d,e be noncommutative indeterminates. For

1 <4 < n define
¢, if a; has only a right child in M (w)
fi = fi(w) = ¢ d, if a; has a left and right child

e, if a; is an endpoint.

Let ! = ®! (¢, d,e) = fifo--- fn, and let &, = Dy, (c,d) = P'(c,d, 1), where 1 denotes the
empty word. In other words, ®,, is obtained from ®/ by deleting the e’s. For instance,
consider the permutation w = 5,10,4,6,7,2,12,1,8,11,9,3 of Figure 1.11. The degrees
(number of children) of the vertices ay,as,...,a;2 are 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 1, 0,
respectively. Hence

Q! = edcededcedce

o, = deddede. (1.61)
It is clear that if v ~ w, then ¢ = o/ and ¢, = D, since P! depends only on M (w)
regarded as an unlabelled tree.
From Fact #2 we obtain the following result.

Fact #3. Let w € &,,, and let [w] be the M -equivalence class containing w. Then

O,(a+bab+ba) = > upw). (1.62)
ve(w)
For instance, from equation (1.61) we have
> upw) = (ab + ba)(a + b)(ab + ba)(ab + ba)(a + b)(ab + ba)(a + b).
vew]
As a further example, Figure 1.12 shows the eight trees M (v) in the M-equivalence class

[315426], together with corresponding characteristic monomial up(,). We see that

Z Upw) = babba + abbba + baaba + babab + ababa + abbab + baaab + abaab
vE[315426]

= (ab+ ba)(a + b)(ab+ ba),
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1 6 1 1
3 2 3 1 3 2 3 6
5 6 4 5 4 6 5 2
4 2 5 4

w= 315426 Yow= 364215 Yw = 314526 Yw =315462
babba abbba baaba babab

6 6 1 6
3 1 3 5 3 6 3 5
2 5 4 1 4 2 2 1
4 2 5 4
P Wow= 362415 WUw=364251 U Yw=314562 WWw= 362451
ababa abbab baaab abaab

Figure 1.12: The M-equivalence class [315426]

whence ®,, = dcd.

Fact #4. Each equivalence class [w] contains exactly one alternating permutation (as well
as one reverse alternating permutation). Hence the number of M-equivalence classes of
permutations w € &,, is the Fuler number E,,.

While it is not difficult to prove Fact #4 directly from the definition of the tree M (w) and
the group &, it is also immediate from Fact #3. For in the expansion of ®,,(a + b, ab+ ba)
there will be exactly one alternating term bababa - - - and one term ababab - - - .

Now consider the generating function

v, = lIjn(aa b) = Z UD(w)

wGGn

= ) B(S)us. (1.63)

SChn—1]

Thus ¥, is a noncommutative generating function for the numbers ((S). For instance,
V3 = aa+ 2ab + 2ba + bb. The polynomial U, is called the ab-index of the symmetric group
S,. (In the more general context of Section 3.17, W, is called the ab-index of the boolean
algebra B,,.) We can group the terms of ¥,, according to the M-equivalence classes [w], i.e.,

\I/n = Z Z uD(U), (164)
[w] velw]

where the outer sum ranges over all distinct M-equivalence classes [w] of permutations in &,,.
Now by equation (1.62) the inner sum is just ®,,(a + b, ab + ba). Hence we have established
the following result.
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1.6.3 Theorem. The ab-index V,, can be written as a polynomaial ®,, in the variables c = a+b
and d = ab+ ba. This polynomial is a sum of E, monomials.

The polynomial ®,, is called the cd-index of the symmetric group &,, (or boolean algebra
B,). Tt is a surprisingly compact way of codifying the numbers (3,(S). The number of
distinct terms in @, is the Fibonacci number F), (the number of c¢d-monomials of degree n,
where degc = 1 and degd = 2; see Exercise 1.35(c)), compared with the 2"~! terms of the
ab-index W¥,,. For instance,

o, = 1
b, = ¢

b, = 2 +d

O, = +2d+2dc

ds = *+3cd + bede + 3dc? + 4d?

by = & +43d+ 9Pde + Yedc® + 4de + 12¢d? + 10ded + 12d%¢.

One nice application of the cd-index concerns inequalities among the number (3, (5). Given
S C [n — 1], define w(S) C [n — 2] by the condition i € w(S) if and only if exactly one of i
and i + 1 belongs to S, for 1 < i < n — 2. For instance, if n = 9 and S = {2,4,5,8}, then
w(S) ={1,2,3,5,7}. Note that

wS)=[n-2 < S={1,3,5,...}N[n—1or S={2,4,6,...}N[n—1].  (1.65)

1.6.4 Proposition. Let S,T C [n—1]|. Ifw(S) Cw(T), then 3,(S) < Bn(T).
Proof. Let w € &,, and @/, = f1fo--- fn, so each f; = c,d, or e. Define

q)w = Z ux.
w(X)DSw
Since ®,, has nonnegative coefficients, it follows that if w(S) C w(T'), then £,(S) < B.(T).
Now assume that S and 7" are any subsets of [n — 1] for which w(S) C w(T') (strict contain-
ment). We can easily find a c¢d-word ®,, for which w(7") 2 wS,, but w(S) 2 S,. For instance,
if i € w(T)—w(S) then let @, = ¢ 1dc" 27" s0 S, = {i}. It follows that 3,(S) < 3.(T). O

1.6.5 Corollary. Let S C [n — 1]. Then (,(S) < E,, with equality if and only if S =
{1,3,5,...}N[n—1] or S ={2,4,6,...} N[n—1].

It is easy to see that

Proof. Immediate from Proposition 1.6.4 and equation (1.65). O
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1.7 Permutations of multisets

Much of what we have done concerning permutations of sets can be generalized to multisets.
For instance, there are two beautiful theories of cycle decomposition for permutations of
multisets (see Exercise 1.62 for one of them, and its solution for a reference to the other).
In this section, however, we will only discuss some topics that will be of use later.

First, it is clear that we can define the descent set D(w) of a permutation w of a (finite)
multiset M on a totally ordered set (such as P) exactly as we did for sets. Namely, if
w = wiWs -+ - Wy, then

D(w) ={i : w; > w41}

Thus we also have the concept of a(S) = an(S) and G(S) = S (S) for a multiset M, as
well as the number des(w) of descents, the major index maj(w) and the multiset Eulerian

polynomial
AM([L') _ Z lerdes(w)’
weBN

and so on. In Section 4.4.5 we will consider a vast generalization of these concepts. Note for
now that there is no obvious analogue of Proposition 1.4.1—that is, an explicit formula for
the number oy, (S) of permutations w € &), with descent set contained in S.

We can also define an inversion of w = wyws - - - w,, € Gy as a 4-tuple (i, j, w;, w;) for which
i < j and w; > wj, and as before we define inv(w) to be the number of inversions of w.
Note that unlike the case for permutations we shouldn’t define an inversion to be just the
pair (w;, w;) since we can have (w;, w;) = (wg, w;) but (¢, 7) # (k,1). We wish to generalize
Corollary 1.3.13 to multisets. To do so we need a fundamental definition. If (ay,...,a,,) is
a sequence of nonnegative integers summing to n, then define the ¢-multinomial coefficient

(al,..n.,am) - (al)!(-r-b-)éam)!'

is a rational function of ¢ which, when

It is immediate from the definition that (al o )
evaluated at ¢ = 1, becomes the ordinary multinomial coefficient (a1 " ) In fact, it is
not difficult to see that (

integers. One way to do this is as follows. Write (

) is a polynomial in ¢ whose coefficients are nonnegative
") as short for (, ™

k
with the notation (Z) for binomial coefficients). The expression (Z) is a called a q-binomial

coefficient (or Gaussian polynomial). It is straightforward to verify that

T I 10 ot T e

A1 yeees@m
" ) (exactly in analogy

and 1 |
n n — n —
= +q" " : 1.67
(k) ( K ) ! (k: - 1) 67
From these equations and the “initial conditions” (g) = 1 it follows by induction that

(al,f’am) is a polynomial in ¢ with nonnegative integer coefficients.
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1.7.1 Proposition. Let M = {1%,... m®} be a multiset of cardinality n = a; + -+ a,,.

Then
Z ¢ = ( " ) (1.68)

WGy Aigeees

First proof. Denote the left-hand side of (1.68) by P(ay,...,a,) and write Q(n, k) = P(k,n—
k). Clearly Q(n,0) = 1. Hence in view of (1.66) and (1.67) it suffices to show that

P(ay,...,an) = Q(n,a1)P(as,as,..., ay) (1.69)

Qn,k) = Qn—1,k) +¢" " Q(n—1,k—1). (1.70)

If w € &y, then let w’ be the permutation of M’ = {2% ... m®} obtained by removing
the 1’s from w, and let w” be the permutation of M” = {1%,2" %} obtained from w by

changing every element greater than 2 to 2. Clearly w is uniquely determined by w’ and w”,
and inv(w) = inv(w’) 4+ inv(w”). Hence

P(ay,...,ay) = Z Z g ) (')

’LU’GG]\/[/ ’LU”GG]\/[N
- Q(na al)P(CLZa as, ..., am)7
which is (1.69).
Now let M = {1* 2"=*}  Let G4, 1 < i < 2, consist of those w € &, whose last element
is i, and let My, = {1kt 2n=k} M, = {1F 2% 1} Tf w € Gyry and w = ul, then u € Gy

and inv(w) =n —k+inv(u). If w € Gpo and w = v2, then v € &), and inv(w) = inv(v).
Hence

Q(n,k) _ Z qinv(u)+n—k+ Z qinv(v)

u€6M1 UEGM2
= ¢"*Q(n—1,k—1)+Q(n—1,k),
which is (1.70). O

Second proof. Define a map
P68y xXGy X x6, — 6,
(W, Wi, ..oy W) W
by converting the a; i’s in wy to the numbers ay +---4+a;_ 1+ 1,01+ -4+a;_1+2,a;+ -+
a;_1 + a; in the order specified by w;. For instance (21331223,21, 231, 312) +— 42861537. We
have converted 11 to 21 (preserving the relative order of the terms of w; = 21), 222 to 453

(preserving the order 231), and 333 to 867 (preserving 312). It is easily verified that ¢ is a
bijection, and that

inv(w) = inv(wp) + inv(wy) + - - - + inv(wyy, ). (1.71)
By Corollary 1.3.13 we conclude

( Z qinV(w)) (@) (am)! = (n)!,

weG
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and the proof follows. O

NotTE. If wy,...,w,, are all identity permutations, then we obtain a map ¢ : S, — S,
known as standardization. For instance, 1(14214331) = 17428563. Standardization is a very
useful technique for reducing problems about multisets to sets. For a significant example,
see Lemma 7.11.6.

The first proof of Proposition 1.7.1 can be classified as “semi-combinatorial.” We did not
give a direct proof of (1.68) itself, but rather of the two recurrences (1.69) and (1.70). At
this stage it would be difficult to give a direct combinatorial proof of (1.68) since there is
no “obvious” combinatorial interpretation of the coefficients of (al’zam) nor of the value of
this polynomial at ¢ € N. Thus we will now discuss the problem of giving a combinatorial
interpretation of (:) for certain ¢ € N, which will lead to a combinatorial proof of (1.68)
when m = 2. Combined with our proof of (1.69) this yields a combinatorial proof of (1.68)
in general. The reader unfamiliar with finite fields may skip the rest of this section, except
for the brief discussion of partitions.

Let ¢ be a prime power, and denote by [F, a finite field with ¢ elements (all such fields are
of course isomorphic) and by [y the n-dimensional vector space of all n-tuples (e ),
where o; € Fy.

1.7.2 Proposition. The number of k-dimensional subspaces of ¥y is (:)

Proof. Denote the number in question by G(n, k), and let N = N(n, k) equal the number
of ordered k-tuples (vy,...,v;) of linearly independent vectors in [Fy;. We may choose v; in
q" — 1 ways, then vy in ¢" — ¢ ways, and so on, yielding

N=(¢"-1)(q"~q) - (¢"—¢"). (1.72)

On the other hand, we may choose (vy,...,v) by first choosing a k-dimensional subspace
W of F in G(n, k) ways, and then choosing v; € W in q* — 1 ways, vy € W in ¢* — ¢ ways,
and so on. Hence

N =G(n. k)" =" —q)--(¢" —¢""). (1.73)
Comparing (1.72) and (1.73) yields

("= D("—q) (" —¢"")
(" =1)(¢* —q)--(¢" — ¢ 1)

- (k)!((z)ik)!zc)‘ -

Note that the above proof is completely analogous to the proof we gave in Section 1.2 that

(2) = ﬁlk), We may consider our proof of Proposition 1.7.2 to be the “g-analogue” of the

proof that (Z) = ﬁlk),

G(n, k) — E
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Now define a partition of n € N to be a sequence A = (A1, Ao, ...) of integers \; satisfying
2/\2 =n and /\1 > /\2 > -2 0. We also write A = ()\1,...,)%) if/\k—l—l :/\k+2 =---=0.
Thus for example

(3,3,2,1,0,0,0,...) =(3,3,2,1,0,0) = (3, 3,2, 1),

as partitions of 9. We may also informally regard a partition A = (\q,..., \;) of n (say with
Ak > 0) as a way of writing n as a sum A\;+- - -+ Ay, of positive integers, disregarding the order
of the summands (since there is a unique way of writing the summands in weakly decreasing
order, where we don’t distinguish between equal summands). Compare with the definition
of a composition of n, in which the order of the parts is essential. If A is a partition of n
then we write either A\ - n or |A| = n. The nonzero terms \; are called the parts of A, and
we say that A has k parts where k = #{i : A\; > 0}. The number of parts of A is also called
the length of A and denoted ¢(\). If the partition A has m; parts equal to i, then we write
A= (1™ 2m2 ) where terms with m; = 0 and the superscript m; = 1 may be omitted.
For instance,

(4,4,2,2,2,1) = (11,2 3" 4%) = (1, 2% 4%) I- 15. (1.74)

We also write p(n) for the total number of partitions of n, px(n) for the number of partitions

of n with exactly k parts, and p(j, k, n) for the number of partitions of n into at most k parts,
with largest part at most j. For instance, there are seven partitions of 5, given by (omitting
parentheses and commas from the notation) 5, 41, 32, 311, 221, 2111, 11111, so p(5) = 7,
p(5) =1, p2(5) =2, p3(5) =2, pa(5) = 1, p5(5) = 1, p(3,3,5) = 3, and so on. By convention
we agree that py(0) = p(0) = 1. Note that p,(n) = 1, p,_1(n) = 1if n > 1, p1(n) = 1,
pa(n) = |n/2]. Tt is easy to verify the recurrence

pr(n) = pr—1(n — 1) + pr(n — k),
which provides a convenient method for making a table of the numbers py(n) for n, k small.

Let (A1, Aa,...) F n. The Ferrers diagram or Ferrers graph of X is obtained by drawing a
left-justified array of n dots with A; dots in the ¢th row. For instance, the Ferrers diagram
of the partition 6655321 is given by Figure 1.13(a). If we replace the dots by juxtaposed
squares, then we call the resulting diagram the Young diagram of X. For instance, the Young
diagram of 6655321 is given by Figure 1.13(b). We will have more to say about partitions
in various places throughout this book and especially in the next two sections. However, we
will not attempt a systematic investigation of this enormous and fascinating subject.

The next result shows the relevance of partitions to the ¢g-binomial coefficients.

1.7.3 Proposition. Fiz j,k € N. Then

> vl kn)g" = (j + k:)

n>0 J

Proof. While it is not difficult to give a proof by induction using (1.67), we prefer a direct
combinatorial proof based on Proposition 1.7.2. To this end, let m = j + k and recall from
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(a) (b)

Figure 1.13: The Ferrers diagram and Young diagram of the partition 6655321

linear algebra that any k-dimensional subspace of ;" (or of the m-dimensional vector space

F™ over any field F') has a unique ordered basis (v, ..., v;) for which the matrix
U1
M=|: (1.75)
U,

is in row-reduced echelon form. This means: (a) the first nonzero entry of each v; is a 1; (b)
the first nonzero entry of v;;; appears in a column to the right of the first nonzero entry of
v;; and (c) in the column containing the first nonzero entry of v;, all other entries are 0.

Now suppose that we are given an integer sequence 1 < a; < ay < --- < ap < m, and
consider all row-reduced echelon matrices (1.75) over [F, for which the first nonzero entry of
v; occurs in the a;th column. For instance, if m = 7, kK = 4, and (aq,...,a4) = (1,3,4,6),
then M has the form

1 00 x 0 =*

001 0 %x 0 =x

0001 % 0 x

000O0O0T1 %

where the symbol * denotes an arbitrary entry of F,. The number \; of *’s in row i is
Jj — a; + 1, and the sequence (A1, Ag, ..., \;) defines a partition of some integer n = > \;
into at most k parts, with largest part at most j. The total number of matrices (1.75) with
ai,...,a; specified as above is ¢/*l. Conversely, given any partition A into at most k parts
with largest part at most j, we can define a; = j — \; + 4, and there exists exactly ¢!
row-reduced matrices (1.75) with aq, ..., a;x having their meaning above.

Since the number of row-reduced echelon matrices (1.75) is equal to the number (j :k) of
k-dimensional subspaces of ", we get

(j 4}; k:) _ Z P = Zp(j,k,n)q".

A >
<k parts TZ_O
largest part <j
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3 4 4 ) 6
Figure 1.14: Partitions in a 2 x 3 rectangle
1
2
1
L q ]2 w= 12121121
2

Figure 1.15: The lattice path associated with the partition 431

O

For readers familiar with this area, let us remark that the proof of Proposition 1.7.3 essentially
constructs the well-known cellular decomposition of the Grassmann variety G,,.

The partitions A enumerated by p(j, k,n) may be described as those partitions of n whose
Young diagram fits in a k x j rectangle. For instance, if K = 2 and j = 3, then Figure 1.14
shows the (g) = 10 partitions that fit in a 2 x 3 rectangle. The value of |A| is written beneath
the diagram. It follows that

5
(2) =14+q+2¢° +2¢° +2¢" + ¢ + ¢°.

It remains to relate Propositions 1.7.1 and 1.7.3 by showing that p(j, k,n) is the number of
permutations w of the multiset M = {17, 2%} with n inversions. Given a partition A of n with
at most k parts and largest part at most j, we will describe a permutation w = w(\) € Sy
with n inversions, leaving to the reader the easy proof that this correspondence is a bijection.
Regard the Young diagram Y of A as being contained in a k& X j rectangle, and consider the
lattice path L from the upper right-hand corner to the lower left-hand corner of the rectangle
that travels along the boundary of Y. Walk along L and write down a 1 whenever one takes
a horizontal step and a 2 whenever one takes a vertical step. This process yields the desired
permutation w. For instance, if £ = 3, j =5, A = 431, then Figure 1.15 shows that path L
and its labelling by 1’s and 2’s. We can also describe w by the condition that the 2’s appear
in positions j — \; + 4, where A = (A1, ..., \g).
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1.8 Partition Identities

In the previous section we defined a partition A of n € N and described its Ferrers diagram
and Young diagram. In this section we develop further the theory of partitions, in particular,
the fascinating interaction between generating function identities and bijective proofs.

Let us begin by describing a fundamental involution on the set of partitions of n. Namely,
if A F n, then define the conjugate partition X' to be the partition whose Ferrers (or Young)
diagram is obtained from that of A by interchanging rows and columns. Equivalently, the
diagram (Ferrers or Young) of A is the reflection of that of A about the main diagonal. If
A = (A1, Ag,...), then the number of parts of X' that equal i is \; — A;41. This description
of X' provides a convenient method of computing X' from A without drawing a diagram. For
instance, if A = (4,3,1,1,1) then X' = (5,2,2,1).

Recall that pg(n) denotes the number of partitions of n into & parts. Similarly let p<x(n)
denote the number of partitions of n into at most k parts, that is, p<x(n) = po(n) + p1(n) +
-+ 4+ pe(n). Now X has at most k parts if and only if A" has largest part at most k. This
observation enables us to compute the generating function ) ., p<k(n)¢". A partition of
n with largest part at most k may be regarded as a solution in nonnegative integers to
mi1 + 2mo + - - - + kmy, = n. Here m; is the number of times that the part i appears in the
partition A, i.e., A = (1™2™2 ... k™) Hence

o) = > > "

n>0 n>0 mi+--+kmgp=n

= Z Z e Z qml-1-27712-|—~~~-|—l<:m;€

m12>0m2>0 my >0

-z (z) - (2)

1
1-q)(1—¢*) - (1—¢")
The above computation is just a precise way of writing the intuitive fact that the most natural
way of computing the coefficient of ¢" in 1/(1 —¢)(1 —¢*)--- (1 — ¢*) entails computing all
the partitions of n with largest part at most k. If we let £ — oo, then we obtain the famous

generating function
" 1
> =[] (1.77)

n>0 i>1

Equations (1.76) and (1.77) can be considerably generalized. The following result, although
by no means the most general possible, will suffice for our purposes.

1.8.1 Proposition. For eachi € P, fir a set S; CN. Let S = (51,5, ...), and define P(S)
to be the set of all partitions A such that if the part i occurs m; = m;(\) times, then m; € S;.
Define the generating function in the variables ¢ = (q1,qo, - - . ),

FS.q)= > q"WVg=™....

AEP(S)
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Then

F(S,q) =]] (Z qf) - (1.78)

i>1 \jeS;

Proof. The reader should be able to see the validity of this result by “inspection.” The

coefficient of ¢{"*¢5" - - - in the right-hand side of (1.78) is 1 if each m; € S;, and 0 otherwise,
which yields the desired result. O

1.8.2 Corollary. Preserve the notation of the previous proposition, and let p(S,n) denote
the number of partitions of n belonging to P(S), that is,

p(S,n)=#{\Fn: Xe P(S)}.

Then
S s =1 (z qiﬂ') .
n>0 i>1 \jes;
Proof. Put each ¢; = ¢* in Proposition 1.8.1. O

Let us now give a sample of some of the techniques and results from the theory of partitions.
First we give an idea of the usefulness of Young diagrams and Ferrers diagrams.

1.8.3 Proposition. For any partition A = (A1, Ay, ...) we have

PGERREDY (;/) (1.79)

i>1 i>1

Proof. Place an i — 1 in each square of row ¢ of the Young diagram of A. For instance, if
A = 5322 we get

w | N[k |O
w | N[k |O

If we add up all the numbers in the diagram by rows, then we obtain the left-hand side of
(1.79). If we add up by columns, then we obtain the right-hand side. O

1.8.4 Proposition. Let ¢(n) denote the number of self-conjugate partitions A of n, i.e.,
A= XN. Then

D en)g" =1+ +")(1+¢")--. (1.80)

n>0
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Figure 1.16: The diagonal hooks of the self-conjugate partition 54431

Proof. Let X\ be a self-conjugate partition. Consider the “diagonal hooks” of the Ferrers
diagram of A F n, as illustrated in Figure 1.16 for the partition A = 54431. The number of
dots in each hook form a partition p of n into distinct odd parts. For Figure 1.16 we have
1 = 953. The map A — p is easily seen to be a bijection from self-conjugate partitions of
n to partitions of n into distinct odd parts. The proof now follows from the special case
S; = {0,1} if ¢ is odd, and S; = {0} if ¢ is even, of Corollary 1.8.2 (though it should be
obvious by inspection that the right-hand side of (1.80) is the generating function for the
number of partitions of n into distinct odd parts). O

There are many results in the theory of partitions that assert the equicardinality of two
classes of partitions. The quintessential example is given by the following result.

1.8.5 Proposition. Let q(n) denote the number of partitions of n into distinct parts and
Doad(n) the number of partitions of n into odd parts. Then q(n) = poaa(n) for all n > 0.

First proof (generating functions). Setting each S; = {0,1} in Corollary 1.8.2 (or by direct
inspection), we have

Zq(n)q" = 1+ +AA+4¢% -

n>0

1—¢ 1—-¢" 1-¢°
R R R
HnZl(l_q2n)

anl(l —q")
1

I [ T ) P (1.81)
Again by Corollary 1.8.2 or by inspection, we have
! n
1-¢1—-¢>)(1—-¢%)--- - nz:zopodd(n)q ,
and the proof follows. .

Second proof (bijective). Naturally a combinatorial proof of such a simple and elegant result
is desired. Perhaps the simplest is the following. Let A be a partition of n into odd parts,
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.

5 1

Figure 1.17: A second bijective proof that ¢(n) = peaa(n)

with the part 25 — 1 occurring r; times. Define a partition i of n into distinct parts by
requiring that the part (25 — 1)2’“, k > 0, appears in p if and only the binary expansion of
r; contains the term 2. We leave the reader to check the validity of this bijection, which
rests on the fact that every positive integer can be expressed uniquely as a product of an
odd positive integer and a power of 2. For instance, if A = (9°,5!2 3% 13) |- 114, then

114 = 9(1+4)+5(4+8)+3(2)+1(1+2)
= 9+36+20+40+6+1+2,

so p = (40,36, 20,9,6,2,1). O

Third proof (bijective). There is a completely different bijective proof which is a good
example of “diagram cutting.” Identify a partition A into odd parts with its Ferrers diagram.
Take each row of A\, convert it into a self-conjugate hook, and arrange these hooks diagonally
in decreasing order. Now connect the upper left-hand corner v with all dots in the “shifted
hook” of u, consisting of all dots directly to the right of u and directly to the southeast of
u. For the dot v directly below u (when || > 1), connect it to all the dots in the conjugate
shifted hook of u. Now take the northwest-most remaining dot above the main diagonal and
connect it to its shifted hook, and similarly connect the northwest-most dot below the main
diagonal with its conjugate shifted hook. Continue until all the entire diagram has been
partitioned into shifted hooks and conjugate shifted hooks. The number of dots in these
hooks form the parts of a partition p of n into distinct parts. Figure 1.17 shows the case
A = 9955511 and p = (11,8,7,6,3). We trust that this figure will make the above rather
vague description of the map A +— p clear. It is easy to check that this map is indeed a
bijection from partitions of n into odd parts to partitions of n into distinct parts. O

There are many combinatorial identities asserting that a product is equal to a sum that can
be interpreted in terms of partitions. We give three of the simplest below, relegating some
more interesting and subtle identities to the exercises. The second identity below is related
to the concept of the rank rank(\) of a partition A = (Ay, Ag,...), defined to be the largest
i for which \; > i. Equivalently, rank()\) is the length of the main diagonal in the (Ferrers
or Young) diagram of A. It is also the side length of the largest square in the diagram of .
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Figure 1.18: The Durfee square of the partition 75332

We can place this square to include the first dot or box in the first row of the diagram, in
which case it is called the Durfee square of \. Figure 1.18 shows the Young diagram of the
partition A = 75332 of rank 3, with the Durfee square shaded.

1.8.6 Proposition. (a) We have

v v (1.82)
[T -2¢) = 0-00-¢)--(1-¢") '
i>1
(b) We have
1 B I’quQ
i>1
(c) We have
. xkq(kgl)
(1+2q¢") = . (1.83)
v =2 aga=a—a-»
Proof. (a) It should be clear by inspection that
1
= wa‘)qw, (1.84)
H(l —zq') A

i>1

where A ranges over all partitions of all n > 0. We can obtain A by first choosing ¢(\) = k.
It follows from equation (1.76) that

k

Al _ 4
Zq I—q)(1—¢) - (1—g")

(N =k

and the proof follows.
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We should also indicate how (1.82) can be proved nonbijectively, since the technique is useful

in other situations. Let .

[T0-2d)

i>1

F(r,q) =

Clearly F(x,q) = F(zq,q)/(1 — zq), and F(x,q) is uniquely determined by this functional
equation and the initial condition F(0,¢) = 1. Now let

- .quk
G(x,q) = Z (1 —q)(l _q2)...(1 —qk).

Then
kg
G(zq,q) = ;(1_q)(1—q2)-“(1—qk)
B zhgk 1 B
- kza)(l—q)(l—qQ)---(l—qk_l> (1_qk 1)

= G(r,q) — vqG(7,q)
= (1 -2q)G(x,q).

Since G(x,0) = 1, the proof follows.

(b) Again we use (1.84), but now the terms on the right-hand side will correspond to rank(\)
rather than ¢(\). If rank(\) = k, then when we remove the Durfee square from the diagram
of A, we obtain disjoint diagrams of partitions y and v such that ¢(u) < k and v, = £(V') < k.
(For the partition A = 75332 of Figure 1.18 we have u = 42 and v = 32.) Every A of rank k
is obtained uniquely from such p and v. Moreover, |\ = k% + |u| + |v| and £(\) = k + £(v).
It follows that

) 1 1
)N ko
Vg = aq . .
Z 1=q)--(1—-¢") (I-=zq)-(1-=q")

rank(\)=k

Summing over all £ > 0 completes the proof.

(c) Now the coefficient of z*¢™ in the left-hand side is the number of partitions of n into k
distinct parts Ay > -+ > Ay > 0. Then (\; — k, Ao — k+1,..., Ay — 1) is a partition of
n— (kgl) into at most k parts, from which the proof follows easily. O

The generating function (obtained e.g. from (1.82) by substituting x/q for x, or by a simple
modification of either of our two proofs of Proposition 1.8.6(a))

1 xk

[T —=2d) _kzzo(l—Q)(l—qQ)---(l—q’“)

1>0
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is known as the g-exponential function, since (1 —q)(1 —¢*) -+ (1 —¢") = (1 —q)"(n)!. We
could even replace x with (1 — ¢)z, getting

1 xk
T[] -« —a)d) kzzow e

1>0

The right-hand side reduces to e* upon setting ¢ = 1, though we cannot also substitute
g = 1 on the left-hand side to obtain e”. It is an instructive exercise (Exercise 1.101) to
work out why this is the case. In other words, why does substituting (1 — ¢)z for  and then
setting ¢ = 1 in two expressions for the same power series not maintain the equality of the
two series?

A generating function of the form

n

P U v e e ey

n>0

is called an Fulerian or q-exponential generating function. It is the natural g-analogue of an
exponential generating function. We could just as well use

Fla(1 - q)) = Z(Q”T) (1.86)

n>0

in place of F'(x). The use of F(z) is traditional, though F(z(1 — ¢)) is more natural com-
binatorially and has the virtue that setting ¢ = 1 in the right-hand side of (1.86) gives an
exponential generating function. We will see especially in the general theory of generating
functions developed in Section 3.18 why the right-hand side of (1.86) is combinatorially
“natural.”

Proposition 1.8.6(a) and (c) have interesting “finite versions,” where in addition to the
number of parts we also restrict the largest part. Recall that p(j, k,n) denotes the number
of partitions A = n for which A; < j and ¢(\) < k. The proof of Proposition 1.8.6(a) then
generalizes mutatis mutandis to give the following formula:

H(l . qu) k>0 n>0

_ Zxk(jf"’).

k>0 J

By exactly the same reasoning, using the proof of Proposition 1.8.6(c), we obtain

]1_[(1 +2q') = z]: xkq(g) (';) (1.87)
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e,

Figure 1.19: The pentagonal numbers 1, 5, 12, 22

Equation (1.87) is known as the g-binomial theorem, since setting ¢ = 1 gives the usual
binomial theorem. It is a good illustration of the difficulty of writing down a g-analogue of
an identity by inspection; it is difficult to predict without any prior insight why the factor

k

q(2) appears in the terms on the right.

Of course there are many other ways to prove the g-binomial theorem, including a straight-
forward induction on j. We can also give a finite field proof, where we regard ¢ as a prime
power. For each factor 1 + zq" of the left-hand side of (1.87), choose either the term 1 or
xq'. If the latter, then choose a row vector 7; of length j whose first nonzero coordinate is
a 1, which occurs in the (j — ¢)th position. Thus there are ¢* choices for ;. After making
this choice for all 7, let V' be the span in IF{]' of the chosen ~;’s. If we chose k of the ~;’s, then
dimV = k. Let M be the k x j matrix whose rows are the 7;’s in decreasing order of the
index i. There is a unique k x k upper unitriangular matrix 7" (i.e., T is upper triangular
with 1’s on the main diagonal) for which T'M is in row-reduced echelon form. Reversing
these steps, for each k-dimensional subspace V' of IF{]', let A be the unique k£ x j matrix in
row-reduced echelon form whose row space is V. There are q(g) k x k upper unitriangular
matrices T ', and for each of them the rows of M = T~ A define a choice of 7;’s. It follows
that we obtain every k-dimensional subspace of FZ as a span of v;’s exactly q(g) times, and
the proof follows.

Variant. There is a slight variant of the above finite field proof of (1.87) which has less
algebraic significance but is more transparent combinatorially. Namely, once we have chosen
the £ x j matrix M, change every entry above the first 1 in any row to 0. We then obtain
a matrix in row-reduced echelon form. There are (g) entries of M that are changed to 0, so
we get every row-reduced echelon matrix with £ rows exactly q(g) times. The proof follows
as before.

For yet another proof of equation (1.87) based on finite fields, see Exercise 3.119.

We next turn to a remarkable product expansion related to partitions. It is the archetype for
a vast menagerie of similar results. We will give only a bijective proof; it is also an interesting
challenge to find an algebraic proof. The result is called the pentagonal number formula or
pentagonal number theorem because of the appearance of the numbers k(3k — 1)/2, which
are known as pentagonal numbers. See Figure 1.19 for an explanation of this terminology.
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1.8.7 Proposition. We have

[[a-25 = > (—1rantnr (1.88)
k>1 nez
= 1 +Z(_1)n (xn(3n—1)/2 +xn(3n+1)/2) (189)

n>1

m l— g P T 12 15 22 26

Proof. Let f(n) = g.(n) —qo(n), where g.(n) (respectively, ¢,(n)) is the number of partitions
of n into an even (respectively, odd) number of distinct parts. It should be clear that

10— =3 fn)ar.

E>1 n>0
Hence we need to show that

10 ={ T et (00

Let Q(n) denote the set of all partitions of n into distinct parts. We will prove (1.90) when
n # k(3k£1)/2 by defining an involution ¢ : Q(n) — Q(n) such that £(\) #Z £(¢(N)) (mod 2)
forall A € Q(n). When n = k(3k+1)/2, we will define a partition u € Q(n) and an involution
v :Q(n) —{u} — Q(n) — {u} such that £(X) # (¢(N)) (mod2) for all A € Q(n) — {u}, and
moreover {(u) = k. Such a method of proof is called a sign-reversing involution argument.
The involution ¢ changes the sign of (—1)“» and hence cancels out all terms in the expansion

> (W

A€Q(n)

except those terms indexed by partitions A not in the domain of ¢. These partitions form a
much smaller set that can be analyzed separately.

The definition of ¢ is quite simple. Let L, denote the last row of the Ferrers diagram of A,
and let Dy denote the set of last elements of all rows ¢ for which \; = Ay —¢+ 1. Figure 1.20
shows Ly and D, for A = 76532. If #D, < #L,, define p(\) to be the partition obtained
from (the Ferrers diagram of) A\ by removing D, and replacing it under L, to form a new
row. Similarly, if #Ly < #D,, define p()) to be the partition obtained from (the Ferrers
diagram of) A by removing L, and replacing it parallel and to the right of D), beginning at
the top row. Clearly p(A\) = p if and only if (1) = A. See Figure 1.21 for the case A = 76532
and p = 8753. It is evident that ¢ is an involution where it is defined; the problem is that
the diagram defined by () may not be a valid Ferrers diagram. A little thought shows
that there are exactly two situations when this is the case. The first case occurs when A has
the form (2k — 1,2k — 2,..., k). In this case |A\| = k(3k — 1)/2 and ¢(\) = k. The second
bad case is A = (2k,2k — 1,...,k+1). Now |\ = k(3k + 1)/2 and ¢(\) = k. Hence ¢ is a
sign-reversing involution on all partitions A\, with the exception of a single partition of length
k of numbers of the form k(3k £ 1)/2, and the proof follows. O
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Figure 1.20: The sets Ly and D, for A = 76532
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Figure 1.21: The involution ¢ from the proof of the Pentagonal Number Formula

We can rewrite the Pentagonal Number Formula (1.88) in the form

(Z p(n)x") (Z(—1)nx"<3nl>/2) =1

n>0 nez
If we equate coefficients of 2™ on both sides, then we obtain a recurrence for p(n):
p(n)=pn—1)+pn—2)—pn—>5) —pn—"7)+pn—12) +p(n —15) —---. (1.91)

It is understood that p(n) = 0 for n < 0, so the number of terms on the right-hand side is
roughly 21/2n/3. For instance,

p(20) = p(19) +p(18) — p(15) — p(13) + p(8) + p(5)
= 490+ 385 — 176 — 101 + 22+ 7
= 627.
Equation (1.91) affords the most efficient known method to compute all the numbers p(1), p(2),
.., p(n) for given n. Much more sophisticated methods (discussed briefly below) are known

for computing p(n) that don’t involve computing smaller values. It is known, for instance,
that

p(10%) = 36167251325636293988820471890953695495016030339315650422081868605887
952568754066420592310556052906916435144.

In fact, p(10'®) can be computed exactly, a number with exactly 35,228,031 decimal digits.

It is natural to ask for the rate of growth of p(n). To this end we mention without proof the
famous asymptotic formula
eﬂw/Qn/3

p(n) ~ an

7

(1.92)



For instance, when n = 100 the ratio of the right-hand side to the left is 1.0457 - - -, while
when n = 1000 it is 1.0141 - --. When n = 10000 the ratio is 1.00444 - - -. There is in fact an
asymptotic series for p(n) that actually converges rapidly to p(n). (Typically, an asymptotic
series is divergent.) This asymptotic series is the best known method for evaluating p(n) for
large n.
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1.9 The Twelvefold Way

In this section we will be concerned with counting functions between two sets. Let N and
X be finite sets with #N = n and #X = x. We wish to count the number of functions
f N — X subject to certain restrictions. There will be three restrictions on the functions
themselves and four restrictions on when we consider two functions to be the same. This
gives a total of twelve counting problems, whose solution is called the Twelvefold Way.

The three restrictions on the functions f : N — X are the following.

(a) f is arbitrary (no restriction)
(b) f is injective (one-to-one)

(c) f is surjective (onto)

The four interpretations as to when two functions are the same (or equivalent) come about
from regarding the elements of N and X as “distinguishable” or “indistinguishable.” Think
of N as a set of balls and X as a set of boxes. A function f : N — X consists of placing
each ball into some box. If we can tell the balls apart, then the elements of N are called
distinguishable, otherwise indistinguishable. Similarly if we can tell the boxes apart, then
then elements of X are called distinguishable, otherwise indistinguishable. For example,
suppose N ={1,2,3}, X = {a, b, c,d}, and define functions f,g,h,i: N — X by

f() = f(2) = a fB) =10
g(1) = g9B3) = a, g(2) =0
h(1) = h(2) = b, h(3) = d
i2) = i3 = b (1) = ¢

If the elements of both N and X are distinguishable, then the functions have the “pictures”
shown by Figure 1.22. All four pictures are different, and the four functions are inequivalent.
Now suppose that the elements of N (but not X) are indistinguishable. This assumption
corresponds to erasing the labels on the balls. The pictures for f and g both become as
shown in Figure 1.23, so f and ¢ are equivalent. However, f, h, and ¢ remain inequivalent.
If the elements of X (but not N) are indistinguishable, then we erase the labels on the
boxes. Thus f and h both have the picture shown in Figure 1.24. (The order of the boxes
is irrelevant if we can’t tell them apart.) Hence f and h are equivalent, but f, g, and i are
inequivalent. Finally if the elements of both N and X are indistinguishable, then all four
functions have the picture shown in Figure 1.25, so all four are equivalent.

A rigorous definition of the above notions of equivalence is desirable. Two functions f, g :
N — X are said to be equivalent with N indistinguishable if there is a bijection u: N — N
such that f(u(a)) = g(a) for all a € N. Similarly f and g are equivalent with X indistin-
guishable if there is a bijection v : X — X such that v(f(a)) = g(a) for all a € N. Finally, f
and g are equivalent with N and X indistinguishable if there are bijections v : N — N and
v: X — X such that v(f(u(a))) = g(a) for all a € N. These three notions of equivalence
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Figure 1.22: Four functions with distinguishable balls and boxes
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Figure 1.23: Balls indistinguishable
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Figure 1.24: Boxes indistinguishable
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Figure 1.25: Balls and boxes indistinguishable
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are all equivalence relations, and the number of “different” functions with respect to one of
these equivalences simply means the number of equivalence classes. If f and g are equiva-
lent (in any of the above ways), then f is injective (respectively, surjective) if and only if
g is injective (respectively, surjective). We therefore say that the notions of injectivity and
surjectivity are compatible with the equivalence relation. By the “number of inequivalent
injective functions f : N — X7 we mean the number of equivalence classes all of whose
elements are injective.

We are now ready to present the Twelvefold Way. The twelve entries are numbered and will
be discussed individually. The table gives the number of inequivalent functions f: N — X
of the appropriate type, where #N =n and #X = x.

The Twelvefold Way

Elements Elements .. c .
of N of X Any f Injective f Surjective f
dist. dist. Logn 2 (2)n 5 21S(n, )
T ) I ()
. L - S(n,0)+ S(n,1 1 ifn<x |,
dist. indist. Foot S, z) 0 ifnoa S(n,x)
10. 1. :
o o po(n) + pi(n) L ifn<z |
indist. indist. T+t pa(n) 0 ifnoa pz(n)

Discussion of Twelvefold Way Entries
1. For each a € N, f(a) can be any of the = elements of X. Hence there are 2" functions.

2. Say N = {ay,...,a,}. Choose f(ay) in = ways, then f(az) in x — 1 ways, and so on,
giving z(x — 1)--- (r —n+ 1) = (), choices in all.

3.* A partition of a finite set N is a collection m = {By, B, ..., By} of subsets of N such

that
a. B; # () for each i
b. BN B; =0ifi £
c. BUByU---U B, = N.

(Contrast this definition with that of an ordered partition in the proof of Lemma 1.4.11,
for which the subsets By,..., By are linearly ordered.) We call B; a block of 7, and we
say that 7w has k blocks, denoted |7| = k. Define S(n, k) to be the number of partitions of
an n-set into k-blocks. The number S(n, k) is called a Stirling number of the second kind.
(Stirling numbers of the first kind were defined preceding Lemma 1.3.6.) By convention, we
put S(0,0) = 1. We use notation such as 135-26-4 to denote the partition of [6] with blocks
{1,3,5}, {2,6}, {4}. For instance, S(4,2) = 7, corresponding to the partitions 123-4, 124-3,
134-2, 234-1, 12-34, 13-24, 14-23. The reader should check that for n > 1, S(n, k) = 0 if
k>mn, S(n,0)=0,Smn,1) =1, Sn2) =2""—1, Snn) =1, S(n,n—1) = (3), and

*Discussion of entry 4 begins on page 87.
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S(n,n—2) = (3) +3(%). (See Exercise 43.)

NOTE. There is a simple bijection between the equivalence relations ~ on a set X (which

may be infinite) and the partitions of X, viz., the equivalence classes of ~ form a partition
of X.

The Stirling numbers of the second kind satisfy the following basic recurrence:
S(n,k) =kS(n—1,k)+S(n—1,k—1). (1.93)

Equation (1.93) is proved as follows. To obtain a partition of [n] into k& blocks, we can
partition [n — 1] into k blocks and place n into any of these blocks in kS(n — 1, k) ways, or
we can put n in a block by itself and partition [n — 1] into £ — 1 blocks in S(n — 1,k — 1)
ways. Hence (1.93) follows. The recurrence (1.93) allows one to prove by induction many
results about the numbers S(n, k), though frequently there will be preferable combinatorial
proofs. The total number of partitions of an n-set is called a Bell number and is denoted
B(n). Thus B(n) =Y ;_, S(n, k), n > 1. The values of B(n) for 1 < n < 10 are given by
the following table.

4|56 | 7| 8 ] 9 | 10
| 15 | 52 | 203 | 877 | 4140 | 21147 | 115975

n Hl
|1

2]
B(n) | 2

The following is a list of some basic formulas concerning S(n, k) and B(n).

S(n, k) = %Z(—l)k‘i (k) i" (1.94a)
1

Y S, k)% = (" — 1), k>0 (1.94D)

3
)

; S(n, k)z" = A=) —22) (1 — k) (1.94¢)

2= S(n, k) (@) (1.94d)
k=0

Bn+1) = z:: (?)B(i), n>0 (1.94e)

Z B(n)fl—r: = exp(e® — 1) (1.94f)

n>0

We now indicate the proofs of (1.94a)-(1.94f). For all except (1.94d) we describe non-
combinatorial proofs, though with a bit more work combinatorial proofs can be given (see
e.g. Example 5.2.4). Let Fi(z) = >, -, 5(n, k)a"/nl. Clearly Fy(xz) = 1. From (1.93) we
have -

Fi(z) = kY S(n— 1,k)%+25(n— Lk — 1)%

n>k n>k
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Differentiate both sides to obtain
Fi(z) = kFy(x) + Fr_1(x). (1.95)

Assume by induction that Fy_;(z) = ﬁ(ex — 1)*71. Then the unique solution to (1.95)
whose coefficient of 2* is 1/k! is given by Fj(z) = 5(e” — 1)*. Hence (1.94b) is true by
induction. To prove (1.94a), write

k
1 T k __ 1 k—j k jT
7=0
and extract the coefficient of 2. To prove (1.94f), sum (1.94b) on k to obtain

ZB Zkl'(e — 1)* = exp(e® — 1).

n>0 n! k>0

Equation (1.94e) may be proved by differentiating (1.94f) and comparing coefficients, and
it is also quite easy to give a direct combinatorial proof (Exercise 107). Equation (1.94c)
is proved analogously to our proof of (1.94b), and can also be given a proof analogous to
that of Proposition 1.3.7 (Exercise 45). It remains to prove (1.94d), and this will be done
following the next paragraph.

We now verify entry 3 of the Twelvefold Way. We have to show that the number of sur-
jective functions f : N — X is zIS(n,x). Now z!S(n,x) counts the number of ways of
partitioning N into z blocks and then linearly ordering the blocks, say (By, B, ..., B,). Let
X = {by,bs,...,b.}. We associate the ordered partition (By, Bs,. .., B,) with the surjec-
tive function f : N — X defined by f(i) = b; if ¢ € B;. (More succinctly, we can write
f(Bj) = b;.) This establishes the desired correspondence.

We can now give a simple combinatorial proof of (1.94d). The left-hand side is the total
number of functions f : N — X. Each such function is surjective onto a unique subset
Y = f(N) of X satisfying #Y < n. If #Y = k, then there are k!S(n, k) such functions, and
there are (i) choices of subsets Y of X with #Y = k. Hence

" —Zk'Snk() ank (1.96)

Equation (1.94d) has the following additional interpretation. The set P = K][z] of all
polynomials in the indeterminate x with coefficients in the field K forms a vector space over
K. The sets By = {1,z,2% ...} and By = {1, ()1, (¥)s,...} are both bases for P. Then
(1.94d) asserts that the (infinite) matrix S = [S(n, k)]k nen is the transition matrix between
the basis By and the basis B;. Now consider again equation (1.28) from Section 1.3. If we
change x to —z and multiply by (—1)" we obtain

n

s(n, k)z® = (z),.

k=0
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Thus the matrix s = [s(n, k)|xnen is the transition matrix from B; to B, and is therefore
the inverse to the matrix S.

The assertion that the matrices S and s are inverses leads to the following result.

1.9.1 Proposition. a. For all m,n € N, we have

> S(m, k)s(k,n) = G-

k>0

b. Let ag,ay,... and by, by, ... be two sequences of elements of a field K. The following
two conditions are equivalent:

i. For alln € N,

#t. For alln € N,

Proof.  a. This is just the assertion that the product of the two matrices S and s is the
identity matrix [0, ].

b. Let a and b denote the (infinite) column vectors (ag, ay, ... )" and (bg, by, . ..)", respec-
tively (where ! denotes transpose). Then (i) asserts that Sa = b. Multiply on the left
by s to obtain @ = sb, which is (ii). Similarly (ii) implies (i).

O

The matrices S and s look as follows:

10 0 0 0 0 0 0
01 O 0 0 0 0 0
01 1 0 0 0 0 0
01 3 1 0 0 0 0
Ss=(01 7 6 1 0 0 0
01 15 25 10 1 00
0131 9 65 15 1 0
0 1 63 301 350 140 21 1
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 -1 1 0 0 0 0 0
0 2 -3 1 0 0 0 0
s=10 —6 11 —6 1 0 0 0
0 24 —50 35 —10 1 0 0
0 —120 274 =225 85 —15 10
0 720 —-1764 1624 —-735 175 21 1

Equation (1.28) and (1.94d) also have close connections with the calculus of finite differences,
about which we will say a very brief word here. Given a function f : Z — K (or possibly
f: N — K), where K is a field of characteristic 0, define a new function Af, called the first
difference of f, by

Af(n) = f(n+1) - f(n).

We call A the first difference operator, and a succinct but greatly oversimplified definition
of the calculus of finite differences would be that it is the study of the operator A. We may
iterate A k times to obtain the k-th difference operator,

AFf = A(AFL.

The field element A*f(0) is called the k-th difference of f at 0. Define another operator
E, called the shift operator, by Ef(n) = f(n+1). Thus A = F — 1, where 1 denotes the
identity operator. We now have

Aff(n) = (E-1)"f(n)

- Z(—l)’H l;)f(n—i—z'). (1.97)
In particular,
24110 = -0 () (199

which gives an explicit formula for A¥f(0) in terms of the values f(0), f(0),..., f(k). We
can easily invert (1.97) and express f(n) in terms of the numbers A’ f(0). Namely,

fn) = E"f(0)
= (1+4)"f(0)

n

=¥ (Z) AR F(0). (1.99)

k=0
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NOTE. The operator A is a “discrete analogue” of the derivative operator D = %. It is an
instructive exercise to find finite difference analogues of concepts and results from calculus.
For instance, the finite difference analogue of e is 2", since De* = e* and A2" = 2"
Similarly, the finite difference analogue of x" is (z),, since Dz™ = nz""! and A(z), =
n(x),_1. The finite difference analogue of the Taylor series expansion

fl) = 32 (D)t

is just equation (1.99), where we should write (}) = (n)x to make the analogy even more

clear. A unified framework for working with operators such as D and A is provided by
Exercise 5.37.

Now given the function f :7Z — K, write on a line the values

- f(=2) F(=1) f(0) F(1) f(2) -

If we write below the space between any two consecutive terms f (i), f(i + 1) their difference
f(i+1) — f(i) = Af(i), then we obtain the sequence

S Af(=2) Af(=1) Af(0) Af(1) Af(2) -~

[terating this procedure yields the difference table of the function f. The kth row (regarding
the top row as row 0) consists of the values A*f(n). The diagonal beginning with f(0) and
extending down and to the right consists of the differences at 0, i.e., A*f(0). For instance,
let f(n) =n* (where K = Q, say). The difference table (beginning with f(0)) looks like

0 1 16 81 256 625
1 15 65 175 369
14 20 110 194
36 60 84
24 24
0

Hence by (1.99),

() ) w( 0) )

In this case, since n* is a polynomial of degree 4 and (Z), for fixed k, is a polynomial of
degree k, the above expansion stops after the term 24 (Z), that is, A*0* = 0 if £ > 4 (or more
generally, A*n* = 0 if £ > 4). Note that by (1.94d) we have

nt = ék!sm, k) (Z)

so we conclude 115(4,1) =1, 215(4,2) = 14, 3!5(4,3) = 36, 415(4, 1) = 24.

There was of course nothing special about the function n* in the above discussion. The same
reasoning establishes the following result.
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1.9.2 Proposition. Let K be a field of characteristic 0.

(a) A function f:7 — K is a polynomial of degree at most d if and only if A% f(n) =0
(or A%f(n) is constant).

(b) If the polynomial f(n) of degree at most d is expanded in terms of the basis (2), 0<
k < d, then the coefficients are AF f(0); that is,

c) In the special case f(n) = n we have
(c) p

AR = k1S (d, k).

1.9.3 Corollary. Let f : Z — K be a polynomial of degree d, where char(K) = 0. A
necessary and sufficient condition that f(n) € Z for alln € Z is that A¥f(0) € Z, 0 < k < d.
(In algebraic terms, the abelian group of all polynomials f : Z — 7 of degree at most d is

free with basis (g‘), (Tf), o (Z) .)

Let us now proceed to the next entry of the Twelvefold Way.

4. The “balls” are indistinguishable, so we are only interested in how many balls go into
each box by, by, ..., b,. If v(b;) balls go into box b;, then v defines an n-element multiset on
X. The number of such multisets is ((i))

5. This is similar to 4, except that each box contains at most one ball. Thus our multiset
becomes a set, and there are (z) n-element subsets of X.

6. Each box b; must contain at least one ball. If we remove one ball from each box, then
we obtain an (n — x)-element multiset on X. The number of such multisets is ((nfgc))
Alternatively, we can clearly regard a ball placement as a composition of n into x parts,
whose number is ("*1) = (( v ))

z—1 n—x
7. Since the boxes are indistinguishable, a function f : N — X is determined by the
nonempty sets f*(b), b € X, where f~'(b) = {a € N : f(a) = b}. These sets form a
partition 7 of N, called the kernel or coimage of f. The only restriction on 7 is that it

can contain no more than x blocks. The number of partitions of N into at most x blocks is
S(n,0)+S(n,1)+---+ S(n,x).

8. Each block of the coimage 7 of f must have one element. There is one such 7 if x > n;
otherwise there is no such 7.

9. If f is surjective, then none of the sets f~1(b) is empty. Hence the coimage 7 contains
exactly « blocks. The number of such 7 is S(n, z).

10. Let pi(n) denote the number of partitions of n into k parts, as defined in Section 1.7. A
function f: N — X with N and X both indistinguishable is determined only by the number
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of elements in each block of its coimage w. The actual elements themselves are irrelevant.
The only restriction on these numbers is that they be positive integers summing to n, and
that there can be no more than x of them. In other words, the numbers form a partition of
n into at most = parts. The number of such partitions is po(n) + p1(n) + - -+ + p.(n). Note
that this number is equal to p,(n + z) (Exercise 66).

11. Same argument as 8.

12. Analogous argument to 9. If f : N — X is surjective, then the coimage 7 of f has
exactly x blocks, so their cardinalities form a partition of n into exactly x parts.

There are many possible generalizations of the Twelvefold Way and its individual entries.
See the Notes for an extension of the Twelvefold Way to a “Thirtyfold Way.” Another
very natural generalization of some of the Twelvefold Way entries is the following. Let
a=(ay,...,a) € N"and = (f1,...,0,) € N". Suppose that we have «; balls of color
7, 1 <1 < m. Balls of the same color are indistinguishable. We also have n distinguishable
boxes Bi,...,B,. In how many ways can we place the balls into the boxes so that box B;
has exactly (3, balls? Call this number N,g. Similarly define M,z to be the number of such
placements with the further condition that each box can contain at most one ball of each
color. Clearly N3 = M,3 = 0 unless Y «a; = > 3; (the total number of balls). Given
a placement of the balls into the boxes, let A be the m X n matrix such that A;; is the
number of balls colored 7 that are placed in box B;. It is easy to see that this placement is
enumerated by N,z if and only if the 7th row sum of A is o; and the jth column sum is ;.
In other words, A has row sum vector row(A) = « and column sum vector col(A) = . Thus
N,p is the number of m x n N-matrices with row(A) = a and col(A) = 3. Similarly, M,z is
the number of m x n (0, 1)-matrices with row(A) = « and col(A) = . In general there is
no simple formula for N, or M,g, but there are many interesting special cases, generating
functions, algebraic connections, etc. See for instance Proposition 4.6.2, Proposition 5.5.8—
Corollary 5.5.11, and the many appearances of N,g and M,z in Chapter 7.
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1.10 Two g-analogues of permutations

We have seen that the vector space Fy is a good g-analogue of the n-element set [n], and a k-
dimensional subspace of Iy is a good g-analogue of a k-element subset of [n]. See in particular
the finite field proofs of Proposition 1.7.3 and the g-binomial theorem (equation (1.87)).
In this section we pursue this line of thought further by considering the g-analogue of a
permutation of the set [n]. It turns out that there are two good g-analogues that are closely
related. This section involves some linear algebra over finite fields and is unrelated to the
rest of the text; it may be omitted without significant loss of continuity.

1.10.1 A g-analogue of permutations as bijections

A permutation w of the set [n] may be regarded as an automorphism of [n], i.e., a bijection
w : [n] — [n] preserving the “structure” of [n]. Since [n] is being regarded simply as a set,
any bijection w : [n] — [n] preserves the structure. Hence one g-analogue of a permutation w
is a bijection A : Fy — Fy preserving the structure of F7. The structure under consideration
is that of a vector space, so A is simply an invertible linear transformation on Fy. The set of
all such linear transformations is denoted GL(n, q), the general linear group of degree n over
F,. Thus GL(n, ) is a g-analogue of the symmetric group &,,. We will sometimes identify
a linear transformation A € GL(n,q) with its matrix with respect to the standard basis
e1,...,en of Fy, ie., e; is the ith unit coordinate vector (0,0,...,0,1,0,...,0) (with 1 in
the ith coordinate). Hence GL(n, q) may be identified with the group of all n x n invertible
matrices over IF,.

For any of the myriad properties of permutations, we can try to find a corresponding property
of linear transformations over IF,. Here we will consider the following two properties: the
total number of permutations in &,,, and the distribution of permutations by cycle type.
The total number of elements (i.e., the order) of GL(n, q) is straightforward to compute.

1.10.1 Proposition. We have

#GL(n,q) = ("—-D(@"—¢) (" —¢*) (" —¢"") (1.100)
— q(g) (q — 1)”(’1?,)!.

Proof. Regard A € GL(n,q) as an n x n matrix. An arbitrary n x n matrix over F, is
invertible if and only if its rows are linearly independent. There are therefore ¢ — 1 choices
for the first row; it can be any nonzero element of Fj. There are g vectors in Fy linearly
dependent on the first row, so there are ¢" — ¢ choices for the second row. Since the first two
rows are linearly independent, they span a subspace V' of [y of dimension 2. The third row
can be any vector in [y not in V, so there are ¢" — q? choices for the third row. Continuing
this line of reasoning, there will be ¢" —¢*~! choices for the ith row, so we obtain (1.100). [

The g-analogue of the cycle type of a permutation is more complicated. Two elements
u,v € G, have the same cycle type if and only if they are conjugate in G,,, i.e., if and only
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if there exists a permutation w € &,, such that v = wuw™!. Hence a reasonable analogue of
cycle type for GL(n, q) is the conjugacy class of an element of GL(n,q). In this context it is
better to work with all n x n matrices over [F, and then specialize to invertible matrices. Let
Mat(n, q) denote the set (in fact, an F,-algebra of dimension n?) of all n X n matrices over
[F,. We briefly review the theory of the adjoint action of GL(n, q) on Mat(n, ¢). The proper
context for understanding this theory is commutative algebra, so we first review the relevant
background. There is nothing special about finite fields in this theory, so we work over any
field K, letting GL(n, K) (respectively, Mat(n, K)) denote the set of invertible (respectively,
arbitrary) n x n matrices over K.

Let R be a principal ideal domain (PID) that is not a field, and let M be a finitely-generated
R-module. Two irreducible (= prime, for PID’s) elements =,y € R are equivalent if tR = yR,
i.e., if y = ex for some unit e. Let P be a maximal set of inequivalent irreducible elements
of R. The structure theorem for finitely-generated modules over PID’s asserts that M is
isomorphic to a (finite) direct sum of copies of R and R/z'R for z € P and i > 1. Moreover,
the terms in this direct sum are unique up to the order of summands. Thus there is a unique
k > 0, and for each « € P there is a unique partition A\(x) = (A1(z), A2(x),...) (which may
be the empty partition), such that

M=R'e P R/2MR.

zeP i>1

If moreover M has finite length d (i.e., d is the largest integer j for which there is a proper
chain My C M; C --- C M; of submodules of M), then k = 0.

Now consider the case where R = K[u], well-known to be a PID. Let Z = Z(K) (abbreviated
to Z(q) when K = F,) denote the set of all nonconstant monic irreducible polynomials
f(u) over K, and let Par denote the set of all partitions of all nonnegative integers. Given
M € Mat(n, K), then M defines a K[u]-module structure on K", where the action of u is
that of M. Let us denote this K[u]-module by K[M]. Since K[M] has finite length as a
K[u]-module (or even as a vector space over K), we have an isomorphism

~ B P K/ (fND). (1.101)

FET(K) i>1

Moreover, the characteristic polynomial det(zI — M) of M is given by

det(zI — M) H f(2)PAI,
feET(K

Now GL(n, K) acts on Mat(n, K) by conjugation, i.e., if A € GL(n, K) and M € Mat(n, q),
then A- M= AMA~!. (This action is called the adjoint representation or adjoint action
of GL(n, K).) Moreover, two matrices M and N in Mat(n, K) are in the same orbit of
this action if and only if K[M] and K[N] are isomorphic as K [u]-modules. Hence by equa-
tion (1.101) we can index the orbit of M by a function

o) : Z(K) — Par,

90



where

> (@u(f)] - deg(f) =n, (1.102)

fEI(K)

namely, @y (f) = A(f). We call the function ® = ®,; the orbit type of M. Tt is the analogue
for Mat(n, K) of the cycle type of a permutation w € &,,.

We now restrict ourselves to the case K = F,. As a first application of the description of
the orbits of GL(n, q) acting adjointly on Mat(n, ¢), we can find the number of orbits. To do
so, define 3(n,q) = 3(n) to be the number of monic irreducible polynomials f(z) of degree
n over IF,. It is well-known (see Exercise 2.7) that

_ % S u(d)g (1.103)
din

1.10.2 Proposition. Let w(n, q) denote the number of orbits of the adjoint action of GL(n, q)
on Mat(n,q), or equivalently, the number of different functions ® : Z(q) — Par satisfying

(1.102). Then
na) =3 pi(n)d,

where p;(n) denotes the number of partitions of n into j parts. Equivalently,

Zw(n, q)z" = H(l —qa?)71,

n>0 §>1

Proof. We have

Zw(n, qQ)z" = Z prez |®(F)]-deg(f)

n>0 $:7—Par

=TI <Z x>\|~deg(f)>

f€Z \\e€Par

— HH — g7 4U)) T (by (1.77))

fez j>1

= TITJ - a5,

n>15>1

Now using the formula (1.103) for 5(n) we get

long(n,q)x” = ZZﬁ Ylog(1 — 2/™)~*

n>0 n>1 j>1
=22 Zu w5
n>1 ]>1 i>1
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Extract the coefficient c(d, N) of ¢?z". Clearly c(d, N) = 0 when d { N, so assume d|N. We
get

@y = Y1 Y ouln/d)

An elementary and basic result of number theory asserts that

p(k) _ o(r)
2 T

where ¢ denotes the Euler phi-function. Hence

Another standard result of elementary number theory states that

S0l /k) =3 6(k) =,

k|r k|r
so we finally obtain
IN/d 1
d,N)=—-——=-.
d-N)=0N/a~
On the other hand, we have
d.nd
ny— g
logH(l—qa:) e Z T
n>1 n>1 d>1

The coefficient (d, N) of g%z™ is 0 unless d| N, and otherwise is 1/d. Hence c¢(d,n) = ¢(d, n),
and the proof follows. O

NOTE. Proposition 1.10.2 shows that, insofar as the number of conjugacy classes is con-
cerned, the “correct” g-analogue of &, is not the group GL(n, q) itself, but rather its adjoint
action on Mat(n, ¢). The number of orbits w(n, ¢) is a completely satisfactory g-analogue of
p(n), the number of conjugacy classes in &,,, since w(n, q) is a polynomial in ¢ with nonneg-
ative integer coefficients satisfying w(n, 1) = p(n). Note that if w*(n, ¢) denotes the number
of conjugacy classes in GL(n, q), then w*(n,q) is a polynomial in ¢ satisfying w*(n,1) = 0
(Exercise 1.190). For more conceptual proofs of Proposition 1.10.2, see Exercise 1.191.

We next define a “cycle indicator” of M € Mat(n, q) that encodes the orbit of M. For every
f € T and every partition A\ # 0, let ¢;, be an indeterminate. If A = (), then set t;, = 1.
Let &), : T — Par be the orbit type of M. Define

(]
M = Htf@M(f)‘
fex
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Set
v(n) =v(n,q) = #GL(n, q).
We now define the cycle indicator (or cycle index) of Mat(n, q) to be the polynomial

1
Zot;0) = Za{tpn i) = —~ > 1P
€Mat(n,q

1)y chmna
(Set Zo(t;q) = 1.)
1.10.3 Example. (a) Let M be the diagonal matrix diag(1,1,3) . Then t*¥ =, q.1)ts—31)
if q 7é 2m7 otherwise tq)M = tz—l,(l,l,l)‘
(b) Let n = ¢ = 2. Then

Z5(t;2) = = (1) + Btay2) 4 6o )tarr,) T born1,1) + 3tarr,2) + 2624041,)) - (1.104)

=

We now give a g-analogue of Theorem 1.3.3, in other words, a generating function for the
polynomials Z,(t; q). To see the analogy more clearly, recall from equation (1.27) that

ZZ t;q)x" —HZ Z]]'
n>0 i>1 >0

The denominator #/;! is the number of permutations w € &;; that commute with a fixed
permutation with j i-cycles.

1.10.4 Theorem. We have

ZZ (t; q)x" —HZ

n>0 f€T AePar

£ plAl-deg(f)
AT T Ax (1.105)

where cg(N) is the number of matrices in GL(n, q) commuting with a fized matriz M of size

IA(f)| - deg(f) satisfying N
Pule) = {@ 2t

Equivalently, c¢(\) is the number of F,-linear automorphisms of the ring

M] = DT, [u]/ (f ()™

i>1

appearing in equation (1.101) .

Proof (sketch). Let G be a finite group acting on a finite set X. For a € X, let Ga = {g-a :
g € G}, the orbit of G containing a. Also let G, = {g € G : ¢g-a = a}, the stabilizer of
a. A basic and elementary result in group theory asserts that #Ga - #G, = #G. Consider
the present situation, where G = GL(n, q) is acting on Mat(n, ¢). Let M € Mat(n,q). Then
A € Gy if and only if AMA™' = M, i.e., if and only if A and M commute. Hence

4G

#GM = ()’

(1.106)
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where cg(M) is the number of elements of G commuting with M.
We have a unique direct sum decomposition

Fy =PV,

fex

where
Vi={velF, : f(M)" (v)=0 for some r > 1}.

Thus M = @y My, where M;Vy C Vy and MV, = {0} if g # f. A matrix A commuting
with M respects this decomposition, i.e., AVy C Vy for all f € Z. Thus A = @fez Ay where
AsVy CVpand AV, = {0} if g # f. Then A commutes with M if and only if Ay commutes
with M for all f. In particular,

ca(M) = H cr(Par(f))-

feT

It follows from equation (1.106) that the number of conjugates of M (i.e., the size of the
orbit GM) is given by

(1)
HGM = . (1.107)
[y cr(®a(f))
This number is precisely the coefficient of ¥ /y(n) in equation (1.105), and the proof
follows. m

In order for Theorem 1.10.4 to be of any use, it is necessary to find a formula for the numbers
c¢(A). There is one special case that is quite simple.

1.10.5 Lemma. Let f(z) = z —a for some a € F,, and let (1*) denote the partition with k
parts equal to 1. Then c;((1F)) = ~v(k).

Proof. We are counting matrices A € GL(k, ¢) that commute with a k x k diagonal matrix
with a’s on the diagonal, so A can be any matrix in GL(k, ¢q). O

1.10.6 Corollary. Let d, denote the number of diagonalizable (over F,) matrices M €
Mat(n,q). Then

Sa- ()

= ) el

Proof. A matrix M is diagonalizable over F, if and only if its corresponding orbit type
®yr : T — Par satisfies @(f) = 0 unless f = z —a for a € F,, and ®p(z — a) = (1*) in the
notation of equation (1.74) (where we may have k = 0, i.e., a is not an eigenvalue of M).
Hence

dn = 7(”) Zn(t; q)|tz—a,(lk>:1’ t ¢ x=0otherwise
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Making the substitution ¢._, x = 1,1y = 0 otherwise into Theorem 1.10.4 yields

> by =112

c
n>0 a€lFy k>0
The proof follows from Lemma 1.10.5. O

The evaluation of c¢s(\) for arbitrary f and A is more complicated. It may be regarded
as the g-analogue of Proposition 1.3.2, since equation (1.107) shows that the number of
conjugates of a matrix M is determined by the numbers c;(®y/(f)). This formula for cf(\)
is a fundamental enumerative result on enumerating classes of matrices in Mat(n, ¢), from
which a host of other enumerative results can be derived. Let X = (A}, A}, ...) denote the
conjugate partition to A, and let m; = m;(\) = A; — A\j; be the number of parts of A of size
1. Set
hi =M+ X+ 4+ A,

and let d = deg(f).
1.10.7 Theorem. We have

cr(N) = H [T (" = g%, (1.108)

1.10.8 Example. (a) Let A = (4,2,2,2,1), s0 X = (5,4,1,1), hy = 5, hy = 9, hg = 10,
hy =11, m; = 1, my = 3, my = 1. Thus for deg(f) =1 we have

cr(4,2,2,2,1) = (¢" — ¢")(¢" = ¢*)(¢" — ¢")(&* — ¢°)(¢"" — ¢"?).

(b) Let A = (k), so N = (1*), hy = i for 1 < i < k, and m;, = 1. For deg(f) = 1 we
get ¢;(k) = ¢* — ¢"'. Indeed, we are asking for the number of matrices A € GL(k, q)
commuting with a k£ x k Jordan block. Such matrices are easily seen to be upper
triangular with constant diagonals (parallel to the main diagonal). There are ¢ — 1
choices for the main diagonal and ¢ choices for each of the £ — 1 diagonals above the
main diagonal, giving (¢ — 1)¢* ™! = ¢* — ¢*~! choices in all.

Proof of Theorem 1.10.7. The proof is analogous to that of Proposition 1.3.2. We write down
some data that determines a linear transformation M € Mat(nd, ¢) for which @, (f) = A F n,
and then we count in how many ways we obtain the same linear transformation M. Let

¢ = {()\), the number of parts of A, and similarly k = £(\) = A;.

Now let

be a basis B for IFZd, together with the indexing v;; of the basis elements. Thus the number
N(n,d,q) of possible v is the number of ordered bases of ng, namely,

N(n.d,q) = (0" = 1)(@" = @)+ (¢ — ¢"*") = #GL(nd, q). (1.109)

Let M = My be the unique linear transformation satisfying the following three properties:
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e The characteristic polynomial det(zI — M) of M is f(z)".
e Forall 1 <i</and1<j<\d, wehave M(v;;) = v; j11.

e For all 1 < i < /¢, we have that M(v;,q) is a linear combination of the v;;’s for
1 <7< A\d.

It is not hard to see that M is indeed unique and that ®;,(f) = .

We now consider how many indexed bases v = (v;;) determine the same linear transformation
M. Given M, define

Vi={veF": f(M)'(v)=0}, 1<i<k.

It is clear that
‘GCVQC"'C%

dimV; =N+ X5+ -+ X)d = hid
dim(V;/Vi1) = Nid.
If B is a subset of [, then set

F(M)B = {f(M)v : v e B}.

dlm(Vk)d_ dim(Vk_l)d — qhkd_ hk_ld

There are q q q choices for vy; (since vy; can be any vector in V,
not in Vj_1), after which all other v;; are determined. There are then ¢+ — gPe=1+Dd choices
for vg; (since vq1 can be any vector in Vj not in the span of Vi_; and {vy1,v19,. .., v14}), etc.,
down to ¢ — qhs-17m%)4 choices for vy, ;.

Let
By = {vig, vig, .., via 0 1 < i < ALT

Thus Bj is a subset of Vj, whose image in Vj/Vi_; is a basis for Vi/Vi_1. Now vy, 111
(= UA;+1,1) can be any vector in V;_; not in the span of f(M)B; U Vj_s, so there are

qdim(vk—l) _ q#Bl+dim(Vk—2) — qhk—ld _ qud+hk—2d — ghe—1d _ (hk—1—my_1)d

q q

choices for vy 111. There are then ge1d — 1=t Dd choices for Uy, +2,1, then qhe-1d —
q(hk—l_mk—1+2)d hig_1d

Let

choices for vy 131, etc., down to ¢ — gMe-1=14 choices for [OVERE

By = {vi1,vig, ., via » N+ 1 <0 < N}

so By = 0 if A}, = Aj_;. Then f(M)(B;UBy) is a subset of Vj_; whose image in Vi_1/Vj_o is
a basis for Vi1 /Vi 9. Now vy, 41 can be any vector in Vi _5 not in the span of f(M)(B, U
By) U Vj_3, so there are

dim(vk_Q) #Bl—l—#BQ-i-dim(Vk_g) hp_od _ mypd+my_1d+hg_3d — hp_od _ (hk_g—mk_g)d

q —4q =4q q q q

choices for Ux, 411 There are then qhk—Qd—q(hk—Q_m’f—QH)d choices for Ux 421 then g»—24—

q\he—2=mk-242)d choices for Uxn_ 43,1, etc., down to g4 — qMe-2=1d choices for UN -
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Continuing in this manner shows that the total number of choices for v is given by the
right-hand side of equation (1.108).

We have shown that each indexed basis v of F;¢ defines a matrix M € Mat(nd, q) with
@)/ (f) = A. Moreover, every matrix satisfying ®,,(f) = A occurs the same number L(n, d, q)
times, given by the right-hand side of (1.108). Since by (1.109) the number of indexed bases
is #GL(nd, q), we get that the number of matrices M satisfying ®,,(f) = A is equal to
GL(nd, q)/L(nd, q). It follows from equation (1.106) that L(nd,q) = cf()), completing the
proof.

As a slight variation, we can see directly that L(nd,q) = cf()) as follows. Let v = (v;)
be a fixed indexed basis for F;¢ with M = M(v). Let v" = (v};) be another indexed basis
satisfying M = M(v’). Then the linear transformation A € GL(nd, q) satisfying A(v;;) = vj;
for all 4, 7 commutes with M, and all matrices commuting with M arise in this way. Hence
once again L(nd, q) = cf(N). O

Even with the above formula for c¢¢(\), equation (1. 105) is difficult to work with in its full

generality. However, if we specialize each variable ¢ to ¢ P | then the following lemma allows
a simplification of (1 105).

1.10.9 Lemma. For any f € Z of degree d we have

> m-l(-5)

AePar r>1

Proof. By Theorem 1.10.7 it suffices to assume d = 1. Our computations take place in
the ring C(q)[[z]], i.e., power series in x whose coefficients are rational functions in ¢ with
complex coefficients. It follows from Proposition 1.8.6(c) that

1 (1 N qi) " - 2 (1- qlv;:??-_:l —q )

‘ (1)
- ;20(1—61)(1—612)“-(1—61”)'

Hence by Theorem 1.10.7 we need to prove that

(=1)"¢(%)
ZHH A)_q >\)]_(1_Q)(1—q2)"'(1—q”)' (1.110)

An i>1 j=1

Substitute 1/¢ for ¢ in equation (1.110). We will simply write h; = h;(A) and m; = m;(\).
Since

1 B g
g — g 1 — i’
the left-hand side of (1.110) becomes

ZH —qmi)'

AFn 12>1
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Figure 1.26: The “successive Durfee squares” of = (7,7,5,4,3,2)

It is easy to see that

> mihi =Y (),

i>1 i>1
which we denote by (N, \').

Under the substitution ¢ — 1/¢ the right-hand side of (1.110) becomes ¢"/(1—q) - - - (1—q").
Thus we are reduced to proving that

n

(N, N) 1 _ q
Zq H(l—q)~-~(1—in) 1—q)(1—q") (1.111)

AFn i>1

We can replace (N, X) by (A A) since this substitution merely permutes the terms in the
sum. Set m, = m;(\') = A\; — A\ix1. Then

2 "] (1—q)- -%(1 —qm) 2 (1- q)c-]é-’?l —q™) (i:) Cz)

AFn i>1 AFn

The coefficient of ¢* in the right-hand side of (1.111) is equal to p,(k), the number of
partitions of k with largest part n. Given such a partition p = (1, po,...), associate a
partition A\ - uy by taking the rank (= length of the Durfee square) of u, then the rank of
the partition whose diagram is to the right of the Durfee square of pu, etc. For instance, if
w=(7,7,5,4,3,2), then A = (4,2,1) as indicated by Figure 1.26. Given \, the generating
function ) i ¢ for all corresponding p is

(1- Q)?%Aj?l —q™M) C:) (iZ) o

as indicated by Figure 1.27 (using Proposition 1.7.3), and the proof follows. O

Now let

~

Zy(tq) = Zn(t§Q>|tf}>\:t\fM :
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1[A]!

Figure 1.27: The “successive Durfee square decomposition” of A

For instance, from equation (1.104) we have
= 1
Zy(t;2) = G (402 + 482, + 6totosg +2t2001)

Let f = []cr fi" with deg f = n. Then the coefficient of ¢7/¢%>--- in v(n,q)Z(t: q) is
just the number of matrices M € Mat(n, ¢) with characteristic polynomial f. Note that in
general if we define deg(ty) = deg(f), then Z,(t; ¢) is homogeneous of degree n.

The following corollary is an immediate consequence of Theorem 1.10.4 and Lemma 1.10.9.

1.10.10 Corollary. We have

t, pdes(f)
ZZI _HH( - fr:fieg(f )

n>0 fezTr>1

Many interesting enumerative results can be obtained from Theorem 1.10.4 and Corol-
lary 1.10.10. We give a couple here and some more in the Exercises (193-195). Let 5*(n, q)
denote the number of monic irreducible polynomials f(z) # z of degree n over F,. It follows
from (1.103) that

g—1, n=1

#*(n.q) = (1.112)
% Zd‘n w(d)gve, n > 1.
1.10.11 Corollary. (a) We have

_ H H rn n B*(n,q)

n>1r>1

99



(b) Let g(n) denote the number of nilpotent matrices M € Mat(n,q). (Recall that A is
nilpotent if A™ =0 for some m > 1.) Then g(n) = "™~ Y.

Proof. (a) Let 7 =7 — {z}. Set t, =0 and t; = 1 for f # z in Corollary 1.10.10. Now

des(f)
( - q" des f))

[ 11

r>1
—rn n —B*(n, ‘1)

I -

so we get

\\/: t\\:

Since the left-hand side is independent of ¢, we can substitute 1/q¢ for ¢ in the right-hand side
without changing its value, and the proof follows. This result can also be proved by taking the
logarithm of both sides and using the explicit formula for §*(n, ¢) given by equation (1.112).

(b) A matrix is nilpotent if and only if all its eigenvalues are 0. Hence

g(n) =(n) Z(t:q)

to=1, tp=0 if f#z

By Corollary 1.10.10 and Proposition 1.8.6(a) there follows

Sai = I(-7)

n>0 r>1

S D"

- _ o1 _ gk
S l=q ) (1-¢7F)

_ (k—1) a

- Zq k
k>0

and the proof follows. (For a more direct proof, see Exercise 1.188.) O

1.10.2 A g-analogue of permutations as words

We now discuss a second g-analogue of permutations (already discussed briefly after Corol-
lary 1.3.13) and then connect it with the one discussed above (matrices in GL(n, q)). Rather
than regarding permutations of 1,2,...,n as bijections w : [n] — [n], we may regard them
as words ajas - - - a,. Equivalently, we can identify w with the maximal chain (or (complete)
flag)

®250C51C-~-C5n=[n] (1.113)
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of subsets of [n], by the rule {a;} = S; — S;_1. For instance, the flag 0 C {2} C {2,4} C
{1,2,4} C {1,2,3,4} corresponds to the permutation w = 2413. The natural g-analogue of
a flag (1.113) is a maximal chain or (complete) flag of subspaces

{0}=hcWvic---CV,=F, (1.114)

of subspaces of Iy, so dim V; = i. It is easy to count the number of such flags (as mentioned
after Corollary 1.3.13.

1.10.12 Proposition. The number f(n,q) of complete flags (1.114) is given by

fn,g) =) =0+¢A+q+¢) - (L4+qg+---+¢"").

Proof. There are () = (n) choices for Vi, then (”;1) choices for V5 (since the quotient
space [y /V; is an (n — 1)-dimensional vector space), etc. O

Comparing Corollary 1.3.13 with Proposition 1.10.12, we see that

Fng)= 3 g™,

wEGn

We can ask whether there is a bijective proof of this fact analogous to our proof of Propo-
sition 1.7.3. In other words, letting F(n,q) denote the set of all flags (1.114), we want to
find a map ¢ : F(n,q) — &, such that #p ' (w) = ¢™™ for all w € &,,. Such a map can
be defined as follows. Let F' € F(n,q) be the flag (1.114). It is not hard to see that there
is a unique ordered basis v = v(F) = (vi,va,...,v,) for Fy (where we regard each v; as a
column vector) satisfying the two conditions:

o V,=span{vy,...,v;}, 1 <i<n

e There is a unique permutation p(F) = w € &,, for which the matrix A = [vy,...,v,]*
satisfies (a) A; @) = 1 for 1 <i < n, (b) A;; = 0if j > w(i), and (c) Aj,u = 0 if
j > i. In other words, A can be obtained from the permutation matrix P,, (as defined
in Section 1.5) by replacing the entries A;; for (¢,7) € D,, (as defined in Section 1.5)
by any elements of IF,. We call A a w-reduced matrix.

For instance, suppose that w = 314652. Figure 1.5 shows that the possible matrices A have
the form

[« x 1 0 0 0]

1 000 0O
00100

A= 0 « 0 0 x 1
00010

| 001 00 0 0]

Let ©,, be the set of flags F' € F(n,q) for which ¢(F) = w. Thus
F(n,q) = Juwes, Q- (1.115)
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Since #D,, = inv(w) we have #Q, = ¢™ ™) 50 we have found the desired combinatorial
interpretation of Proposition 1.10.12. The sets €2, are known as Schubert cells, and equa-
tion (1.115) gives the cellular decomposition of the flag variety F(n, q), completely analogous
to the cellular decomposition of the Grassmann variety Gy, given in the proof of Proposi-
tion 1.7.3. The canonical ordered basis v(F') is the “flag analogue” of row-reduced echelon
form, which gives a canonical ordered basis for a subspace (rather than a flag) of IFy.

1.10.3 The connection between the two ¢g-analogues

The order y(n, q) of GL(n,q) and the number f(n,q) of complete flags is related by

v(n,q) = ¢ (g = 1)"f(n, q).

Can we find a simple combinatorial explanation? We would like to find a map ¢ : GL(n, q¢) —
F(n, q) satisfying #¢~1(F) = q(g) (g — 1) for all F' € F(n,q). The definition of ¥ is quite
simple: if A = [vy,...,v,]" then let ¢)(F) be the flag {0} =V, C Vi C--- C V,, = F} given
by V; = span{vy,...,v;}. Given F, there are ¢ — 1 choices for vy, then ¢ — ¢ choices for vy,
then ¢* — ¢* choices for vs, etc., showing that #¢ 1 (F) = q(g) (¢ — 1) as desired.

We have constructed maps GL(n, q) 4, F(n,q) > &,. Given w € &, let ', = 1o~ (w).
Thus

GL(n, q) = (Juwes,Tw: (1.116)

the Bruhat decomposition of GL(n,q). (The Bruhat decomposition is usually defined more
abstractly and in greater generality than we have done.) It is immediate from the formulas

#0 = g™ and #47 (F) = ¢ (g — 1)" that #T, = ¢(3) (g — 1)"¢™® and
ving) = q@(g—1)" 3 g™, (1.117)
weSy,

Together with Corollary 1.3.13, equation (1.117) gives a second combinatorial proof of Propo-
sition 1.10.1.

It is not difficult to give a concrete description of the “Bruhat cells” I',,. Namely, every
element A of I, can be uniquely written in the form A = LM, where L is a lower-triangular
matrix in GL(n,q) and M is a w-reduced matrix. We omit the straightforward proof.

1.10.13 Example. (a) Every matrix A € GL(2,¢q) can be uniquely written in one of the

two forms
1 0 _ a 0
0 1 o b ¢
a 1 _ aa a
10 N ab+c b |’
where b, € Fy, a,c € F; =F, — {0}.
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(b) The cell T'3142 consists of all matrices of the form

a 0 0 0 a 10 aa Ba a 0
b ¢ 0 O 1 000 | ab+c £b b 0
d e f O 0 v 01| | ad+e pBd+~f d f |’
g h i g 01 00 ag+h Bg+~vi+j g 1

where b,d, e, g,h,i,a, 8,7 € F, and a,c, f,j € F}.

The Bruhat decomposition (1.116) can be a useful tool for counting certain subsets S of
GL(n, q), by computing each #(SNT,,) and summing over all w € &,,. Proposition 1.10.15
illustrates this technique. First we need a simple enumerative lemma.

1.10.14 Lemma. Fiz q, and for any integer n > 0 let

= ##{(,...,a,) € (F)" : Zai =0}.
Then ag = 1, and a,, = %((q — 1"+ (¢g—1)(=1)") forn > 0.
Proof. Define b, = >7_ (%)ax. Since every sequence (ay, ..., a,) € F? satisfying > a; =0

can be obtained by first specifying n — k terms to be 0 in (2) ways and then specifying the
remaining k terms in a; ways, we have

bo— 1, n=0
" ¢vY, n> 1.

There are many ways to see (e.g., equations (2.9) and (2.10)) that we can invert this rela-
tionship between the a,,’s and b,’s to obtain

o = S0 (k)bk

[ Z) ¢+ (g~ 1)(—1)”]
(la-

+(g—1D(=1)"). O

|,_. | = ?r

1.10.15 Proposition. Let GLO(n,q) = {A € GL(n,q) : tr(A) = 0}, where tr(A) denotes
the trace of A, and set yo(n,q) = #GLgo(n,q). Then

Yo(n, q) = é <’y(n, Q)+ (=1)"(q — 1)q(’5)) ,

Proof. Let id denote the identity permutation 1,2,...,n, so inv(id) = 0. We will show that
1
#(GLg(n,q)NTy,) = a#Fw, w # id
1 n
#(Glo(n,q) ML) = = (#Tu+ (-1)"(a = 1g),
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from which the proof follows since ) #I'\, = v(n,q).

Suppose that w # id. Let r be the least integer for which there exists an element (7, s) € D,,,
where D,, denotes the diagram of w. It is easy to see that then (r,r) € D,. Consider a
general element A = LM of Iy, so the entries L;; satisfy L;; € IF:;, Ly € Fyif ¢ > j, and
Ly = 0if i < j. Similarly M, = 1, M;; € Fy if (¢,7) € D, and M;; = 0 otherwise.
Thus A,, will be a polynomial in the L;;’s and M;;’s with a term L,,M,,. (In fact, it is not
hard to see that A, = L,.M,,., though we don’t need this stronger fact here.) There is no
other occurrence of M,, in a main diagonal term of A. If we choose all the free entries of
L and M except M,, (subject to the preceding conditions), then we can solve uniquely for
M, (since its coefficient is L, # 0) so that tr(A) = 0. Thus rather than ¢ choices for M,.,
for any A € T, there is only one choice, so #(GLo(n,q) NTy) = %#Fw as claimed.

Ezample. Consider the cell I'g149 of Example 1.10.13(b). We have that #(GLo(4, ¢) NT'3142) is
the number of 13-tuples (a, ..., j, «, 3,7) such that b,d,e, g, h,i,a, 3,7 € F, and a,c, f,j €
[y, satisfying

aa+ Bb+d+i=0. (1.118)

We have r = 1, so we can specify all 13 variables except « in ¢3(¢ — 1)* ways, and then solve
equation (1.118) uniquely for a. Hence #(GLo(4,q) NT3140) = ¢®(q — 1)* = %#F3142.

Now let w = id, so A = L. Hence we can choose the elements of A below the diagonal

in q(g) ways, while the number of choices for the diagonal elements is the number a, of
Lemma 1.10.14. Hence from Lemma 1.10.14 we get

n

#lq = C](Q)&n
_ q%((q ) (g (1)),

and the proof follows. O
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NOTES

It is not our intention here to trace the development of the basic ideas and results of enumer-
ative combinatorics. It is interesting to note, however, that according to Heath [1.40, p. 319],
a result of Xenocrates of Chalcedon (396-314 BCE) possibly “represents the first attempt on
record to solve a difficult problem in permutations and combinations.” (See also Biggs [1.8,
p. 113].) Moveover, Exercise 1.203 shows that Hipparchus (c. 190-after 127 BCE) certainly
was successful in solving such a problem. We should also point out that the identity of
Example 1.1.17 is perhaps the oldest of all binomial coefficient identities. It is called by such
names as the Chu-Vandermonde identity or Vandermonde’s theorem, after Chu Shih-Chieh
(Zhu Shijié in Pinyin and A in simplified Chinese characters) (c. 1260—c. 1320) and
Alexandre-Théophile Vandermonde (1735-1796).

Two valuable sources for the history of enumeration are Biggs [1.8] and Stein [1.71]. Knuth
[1.49, §7.2.1.7] has written a fascinating history of the generation of combinatorial objects
(such as all permutations of a finite set). We will give below mostly references and comments
not readily available in [1.8] and [1.71].

For further information on formal power series from a combinatorial viewpoint, see, for
example Niven [1.60] and Tutte [1.73]. A rigorous algebraic approach appears in Bourbaki
[1.12, Ch. 1V, §5], and a further paper of interest is Bender [1.5]. Wilf [1.76] is a nice
introduction to generating functions at the undergraduate level.

To illustrate the misconceptions (or at least infelicitous language) that can arise in dealing
with formal power series, we offer the following quotations (anonymously) from the literature.

“ Since the sum of an infinite series is really not used, our viewpoint can be either
rigorous or formal.”

“(1.3) demonstrates the futility of seeking a generating function, even an expo-
nential one, for IU(n); for it is so big that

F(z) = ZIU(n)z”/n!

fails to converge if z # 0. Any closed equation for F' therefore has no solutions,
and when manipulated by Taylor expansion, binomial theorem, etc., is bound to
produce a heap of eggs (single -0- or double -co-yolked). Try finding a generating
function for 22".”

“Sometimes we have difficulties with convergence for some functions whose coef-
ficients a,, grow too rapidly; then instead of the regular generating function we
study the exponential generating function.”

An analyst might at least raise the point that the only general techniques available for
estimating the rate of growth of the coefficients of a power series require convergence (so
that e.g. the apparatus of complex variable theory is available). There are, however, methods

105



for estimating the coefficients of a divergent power series; see Bender [1.6, §5] and Odlyzko
[1.61, §7]. For further information on estimating coefficients of power series, see for instance
Flajolet and Sedgewick [1.22], Odlyzko [1.61] and Pemantle and Wilson [1.63]. In particular,
the asymptotic formula (1.12), due to Moser and Wyman [1.57], appears in [1.61, (8.49)].

The technique of representing combinatorial objects such as permutations by “models” such
as words and trees has been extensively developed. A pioneering work in this area in the
monograph [1.26] of Foata and Schiitzenberger. In particular, the “transformation fonda-
mentale” on pp. 13—-15 of this reference is essentially our map w — w of Proposition 1.3.1.
Note, however, that this bijection was earlier used by Alfréd Rényi [1.67, §4] to prove Propo-
sition 1.3.1. The history of the generating function for the cycle indicator of &,, (Theo-
rem 1.3.3) is discussed in the first paragraph of the Notes to Chapter 5. The generating
function for permutations by number of inversions (Corollary 1.3.13) appears in Rodrigues
[1.68] and Netto [1.58, p. 73]. The generalization to multisets (Proposition 1.7.1) is due to
MacMahon [1.54, §1]. It was rediscovered by Carlitz [1.16]. The second proof given here
was suggested by A. Bjorner and M. L. Wachs [1.9, §3]. The cellular decomposition of
the Grassmann variety (the basis for our second proof of Proposition 1.7.3) is discussed by
S. L. Kleiman and D. Laksov [1.46]. For some further historical information on the results
of Rodriques and MacMahon, see the book review by Johnson [1.44]. The major index of a
permutation was first considered by MacMahon [1.53], who used the term “greater index.”
The terminology “major index” was introduced by Foata [1.25] in honor of MacMahon, who
was a major in the British army. MacMahon’s main result on the major index is the equidis-
tribution of inv(w) and maj(w) for w € &,. He gives the generating function (1.42) for
maj(w) in [1.53, §6] (where in fact w is a permutation of a multiset), and in [1.54] he shows
the equidistribution with inv(w). The bijective proof we have given here (proof of Proposi-
tion 1.4.6) appears in seminal papers [1.23][1.24] of Foata, which helped lay the groundwork
for the modern theory of bijective proofs. The strengthening of Foata’s result given by
Corollary 1.4.9 is due to Foata and Schiitzenberger [1.28].

The investigation of the descent set and number of descents of a permutation (of a set or
multiset) was begun by MacMahon [1.52]. MacMahon apparently did not realize that the
number of permutations of [n] with & descents is an Eulerian number. The first written state-
ment connecting Eulerian numbers with descents seems to have been by Carlitz and Riordan
[1.17] in 1953. The fundamental Lemma 1.4.11 is due to MacMahon [1.53, p. 287|. Eulerian
numbers occur in some unexpected contexts, such as cube slicing (Exercise 1.51), juggling
sequences [1.15], and the statistics of carrying in the standard algorithm for adding integers
(Exercise 1.52). MacMahon [1.55, vol. 1, p. 186] was also the first person to consider the ex-
cedance of a permutation (though he did not give it a name) and showed the equidistribution
of the number of descents with the number of excedances (Proposition 1.4.3).

We will not attempt to survey the vast subject of representing permutations by other combi-
natorial objects, but let us mention that an important generalization of the representation of
permutations by plane trees is the paper of Cori [1.19]. The first result on pattern avoidance
seems to be the proof of MacMahon [1.55, §97] that the number of 321-avoiding permu-
tations w € &,, is the Catalan number C,,. MacMahon states his result not in terms of
pattern avoidance, but rather in terms of permutations that are a union of two decreasing
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sequences. MacMahon’s result was rediscovered by J. M. Hammersley [1.38], who stated it
without proof. Proofs were later given by D. E. Knuth [1.48, §5.1.4] and D. Rotem [1.69]. For
further information on 321-avoiding and 132-avoiding permutations, see Exercise 6.19(ee,ff)
and the survey of Claesson and Kitaev [1.18]. For further information on pattern avoidance
in general, see Exercises 57-59, as well as books by M. Béna [1.11, Chs. 4-5] and by S.
Heubach and T. Mansour [1.42].

Alternating permutations were first considered by D. André [1.1], who obtained the basic
and elegant Proposition 1.6.1. (Note however that Ginsburg [1.34] asserts without giving a
reference that Binet was aware before André that the coefficients of sec x count alternating
permutations.) A combinatorial proof of Proposition 1.6.2 on flip equivalence is due to R.
Donaghey [1.20]. Further information on the connection between alternating permutations
and increasing trees appears in a paper of Kuznetsov, Pak, and Postnikov [1.51].

The cd-index ®@,,(c, d) was first considered by Foata and Schiitzenberger [1.27], who defined
it in terms of certain permutations they called André permutations. Their term for the
cd-index was “non-commutative André polynomial.” Foata and Strehl [1.29][1.30] further
developed the theory of André polynomials, André permutations, and their connection with
permutation statistics. Meanwhile Jonathan Fine [1.21] defined a noncommutative polyno-
mial ®p(c, d) associated with certain partially ordered sets (posets) P. This polynomial was
first systematically investigated by Bayer and Klapper [1.4] and later by Stanley [1.70], who
extended the class of posets P which possessed a cd-index ®p(c,d) to Eulerian posets. The
basic theory of the cd-index of an Eulerian poset is covered in Section 3.17. M. Purtill [1.65,
Thm. 6.1] showed that the cd-index ®,, that we have defined is just the cd-index ®p, (in the
sense of Fine and Bayer-Klapper) of the boolean algebra B,, (the poset of all subsets of [n],
ordered by inclusion). The approach to the cd-index ®,, given here, based on min-max trees,
is due to G. Hetyei and E. Reiner [1.41]. For some additional properties of min-max trees,
see Béna [1.10]. Corollary 1.6.5 was first proved by Niven [1.59] by a complicated induction.
De Bruijn [1.13] gave a simpler proof and extended it to Proposition 1.6.4. A further proof
is due to Viennot [1.75]. The proof we have given based on the cd-index appears in Stanley
[1.70, pp. 495-496]. For a generalization see Exericse 3.55.

The theory of partitions of an integer originated in the work of Euler, if we ignore some
unpublished work of Leibniz that was either trival or wrong (see Knobloch [1.47]). An
excellent introduction to this subject is the text by Andrews [1.2]. For a masterful survey
of bijective proofs of partition identities, see Pak [1.62]. The latter two references provide
historical information on the results appearing in Section 1.8. The asymptotic formula
(1.92) is due to Hardy and Ramanujan [1.39], and the asymptotic series mentioned after
equation (1.92) is due to Rademacher [1.66]. More recently J. H. Bruinier and K. Ono,

(http://www.aimath.org/news/partition/brunier-ono),

have given an explicit finite formula for p(n). For an exposition of partition asymptotics, see
Andrews [1.2, Ch. 5].

The idea of the Twelvefold Way (Section 1.9) is due to G.-C. Rota (in a series of lectures),
while the terminology “Twelvefold Way” was suggested by Joel Spencer. An extension of
the Twelvefold Way to a “Thirtyfold Way” (and suggestion of even more entries) is due to
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R. Proctor [1.64]. An interesting popular account of Bell numbers appears in an article by
M. Gardner [1.33]. In particular, pictorial representations of the 52 partitions of a 5-element
set are used as “chapter headings” for all but the first and last chapters of certain editions
of The Tale of Genji by Lady Murasaki (c. 978-c. 1031 CE). A standard reference for the
calculus of finite difference is the text by C. Jordan [1.45].

The cycle indicator Z,(t;q) of GL(n,q) was first explicitly defined by Kung [1.50]. The
underlying algebra was known much earlier; for instance, according to Green [1.35, p. 407]
the basic Theorem 1.10.7 is due to P. Hall [1.36] and is a simple consequence of earlier work
of Frobenius (see Jacobson [1.43, Thm. 19, p. 111]). Green himself sketches a proof on
page 409, op. cit. Further work on the cycle indicator of GL(n,q) was done by Stong [1.72]
and Fulman [1.31]. A nice survey of enumeration of matrices over F, was given by Morrison
[1.56], whom we have followed for Exercises 1.193-1.195. Our proof of Lemma 1.10.9 is
equivalent to one given by P. Hall [1.37].

The cellular decomposition (1.115) of the flag variety F(n, q) and the Bruhat decomposition
(1.116) of GL(n, K) (for any field K) are standard topics in Lie theory. See for instance
Fulton and Harris [1.32, §23.4]. A complicated recursive description of the number of matrices
in GL(n, q) with trace 0 and a given rank r was given by Buckheister [1.14]. Bender [1.7]
used this recurrence to give a closed-form formula. The proof we have given of the case
k =0 (Proposition 1.10.15) based on Bruhat decomposition is new. For a generalization see
Exercise 1.196.
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A Note about the Exercises

Each exercise is given a difficulty rating, as follows.

1. routine, straightforward

2. somewhat difficult or tricky
3. difficult

4. horrendously difficult

5. unsolved

Further gradations are indicated by 4+ and —. Thus [1-] denotes an utterly trivial problem,
and [5-] denotes an unsolved problem that has received little attention and may not be
too difficult. A rating of [2+4] denotes about the hardest problem that could be reasonably
assigned to a class of graduate students. A few students may be capable of solving a [3-]
problem, while almost none could solve a [3] in a reasonable period of time. Of course the
ratings are subjective, and there is always the possibility of an overlooked simple proof that
would lower the rating. Some problems (seemingly) require results or techniques from other
branches of mathematics that are not usually associated with combinatorics. Here the rating
is less meaningful—it is based on an assessment of how likely the reader is to discover for
herself or himself the relevance of these outside techniques and results. An asterisk after the
difficulty rating indicates that no solution is provided.

EXERCISES FOR CHAPTER 1

1. [1-] Let S and T be disjoint one-element sets. Find the number of elements of their
union S UT.

2. [14] We continue with a dozen simple numerical problems. Find as simple a solution
as possible.
(a) How many subsets of the set [10] = {1,2,...,10} contain at least one odd integer?

(b) In how many ways can seven people be seated in a circle if two arrangements are
considered the same whenever each person has the same neighbors (not necessarily
on the same side)?

How many permutations w : [6] — [6] satisfy w(1) # 27
How many permutations of [6] have exactly two cycles (i.e., find ¢(6,2))?
How many partitions of [6] have exactly three blocks (i.e., find S(6,3))?

There are four men and six women. Each man marries one of the women. In how
many ways can this be done?
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(g) Ten people split up into five groups of two each. In how many ways can this be
done?

(h) How many compositions of 19 use only the parts 2 and 37

(i) In how many different ways can the letters of the word MISSISSIPPI be arranged
if the four S’s cannot appear consecutively?

(j) How many sequences (ay, as, ..., ajs) are there consisting of four 0’s and eight 1’s,
if no two consecutive terms are both 0’s?

(k) A box is filled with three blue socks, three red socks, and four chartreuse socks.
Eight socks are pulled out, one at a time. In how many ways can this be done?
(Socks of the same color are indistinguishable.)

(1) How many functions f : [5] — [5] are at most two-to-one, i.e., #f'(n) < 2 for
all n € [5]7

3. Give combinatorial proofs of the following identities, where x,y, n, a, b are nonnegative
integers.

(&) 2] i(x;—k) _ <x+z+1)

(b) [14] kz%k(;[’) _ g
© B D)
A KA NCs come—

@ 0y (1) =2 () (e v
) 3 (D)) it

i+j+k=n r=0

4. [2]* Fix j, k € Z. Show that

(2n —j — k)lz" " "
Z (n— ) n—k)l(n—j—k)n! - [; nl(n —j)!] [Z nl(n — k;)'] ‘

n>0 n>0

Any term with (—r)! in the denominator, where r > 0, is set equal to 0.

115



5. [2]* Show that

Ty T
(1—21) - (1 —2p)(1 — 2129 - - p,)

Z min(ng, ..., ng)xy" -t =

6. [3-]* For n € Z let
(—1)kant2k

n(22) = Hin+ k)

keZ

where we set 1/7! =0 for j < 0. Show that

e’ = L,Ju(2),

n>0

where Ly = 1,11 = 1, Ly = 3, L,y1 = L, + L, for n > 2. (The numbers L, for
n > 1 are Lucas numbers.)

7. [2]* Let
e‘”’é = Zf(n)%

n>0

Find a simple expression for Y1 ((—=1)""*(") f(i). (See equation (1.13).)

2

8. (a) [2-] Show that
1 2n\
(b) [2-] Find }_ -, - Han.

9. Let f(m,n) be the number of paths from (0,0) to (m,n) € N x N, where each step is
of the form (1,0), (0,1), or (1, 1).

(a) [1+]* Show that 32, -4 >0, f(m,n)a™y" = (1 —x —y — xy)
(b) [3-] Find a simple explicit expression for »_ ~, f(n,n)x".

10. [2+] Let f(n,r,s) denote the number of subsets S of [2n] consisting of r odd and s
even integers, with no two elements of S differing by 1. Give a bijective proof that

fln,rys) = (") (")

11. (a) [24] Let m,n € N. Interpret the integral
1
Bm+1,n+1)= / u™(1 —u)" du,
0

as a probability and evaluate it by combinatorial reasoning.
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12.

13.

(b) [3+] Let n € P and r,s,t € N. Let x,yx, 2, and a;; be indeterminates, with
1<k<nand1l<1i<j<n. Let M be the multiset with n occurrences of z, r
occurrences of each yi, s occurrences of each z;, and 2¢ occurrences of each a;;.
Let f(n,r,s,t) be the number of permutations w of M such that (i) all y;’s appear
before the kth z (reading the x’s from left-to-right in w), (ii) all z;’s appear after
the kth =, and (iii) all a;;’s appear between the ith x and jth x. Show that

[(r+s+1)n+tn(n—1)|!
nlrinstngin(2¢)1(5)

7 (r+ (= D)l(s + (7 — D)L(jt)!
11 (r+s+1+m+j—2)) (1.119)

f(n’ r? S? t) =

=1
(c) [3-] Consider the following chess position.

R. Stanley
Suomen Tehtdvaniekat, 2005

// //
Z Z /

Black is to make 14 consecutive moves, after which White checkmates Black in
one move. Black may not move into check, and may not check White (except
possibly on his last move). Black and White are cooperating to achieve the aim
of checkmate. (In chess problem parlance, this problem is called a serieshelpmate
in 14.) How many different solutions are there?

[2+]* Choose n points on the circumference of a circle in “general position.” Draw
all (Z) chords connecting two of the points. (“General position” means that no three
of these chords intersect in a point.) Into how many regions will the interior of the
circle be divided? Try to give an elegant proof avoiding induction, finite differences,
generating functions, summations, etc.

[2] Let p be prime and a € P. Show combinatorially that a? — a is divisible by p. (A
combinatorial proof would consist of exhibiting a set S with a” — a elements and a
partition of S into pairwise disjoint subsets, each with p elements.)
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14. (a) [2+] Let p be a prime, and let n = _ a;p’ and m = _ b;p’ be the p-ary expansions
of the positive integers m and n. Show that

() = () () ooam

(b) [3-] Use (a) to determine when () is odd. For what nis (") odd for all 0 < m <
n? In general, how many coefficients of the polynomial (1 4 z)"™ are odd?
(c) [2+] It follows from (a), and is easy to show directly, that (’;‘2) = (}) (modp).

Give a combinatorial proof that in fact (iZ) = (9) (modp?).

(d) [3-] If p > 5, then show in fact

()= ()

Is there a combinatorial proof?

e) [3-] Give a simple description of the largest power of p dividing ( )

n
m.

16. [3-]*

(a) Let p be a prime, and let A be the matrix A = [(jzk)};lzo, taken over the field

[F,. Show that A* = I, the identity matrix. (Note that A vanishes below the main
antidiagonal, i.e., Aj, =01if j +k > p.)
(b)
(a)
(b)
2

How many eigenvalues of A are equal to 17

17. [14+]* Let m,n € N. Prove the identity ((")) = ((m+1))

n—1

1
[2-] Give a combinatorial proof.

18. [24]* Find a simple description of all n € P with the following property: there exists

k € [n] such that (kfl), (Z), (kil) are in arithmetic progression.

19. (a) [2+] Let a4, ..., a, € N. Show that when we expand the product

as a Laurent polynomial in x1, ..., z, (i.e., negative exponents allowed), then the
constant term is the multinomial coefficient (“g"'“”).

Hint: First prove the identity

1:iH(1—%)_1. (1.120)



(b) [2-] Put n = 3 to deduce the identity
i(_l) a+b\(b+c\[(cta\ [(a+b+c
= a+k)\b+k)\c+k) a,b,c )’
(Set (”Z) = 0 if i < 0.) Note that if we specialize a = b = ¢, then we obtain
2a 3
2
S0 (4) = (o)
k a,a,a
k=0

(c) [3+] Let ¢ be an additional indeterminate. Show that when we expand the product

T () (02 (03)
1<i<j<k i i K
: (1_ﬁ) (1_qﬁ) (1_qa]-—1ﬁ) (1.121)

as a Laurent polynomial in z1, ..., z, (whose coefficients are now polynomials in

q), then the constant term is the g-multinomial coefficient (“(11+"'+a").

(d) [3+] Let k € P. When the product

19‘11@ Kl B i_j) ( - %) S (1 - f”zli'?a)r

is expanded as above, show that the constant term is

-2 (),

(e) [3-] Let f(ai,aq,...,a,) denote the constant term of the Laurent polynomial

1geee9Qn

<q*ai + q*ai‘Fl + R + qai) ,
1

n
1=

where each a; € N. Show that

=(Lda)(L+a,) ) L

i=1 (1—a7) Hj;éi(xi —z;)(1 - xz%)

20. [2]* How many m x n matrices of 0’s and 1’s are there, such that every row and column
contains an even number of 1’s? An odd number of 1’s?
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21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

[2]* Fix n € P. In how many ways (as a function of n) can one choose a composition «
of n, and then choose a composition of each part of a? (Give an elegant combinatorial
proof.)

(a) [2] Find the number of compositions of n > 1 with an even number of even parts.
Naturally a combinatorial proof is preferred.

(b) [2+] Let e(n),o(n), and k(n) denote, respectively, the number of partitions of n
with an even number of even parts, with an odd number of even parts, and that
are self-conjugate. Show that e(n) —o(n) = k(n). Is there a simple combinatorial
proof?

[2] Give a simple “balls into boxes” proof that the total number of parts of all compo-
sitions of n is equal to (n + 1)2"~2. (The simplest argument expresses the answer as a
sum of two terms.)

[24] Let 1 < k < n. Give a combinatorial proof that among all 2"~! compositions of
n, the part k occurs a total of (n — k + 3)2" %2 times. For instance, if n = 4 and
k = 2, then the part 2 appears once in 2+ 141, 1+2+1, 1+ 1+ 2, and twice in
2 + 2, for a total of five times.

[2+] Let n — r = 2k. Show that the number f(n,r,s) of compositions of n with r odd
parts and s even parts is given by (T;’S) (;f;j) Give a generating function proof and
a bijective proof.

[2]* Let ¢(m,n) denote the number of compositions of n with largest part at most m.

Show that 1
-z
_ n_
E é¢(m,n)x = o it
n>0

[2+] Find a simple explicit formula for the number of compositions of 2n with largest
part exactly n.

[2]* Let k(n, j, k) be the number of weak compositions of n into k parts, each part less
than j. Give a generating function proof that

win= 3 (7))

r+sj=n
where the sum is over all pairs (r, s) € N? satisfying r + sj = n.

[2]* Fix k,n € P. Show that
Z a an — n + k —1
1 k — 2% — 1 )
where the sum ranges over all compositions (aq, ..., a;) of n into k parts.

2] Fix 1 < k < n. How many integer sequences 1 < a; < ay < --- < a < n satisfy
a; =i (mod 2) for all 7
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31. [2+]

(a) Let #N =n, #X = x. Find a simple explicit expression for the number of ways
of choosing a function f : N — X and then linearly ordering each block of the
coimage of f. (The elements of N and X are assumed to be distinguishable.)

(b) How many ways as in (a) are there if f must be surjective? (Give a simple explicit
answer. )

(¢) How many ways as in (a) are there if the elements of X are indistinguishable?
(Express your answer as a finite sum.)

32. [2] Fix positive integers n and k. Let #S = n. Find the number of k-tuples (11, T5, ..., T})
of subsets T; of S subject to each of the following conditions separately, i.e., the three
parts are independent problems (all with the same general method of solution).

(a) hCThC---CT,

(b) The T;’s are pairwise disjoint.
)
)

C T1UT2UUTk:S

(
33. (a) [2-]* Let k,n > 1. Find the number of sequences () = Sy, Si, ..., Sy of subsets of
[n] if for all 1 <4 < k we have either (i) S;_; C S; and |S; — S;_1| = 1, or (ii)
Si C Sifl and ’51;1 — Sz’ =1.
(b) [2+]* Suppose that we add the additional condition that Sy = (). Show that now
the number fi(n) of sequences is given by

Note that fx(n) = 0if k is odd.

34. [2] Fix n,j,k € P. How many integer sequences are there of the form 1 < a; < as <
co-<ap <n,where a;;1 —a; > jforall<:<k—17

35. The Fibonacct numbers are defined by Fy =1, Fo =1, F, = F,, 1+ F, o if n > 3.
Express the following numbers in terms of the Fibonacci numbers.

(a) [2-] The number of subsets S of the set [n] = {1,2,...,n} such that S contains
no two consecutive integers.

(b) [2] The number of compositions of n into parts greater than 1.

(¢) [2-] The number of compositions of n into parts equal to 1 or 2.

(d) [2] The number of compositions of n into odd parts.

(e) [2] The number of sequences (e1,es,...,&,) of 0’s and 1’s such that e; < g9 >

€3 <eg>e5 < -e-.

(f) [2+] D" aras - - - ax, where the sum is over all 2"~ compositions a; +as+- - - +ap =
n.

121



36.

37.

38.

39.

40.

41.

42.

24] Y- (27t — 1) -+ (2%~1 — 1), summed over the same set as in (f).
2] - 2#HEa=1}  summed over the same set as (f).
24+ S (=1)F (547t 1) -+ (5%~ + 1), summed over the same set as (f).

2+]* The number of sequences (1,0, ...,0,) of 0’s, 1’s, and 2’s such that 0 is
never immediately followed by 1.

(g

) |
(b) |
(i) [
() [

(k) [24] The number of distinct terms of the polynomial
= H(1 + 25 + Tj4a).
=1
For instance, setting 1 = a, 9 = b, x3 = ¢, we have P, =1+ a+ 20+ c+ ab +

b + ac + be, which has eight distinct terms.

2] Fix k,n € P. Find a simple expression involving Fibonacci numbers for the number
of sequences (T, Ty, ..., T}) of subsets T; of [n] such that

T'CIT, 2T5C Ty O

[2] Show that
" (n—k
Foq = Z ( . ) (1.122)
k=0
[2]* Show that the number of permutations w € &,, fixed by the fundamental trans-

formation &, = &, of Proposition 1.3.1 (i.e., w = W) is the Fibonacci number F, ;.

[2+] Show that the number of ordered pairs (S,T") of subsets of [n] satisfying s > #T'
for all s € S and ¢t > #S for all t € T' is equal to the Fibonacci number Fj,, 5.

[2]* Suppose that n points are arranged on a circle. Show that the number of subsets
of these points containing no two that are consecutive is the Lucas number L,,. This
result shows that the Lucas number L, may be regarded as a “circular analogue”
of the Fibonacci number F, o (via Exercise 1.35(a)). For further explication, see
Example 4.7.16.

(a) [2] Let f(n) be the number of ways to choose a subset S C [n] and a permutation
w € &, such that w(i) € S whenever i € S. Show that f(n) = F,;inl.

(b) [2+] Suppose that in (a) we require w to be an n-cycle. Show that the number of
ways is now g(n) = L,(n — 1)!, where L,, is a Lucas number.

[3] Let

F(z) = J[a-2") = (1—2)(1 —2”)(1 = 2*)(1 = 2°)(1 - 2%) -

n>2
— 1—1‘—[E2+I‘4+ZE7—I‘8+ZEH—ZL‘H—ZL‘13+ZE14+ZE18+"'.

Show that every coefficient of F'(z) is equal to —1,0 or 1.
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43. [2-] Using only the combinatorial definitions of the Stirling numbers S(n, k) and ¢(n, k),
give formulas for S(n, 1), S(n,2), S(n,n), S(n,n —1), S(n,n —2) and ¢(n, 1), c¢(n, 2),
c(n,n), ¢(n,n — 1), ¢(n,n — 2). For the case ¢(n,2), express your answer in terms of
the harmonic number H,, = 1 + % + % + -4 % for suitable m.

44. (a) [2]* Show that the total number of cycles of all even permutations of [n] and the
total number of cycles of all odd permutations of [n] differ by (—1)"(n — 2)!. Use
generating functions.

(b) [3-]* Give a bijective proof.

45. [2+4] Let S(n, k) denote a Stirling number of the second kind. The generating function
>, S(n,k)a™ =2 /(1 —2)(1 — 2x) - - - (1 — kz) implies the identity

S(n k) =) 107120t el (1.123)

the sum being over all compositions a; + --- + a = n. Give a combinatorial proof
of (1.123) analogous to the second proof of Proposition 1.3.7. That is, we want to
associate with each partition 7 of [n] into &k blocks a composition a; +- - -+ a; = n such
that exactly 191712921 ... kax=1 partitions 7 are associated with this composition.

46. (a) [2] Let n,k € P, and let j = |k/2]|. Let S(n, k) denote a Stirling number of the
second kind. Give a generating function proof that
n—j—1
n —

S(n, k) = ( ) (mod 2).

(b) [3-] Give a combinatorial proof.

(c) [2] State and prove an analogous result for Stirling numbers of the first kind.
47. Let D be the operator %.

(a) [2]* Show that (zD)" =Y, _,S(n,k)z"D*.
(b) [2]* Show that

a"D" =axD(xD —1)(xD —=2)---(xD —n+1) = ” s(n, k)(xD)".
k=0

(c) [2+]* Find the coefficients a,; ; in the expansion

(x+ D)" = Z i DY

Z‘?j

48. (a) [3] Let P(z) = ap + a1z + - - - + a,x™, a; > 0, be a polynomial all of whose zeros
are negative real numbers. Regard a;/P(1) as the probability of choosing k, so
we have a probability distribution on [0,n]. Let pu = 55 25, kar, = P'(1)/P(1),
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the mean of the distribution; and let m be the mode, i.e., a,, = maxy ay. Show
that

lp—m| < 1.
More precisely, show that

m =k, ifk§u<k+k%r2

m=Fk, or k+1, orboth, if k+ 5 <p<k+1— .5

(b) [2] Fix n. Show that the signless Stirling number ¢(n, k) is maximized at k =
1+3+5+--+=]ork=[1+3+3%+---++]. In particular, k ~ log(n).

(c) [3] Let S(n, k) denote a Stirling number of the second kind, and define K,, by
S(n,K,) > S(n,k) for all k. Let ¢t be the solution of the equation te! = n.

Show that for sufficiently large n (and probably all n), either K,, +1 = |e'] or
K,+1=/Je].

49. (a) [2+] Deduce from equation (1.38) that all the (complex) zeros of Ay(x) are real
and simple. (Use Rolle’s theorem.)

(b) [2-]* Deduce from Exercise 1.133(b) that the polynomial Y ;_, k! S(n, k)z* has
only real zeros.

50. A sequence a = (ag,ay,. .., a,) of real numbers is unimodal if for some 0 < j < n we
have ap < a; < --- < a; > ajp1 > ajpo > -+ > ap, and is log-concave if a? > ;1041
for 1 <1 <n—1. We also say that « has no internal zeros if there does not exist
1< j <kwith a; #0, a; =0, a; # 0, and that « is symmetric if a; = a,_; for all i.
Define a polynomial P(z) = Y a;x’ to be unimodal, log-concave, etc., if the sequence
(ag,ay, . ..,a,) of coefficients has that property.

(a) [2-]* Show that a log-concave sequence of nonnegative real numbers with no
internal zeros is unimodal.

(b) [24] Let P(z) = Y7 jazz’ = Y7 (7)bia’ € Rlz]. Show that if all the zeros of
P(z) are real, then the sequence (bg, b, ..., b,) is log-concave. (When all a; > 0,
this statement is stronger than the assertion that (ag, a1, ..., a,) is log-concave.)

(¢) [24] Let P(z) = > " ja;x* and Q(x) = Y., bz’ be symmetric, unimodal, and
have nonnegative coefficients. Show that the same is true for P(x)Q(z).

(d) [2+] Let P(z) and Q(z) be log-concave with no internal zeros and nonnegative
coefficients. Show that the same is true for P(x)Q(x).

(e) [2] Show that the polynomials > . 29" and Y s ™) are symmetric
and unimodal.

(f) 4] Let 1 <p<n—1. Given w =a; - --a, € S, define

des,(w) = #{(i,7) : i <j <i+p, a; > a;}.

Thus des; = des and des,,_; = inv. Show that the polynomial ZwEGn zdesr(w) g
symmetric and unimodal.
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o1.

52.

53.

54.

55.

56.

o7.

(g) [2+] Let S be a subset of {(i,j) : 1 < i < j < n}. An S-inversion of w =
ar---a, € 6, is a pair (i,7) € S for which a; > a;. Let invg(w) denote the
number of S-inversions of w. Find a set S (for a suitable value of n) for which

the polynomial Ps(z) := Y, ., ™5™ is not unimodal.

[3-] Let k,n € P with k < n. Let V(n, k) denote the volume of the region R, in R"
defined by
0<z; <1, for1<i:<nm

k—1§$1+$2+"'+$n§]€.
Show that V(n, k) = A(n, k)/n!, where A(n,k) is an Eulerian number.

[3-] Fix b > 2. Choose n random N-digit integers in base b (allowing intial digits equal
to 0). Add these integers using the usual addition algorithm. For 0 < j <n — 1, let
f(j) be the number of times that we carry j in the addition process. For instance, if
we add 71801, 80914, and 62688 in base 10, then f(0) = 1 and f(1) = f(2) = 2. Show
that as N — oo, the expected value of f(j)/N (i.e., the expected proportion of the
time we carry a j) approaches A(n,j + 1)/n!, where A(n, k) is an Eulerian number.

(a) [2]* The Eulerian Catalan number is defined by EC,, = A2n+1,n+1)/(n+1).
The first few Eulerian Catalan numbers, beginning with £Cy = 1, are 1, 2, 22,
604, 31238. Show that EC, = 2A(2n,n+ 1), whence EC,, € Z.

(b) [3-]* Show that EC,, is the number of permutations w = ajas - - - ag,4+1 with n
descents, such that every left factor ajas---a; has at least as many ascents as
descents. For n = 1 we are counting the two permutations 132 and 231.

[2]* How many n-element multisets on [2m] are there satisfying: (i) 1,2,...,m appear
at most once each, and (ii) m+1,m+2,...,2m appear an even number of times each?

2-]* If w = a1a9---a, € &, then let w" = a,---asa;, the reverse of w. Express
inv(w"), maj(w”), and des(w”) in terms of inv(w), maj(w), and des(w), respectively.

[2+] Let M be a finite multiset on P. Generalize equation (1.41) by showing that

Z qinv(w): Z qmaj(w)7

weS ), weS

where inv(w) and maj(w) are defined in Section 1.7. Try to give a proof based on
results in Section 1.4 rather than generalizing the proof of (1.41).

[2+] Let w = wyws - - - w,, € &,,. Show that the following conditions are equivalent.

(i) Let C(i) be the set of indices j of the columns C; that intersect the ith row
of the diagram D(w) of w. For instance, if w = 314652 as in Figure 1.5, then
C(1) = {1,2}, C(3) = {2}, C(4) = {2,5}, C(5) = {2}, and all other C(i) = 0.
Then for every i, j, either C(i) C C(j) or C(j) C C(1).
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98.

59.

60.

61.

(ii) Let A(w) be the entries of the inversion table I (w) of w written in decreasing order.
For instance, 1(52413) = (3,1,2,1,0) and A(52413) = (3,2,1,1,0). Regard A as
a partition of inv(w). Then A(w™!) = A(w)’, the conjugate partition to \(w).

(iii) The permutation w is 2143-avoiding, i.e., there do not exist a < b < ¢ < d for
which w, < w, < wy < we.

For u € &, let s,(n) = #S,(n), the number of permutations w € &,, avoiding u. If
also v € &, then write u ~ v if s,(n) = s,(n) for all n > 0 (an obvious equivalence
relation). Thus by the discussion preceding Proposition 1.5.1, u ~ v for all u,v € &3.

(a) [2]* Let u,v € &j. Suppose that the permutation matrix P, can be obtained from
P, by one of the eight dihedral symmetries of the square. For instance, P,-1 and
be obtained from P, by reflection in the main diagonal. Show that v ~ v. We
then say that v and v are equivalent by symmetry, denoted u ~ v. Thus ~ is a
finer equivalence relation than ~. What are the ~ equivalence classes for &37

(b) [3] Show that there are exactly three ~ equivalence classes for S4. The equivalence
classes are given by {1234,1243,2143,...}, {3142,1342,...}, and {1342,...},
where the omitted permutations are obtained by ~ equivalence.

3] Let s,(n) have the meaning of the previous exercise. Show that ¢, := lim,, . 5,(n)"/"

exists and satisfies 1 < ¢, < 0.

[2+] Define two permutations in &,, to be equivalent if one can be obtained from
the other by interchanging adjacent letters that differ by at least two, an obvious
equivalence relation. For instance, when n = 3 we have the four equivalence classes
{123}, {132,312}, {213,231}, {321}. Describe the equivalence classes in terms of more
familiar objects. How many equivalence classes are there?

(a) [3-] Let w =w; -+ - w,. Let
F(z;a,b,c,d) = Z Z () pp(w) =1 () grw) T

n!’
n>1 wes,

where v(w) denotes the number of valleys w; of w for 1 < i < n (where wy =
wpy1 = 0 as preceding Proposition 1.5.3), p(w) the number of peaks, r(w) the
number of double rises, and f(w) the number of double falls. For instance, if
w = 32451, then 3 is a peak, 2 is a valley, 4 is a double rise, 5 is a peak, and 1 is
a double fall. Thus

2 3

F(z;a,b,c,d) = x+(c+ d)% + (* + d* + 2ab + 20d)%
. T
+(c + d3 + 3cd? + 3c2d + Sabe + Sabd)% +
Show that " »
Flz;a,b,c,d) = ¢ (1.124)

veur — eve’
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where uv = ab and v +v = ¢+ d. In other words, u and v are zeros of the
polynomial z? — (¢ + d)z + ab; it makes no difference which zero we call u and
which v.

(b) [2-] Let r(n, k) be the number of permutations w € &,, with k peaks. Show that

" 1+ utan(zu)
Z Z T(n, k?)tkg = W’ (1125)

n>0 k>0 u

where u = v/t — 1.

(c) [24+] A proper double fall or proper double descent of a permutation w = ajas - - - ay,
is an index 1 < i < n for which a;_1 > a; > a;41. (Compare with the definition
of a double fall or double descent, where we also allow ¢ = 1 and ¢ = n with the
convention ayg = a,+1 = 0.) Let f(n) be the number of permutations w € &,
with no proper double descents. Show that

Zf(n)% - pe7 ! 7 (1.126)
2 (<3j>! TG 1)!)

Jj=>0
1’2 .773 4 1‘5 1’6
x’ 28
F2017 7 + 13338 5 + -

62. In this exercise we consider one method for generalizing the disjoint cycle decom-
position of permutations of sets to multisets. A multiset cycle of P is a sequence

C = (iy,19,...,1) of positive integers with repetitions allowed, where we regard
(i1,92,...,1) as equivalent to (¢;,%j41,...,%,01,...,1j-1) for 1 < j < k. Introduce
indeterminates w1, x, ..., and define the weight of C' by w(C) = x;, - - ;. A multiset

permutation or multipermutation of a multiset M is a multiset of multiset cycles, such
that M is the multiset of all elements of the cycles. For instance, the multiset {1, 1,2}

has the following four multipermutations: (1)(1)(2), (11)(2), (12)(1), (112). The weight
w(m) of a multipermutation 7 = C1Cy - - - C; is given by w(w) = w(Cy) - - - w(C}).

(a) [2-]* Show that

[[a—w@)™ =) w),

C T

where C' ranges over all multiset cycles on P and 7 over all (finite) multiset
permutations on P.

(b) [2+] Let pr, = a% + x5 4 ---. Show that

[T -w@) =TJa-p)"

c k>1
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63.

64.

65.

66.

67.

68.

69.

70.

(¢) [1+] Let fy(n) denote the number of multiset permutations on [k] of total size
n. For instance, f»(3) = 14, given by (1)(1)(1), (1)(1)(2), (1)(2)(2), (2)(2)(2),
(11)(1), (11)(2), (12)(1), (12)(2), (22)(1), (22)(2), (111), (112), (122), (222). De-

duce from (b) that
Z fr(n)z™ = H(l — k')~

n>0 i>1

(d) [3-] Find a direct combinatorial proof of (b) or (c).
(a) [2-] We are given n square envelopes of different sizes. In how many different
ways can they be arranged by inclusion? For instance, if n = 3 there are six ways;
namely, label the envelopes A, B, C with A the largest and C the smallest, and

let I € J mean that envelope [ is contained in envelope J. Then the six ways
are: (1)0,(2) Be A, (3)CeA (4)CeB,(5)BeA CeA (6)CeBeA.

(b) [2] How many arrangements have exactly k envelopes that are not contained in
another envelope? That don’t contain another envelope?

(a) [2] Let f(n) be the number of sequences ay, ..., a, of positive integers such that
for each k£ > 1, k only occurs if £k — 1 occurs before the last occurrence of k. Show
that f(n) = n!. (For n = 3 the sequences are 111, 112, 121, 122, 212, 123.)

(b) [2] Show that A(n, k) of these sequences satisfy max{ay,...,a,} = k.
3] Let y = [],>1(1 —2™)~". Show that

4y3y// + 5xy3y/// + x2y3y(iv) _ 16y2y/2 _ 15:By2y’y” + 20x2y2y/y///

—192%y%y"? + 10zyy” + 122%yy"y" + 62%y™ = 0. (1.127)

[2-]* Let pg(n) denote the number of partitions of n into k parts. Give a bijective
proof that

po(n) +p1(n) + -+ pe(n) = pe(n + k).

[2-]* Express the number of partitions of n with no part equal to 1 in terms of values
p(k) of the partition function.

[2]* Let n > 1, and let f(n) be the number of partitions of n such that for all k, the
part k occurs at most k times. Let g(n) be the number of partitions of n such that no
part has the form i(i+1), i.e., no parts equal to 2,6, 12,20, .... Show that f(n) = g(n).

[2]* Let f(n) denote the number of self-conjugate partitions of n all of whose parts are
even. Express the generating function ) ., f(n)z" as a simple product.

(a) [2] Find a bijection between partitions A - n of rank r and integer arrays

. ay Gy - Q.
A*‘((h by - br)
such that a; > ay > -+ >a, >0,b; > by >--->b. >0, and r+ > (a; + b;) = n.
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(b) [2+] A concatenated spiral self-avoiding walk (CSSAW) on the square lattice is
a lattice path in the plane starting at (0,0), with steps (£1,0) and (0, £1) and
first step (1,0), with the following three properties: (i) the path is self-avoiding,
i.e, it never returns to a previously visited lattice point, (ii) every step after the
first must continue in the direction of the previous step or turn right, and (iii)
at the end of the walk it must be possible to turn right and walk infinitely many
steps in the direction faced without intersecting an earlier part of the path. For
instance, writing N = (0, 1), etc., the five CSSAW’s of length four are NNNN,
NNNE, NNEE, NEFEE, and NESS. Note for instance that NEES is not a
CSSAW since continuing with steps WWW - .. will intersect (0,0). Show that
the number of CSSAW'’s of length n is equal to p(n), the number of partitions of
n.

71. [2+] How many pairs (A, i) of partitions of integers are there such that A - n, and
the Young diagram of y is obtained from the Young diagram of A by adding a single
square? Express your answer in terms of the partition function values p(k) for k < n.
Give a simple combinatorial proof.

72. (a) [3-] Let A = (A, Ao, ...) and g = (u, po, ... ) be partitions. Define p < A if
i < \; for all . Show that

kAL !
D (e ey o R

590

(b) [3-] Show that the number of pairs (A, i) such that A and p have distinct parts,
@ < Xasin (a), and |[A| + |p| = n, is equal to p(n), the number of partitions of
n. For instance, when n = 5 we have the seven pairs (0,5), (0,41), (0, 32), (1,4),
(2,3), (1,31), and (2,21).

73. [2] Let A be a partition. Show that

A2i—1 _)\/F
EIEDIES

1 1

A2i—1 Ay
> - x[%

i = - 7

i L2 i L7

74. [2] Let pr(n) denote the number of partitions of n into k parts. Fix ¢ > 0. Show that as
n — 00, pp—¢(n) becomes eventually constant. What is this constant f(¢)? What is the
least value of n for which p,_(n) = f(t)? Your arguments should be combinatorial.

75. [2-] Let pr(n) be as above, and let gx(n) be the number of partitions of n into k distinct
parts. For example, ¢3(8) = 2, corresponding to (5,2,1) and (4,3,1). Give a simple
combinatorial proof that g, (n + (g)) = pr(n).
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76. [2] Prove the partition identity

2i—1\ _ kuC]k
[J+ gz )_;(1_932)(1_354)._.(1_%%). (1.129)

11

77. [3-] Give a “subtraction-free” bijective proof of the pentagonal number formula by
proving directly the identity

1+ Zn odd (xn(3n_1)/2 + xn(3n+1)/2) — 1+ Zn even (xn(3n_1)/2 + mn(3n+1)/2) X

Hj21(1 —a7) Hj21(1 — a7)

78. (a) [2] The logarithmic derivative of a power series F(z) is <L log F(z) = F'(x)/F(z).
By logarithmically differentiating the power series - - p(n)a" = [[,»;(1—2")7",

derive the recurrence
n

n-p(n) = oli)p(n—i),

i=1
where o (i) is the sum of the divisors of 7.

(b) [2+] Give a combinatorial proof.

79. (a) [2+] Given a set S C P, let pg(n) (resp. gs(n)) denote the number of partitions
of n (resp. number of partitions of n into distinct parts) whose parts belong to
S. (These are special cases of the function p(S,n) of Corollary 1.8.2.) Call a pair
(S,T), where S, T C P, an Euler pair if ps(n) = qr(n) for all n € N. Show that
(S,T) is an Euler pair if and only if 27" C T (where 27" = {2i : i € T}) and
S=T-2T.

(b) [1+] What is the significance of the case S = {1}, T'= {1,2,4,8,...}7

80. [2+4] If X is a partition of an integer n, let fi(A) be the number of times k appears
as a part of A, and let gix(\) be the number of distinct parts of A that occur at least
k times. For example, f5(4,2,2,2,1,1) = 3 and ¢»(4,2,2,2,1,1) = 2. Show that
Y feXN) = ge(N), where k € P is fixed and both sums range over all partitions A of
a fixed integer n € P.

81. [2+] A perfect partition of n > 1 is a partition A - n which “contains” precisely one
partition of each positive integer m < n. In other words, regarding A\ as the multiset
of its parts, for each m < n there is a unique submultiset of A whose parts sum to
m. Show that the number of perfect partitions of n is equal to the number of ordered
factorizations (with any number of factors) of n + 1 into integers > 2.

Ezample. The perfect partitions of 5 are (1,1,1,1,1), (3,1,1), and (2,2,1). The
ordered factorizations of 6 are 6 =2-3 = 3 - 2.

82. [3] Show that the number of partitions of 5n + 4 is divisible by 5.
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83.

84.

85.

36.

87.

[3-] Let A = (A1, A, ...) F n. Define
aA) = Y [hai/2]

%

BOY = S ia/2)

1

YA = > Thai/2]

2

5(/\) = Z L/\%/QJ'

Let a, b, ¢,d be (commuting) indeterminates, and define

w(X) = a®N IO SO PO,

For instance, if A = (5,4, 4, 3,2) then w(\) is the product of the entries of the diagram

a b a b a
c d c d
a b a b
c d c
a b
Show that
(L+ a0 ' (1 + VI
A) = - 1.130
)\ZD:arw( ) ]1:[1(1_ajbjcjdj)(l—ajbﬂcﬂ‘ldﬂ—l)(l—aabﬂ—lcadg—l)’ ( )

where Par denotes the set of all partitions X of all integers n > 0.

[2]* Show that the number of partitions of n in which each part appears exactly 2, 3,
or 5 times is equal to the number of partitions of n into parts congruent to +2, 43,
6 (mod 12).

[2++]* Prove that the number of partitions of n in which no part appears exactly once
equals the number of partitions of n into parts not congruent to +1 (mod 6).

[3] Prove that the number of partitions of n into parts congruent to 1 or 5(mod6)
equals the number of partitions of n in which the difference between all parts is at
least 3 and between multiples of 3 is at least 6.

[3-]* Let Ag(n) be the number of partitions of n into odd parts (repetition allowed)
such that exactly k& distinct parts occur. For instance, when n = 35 and k = 3,
one of the partitions being enumerated is (9,9,5,3,3,3,3). Let Bx(n) be the number
of partitions A = (\q,...,A.) of n such that the sequence A,..., A\, is composed of
exactly k& noncontiguous sequences of one or more consecutive integers. For instance,
when n = 44 and k = 3, one of the partitions being enumerated is (10,9,8,7,5,3,2),
which is composed of 10,9,8,7 and 5 and 3,2. Show that Ax(n) = By(n) for all k¥ and
n. Note that summing over all k gives Proposition 1.8.5, i.e., poaa(n) = q(n) .
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88. (a) [3] Prove the identities

" 1
Z (1—x)(1—22)---(1—a") H(l — PR TL)(1 — gt

n>0
k>0

Z xn(nJrl) 1

= (1—2)(1—a2)---(1—2an) H(l — 22 (1 — x5k+3)’
k>0

(b) [2] Show that the identities in (a) are equivalent to the following combinatorial
statements:

e The number of partitions of n into parts = +1 (mod 5) is equal to the number
of partitions of n whose parts differ by at least 2.
e The number of partitions of n into parts = £2 (mod 5) is equal to the number
of partitions of n whose parts differ by at least 2 and for which 1 is not a
part.
(c) [2]* Let f(n) be the number of partitions A - n satisfying ¢(\) = rank(\). Show

that f(n) is equal to the number of partitions of n whose parts differ by at least
2.

89. [3] A lecture hall partition of length k is a partition A = (Aq,...,Ax) (some of whose
parts may be 0) satisfying

o< MM N
-1 - 2 - ~ k
Show that the number of lecture hall partitions of n of length k is equal to the number
of partitions of n whose parts come from the set 1,3,5,...,2k — 1 (with repetitions
allowed).

90. [3] Let f(n) be the number of partitions of n all of whose parts are Lucas numbers
Loy 41 of odd index. For instance, f(12) = 5, corresponding to

I+1+1+1+1+1+1+14+1+1+1+1
441+1+1+14+14+1+1+1
4+4+1+1+1+1

4+4+4

11+1

Let g(n) be the number of partitions A = (Ay, A2, ...) such that A;/A\ir1 > 1(3+ V)
whenever \;;; > 0. For instance, g(12) = 5, corresponding to

12, 11+1, 10+2, 9+3, 8-+3+1

Show that f(n) = g(n) for all n > 1.
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91. (a) [3-] Show that

n n2 — — —
ot = 10 =)+ 2™ (1 + a7 ).

neZ k>1

(b) [2] Deduce from (a) the Pentagonal Number Formula (Proposition 1.8.7).
(c) [2] Deduce from (a) the two identities

I1 L-¢ S (-1 (1.131)
1+q*
k>1 neL
1— q2k ntl
[[—= T = DOUAERS (1.132)
k>1 n>0

(d) [2+] Deduce from (a) the identity

H(l — qk):s — Z(_1)"(2n + 1)qn(n+1)/2‘

k>1 n>0
Hint. First substitute —zq~'/2 for z and ¢'/? for q.

92. [3] Let S C P and let p(S,n) denote the number of partitions of n whose parts belong
to S. Let

S = {n:noddorn=+4+6,4+8 +10 (mod 32)}
7 = {n:noddorn=+2 48 +12,+14 (mod 32)}.

Show that p(S,n) = p(7,n — 1) for all n > 1. Equivalently, we have the remarkable

identity . .
gl—xn:1+xg1—xn' (1.133)
93. [3] Let
S = +{1,4,5,6,7,9,11,13,16,21, 23,28 (mod 66)}
T = +{1,4,5,6,7,9,11,14,16,17,27,29 (mod 66)},
where

+{a,b,... (modm)} :={ne€P:n==4a,+b,... (modm)}.

Show that p(S,n) = p(T,n) for all n > 1 except n = 13. Equivalently, we have another
remarkable identity similar to equation (1.133):

1 1
II 1 —gn ::xng+-II 1 —gn’

nesS ne7l

94. (a) [3-] Let n > 0. Show that the following numbers are equal.
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The number of solutions to n = Y ,.,a;2", where a; = 0,1, or 2.

Then number of odd integers k for which the Stirling number S(n + 1, k) is
odd.

The number of odd binomial coefficients of the form (" k) 0<k<n.

The number of ways to write b, as a sum of distinct Fibonacci numbers F,,

where
Hl#—xFQl be” bo < b < -

>0 n>0

(b) [2-] Denote by a,41 the number being counted by (a), so (ai,as,...,a19) =
(1,1,2,1,3,2,3,1,4,3). Deduce from (a) that

Zan+1$”:H (1+2% +227).

n>0 i>0

(c) [2] Deduce from (a) that ag, = a, and ag,11 = a, + Gpyi-

(d) [3-] Show that every positive rational number can be written in exactly one way
as a fraction a, /a,1.

95. [3] At time n = 1 place a line segment (toothpick) of length one on the zy-plane,
centered at (0,0) and parallel to the y-axis. At time n > 1, place additional line
segments that are centered at the end and perpendicular to an exposed toothpick end,
where an ezxposed end is the end of a toothpick that is neither the end nor the midpoint
of another toothpick. Figure 1.28 shows the configurations obtained for times n < 6.
Let f(n) be the total number of toothpicks that have been placed up to time n, and

let
=> f(n)x

n>1

Figure 1.28 shows that

F(z) = o+ 32% 4+ 72 + 112" + 152° + 2325 + .- - .

Show that
F(z) = - 1+23:H <1+x2k*1+2x2k> .
(1—x)(1 —2x) e
96. Define
x H(l —gM* = ZT(TL):E”
n>1 n>1

= x— 2422 + 2522% — 14722* + 48302 — 60482°% — 167442 + - - -

(a) [3+] Show that 7(mn) = 7(m)7(n) if m and n are relatively prime.
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Figure 1.28: The growth of toothpicks

(b) [3+] Show that if p is prime and n > 1 then
Y =1(p)T(") —pM (" Y).

(c) [4] Show that if p is prime then |7(p)| < 2p''/2. Equivalently, write

P,(x
R =

o p)a+ il

T(p

so by (b) and Theorem 4.4.1.1 the numerator P,(z) is a polynomial. Then the
zeros of the denominator are not real.

(d) [5] Show that 7(n) # 0 for all n > 1.

97. [3-] Let f(n) be the number of partitions of 2n whose Ferrers diagram can be covered by
n edges, each connecting two adjacent dots. For instance, (4,3,3,3,1) can be covered

as follows:
I ]
*—0 I
I

Show that 3", f(n)a" = [, (1 — 2')~2.

98. [2+] Let n,a,k € N and ¢ = */™. Show that
na _ (Z), k= nb
k), B 0, otherwise.
99. [2] Let 0 < k <n and f(q) = (Z) Compute f’(1). Try to avoid a lot of computation.

100. [24] State and prove a g-analogue of the Chu-Vandermonde identity
i a\({ b\ _ [a+b
P i)\n—i) n
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101. [2]* Explain why we cannot set ¢ = 1 on both sides of equation (1.85) to obtain the

identity
k

1:2%

k>0

102. (a) [2]* Let z and y be variables satisfying the commutation relation yx = gxy, where
g commutes with z and y. Show that

" /n
x4y = ZL‘k n—k‘
@i =3 ()
k=0
(b) [2]* Generalize to (1 + xo + - - - + x,,)", where x;2; = qu;z; for i > j.
(c) [2+]* Generalize further to (z; + z2 + - - - + 2,,)", where z,2; = gz x; for i > j,

and where the g;’s are variables commuting with all the z;’s and with each other.

103. (a) [34] Given a partition A (identified with its Young diagram) and u € A, let a(u)
(called the arm length of u) denote the number of squares directly to the right
of u, counting w itself exactly once. Similarly let [(u) (called the leg length of u)
denote the number of squares directly below u, counting u itself once. Thus if
u = (i,7) then a(u) = \; — j + 1 and I(u) = N} — i + 1. Define

YA) =#{ue X : a(u) —I(u) =0or 1}.

Z g™ = Z q'™, (1.134)

A AFn
where £(\) denotes the length (number of parts) of A.

(b) [2]* Clearly the coefficient of ™ in the right-hand side of equation (1.134) is 1.
Show directly (without using (a)) that the same is true for the left-hand side.

Show that

104. [2+] Let n > 1. Find the number f(n) of integer sequences (ay,as, ..., a,) such that
0<a; <9and a;+as+---+a, =0(mod4). Give a simple explicit formula (no sums)
that depends on the congruence class of n modulo 4.

105. (a) [3-] Let n € P, and let f(n) denote the number of subsets of Z/nZ (the integers
modulo n) whose elements sum to 0 in Z/nZ. For instance, f(4) = 4, correspond-
ing to 0, {0}, {1, 3}, {0,1,3}. Show that

fo) = 3 gl
d dc|>ﬁd

where ¢ denotes Euler’s totient function.

(b) [5-] When n is odd, it can be shown using (a) (see Exercise 7.112) that f(n) is
equal to the number of necklaces (up to cyclic rotation) with n beads, each bead
colored black or white. Give a combinatorial proof. (This is easy if n is prime.)

136



106.

107.

108.

109.

110.

111.

(c) [5-] Generalize. For instance, investigate the number of subsets S of Z/nZ sat-
isfying > ..o p(i) = o (modn), where p is a fixed polynomial and o € Z/nZ is
fixed.

[2] Let f(n, k) be the number of sequences ajas - - - a, of positive integers such that the
largest number occurring is k£ and such that the first occurrence of i appears before the
first occurrence of i +1 (1 < i < k —1). Express f(n,k) in terms of familiar numbers.
Give a combinatorial proof. (It is assumed that every number 1,2, ..., k occurs at least
once.)

[1+]* Give a direct combinatorial proof of equation (1.94e), viz.,

n

Bnt+1) =Y (Z,”)B(z'), n > 0.

i=0
(a) [2+4] Give a combinatorial proof that the number of partitions of [n] such that no
two consecutive integers appear in the same block is the Bell number B(n — 1).

(b) [2+]* Give a combinatorial proof that the number of partitions of [n] such that
no two cyclically consecutive integers (i.e., two integers i,j for which j = i +
1 (modn)) appear in the same block is equal to the number of partitions of [n]
with no singleton blocks.

[2+]

(a) Show that the number of permutations a; - - -a, € &,, for which there is no 1 <
i < j <n—1satisfying a; < a; < aj;; is equal to the Bell number B(n).

(b) Show that the same conclusion holds if the condition a; < a; < a;4; is replaced
with q; < a1 < aj.

(c) Show that the number of permutations w € &,, satisfying the conditions of both
(a) and (b) is equal to the number of involutions in &,,.

[3-] Let f(n) be the number of partitions 7 of [n] such that the union of no proper
subset of the blocks of 7 is an interval [a, b]. For instance, f(4) = 2, corresponding to
the partitions 13-24 and 1234, while f(5) = 6. Set f(0) = 1. Let

F(QC):Zf(n)xn=1+x+x2+x3+2x4+6$5+...'
n>0

Find the coefficients of (z/F(x)){~Y.

[3-] Let f(n) be the number of partitions 7 of [n] such that no block of 7 is an interval
la,b] (allowing a = b). Thus f(1) = f(2) = f(3) = 0 and f(4) = 1, corresponding to
the partition 13-24. Let

F(a:):Zf(n)x”:1+x4+5x5+21x6+---.

n>0

Express F'(z) in terms of the ordinary generating function G(z) = > ., B(n)a" =
142+ 22% + 5% 4 152" 4 - - -
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112. [2]* How many permutations w € &,, have the same number of cycles as weak ex-
cedances?

113. [2-]* Fix k,n € P. How many sequences (771,...,T}) of subsets T; of [n] are there such
that the nonempty T; form a partition of [n]?

114. (a) [2-]* How many permutations w = ajas---a, € &, have the property that for
all 1 <4 < n, the numbers appearing in w between i and i + 1 (whether 7 is to
the left or right of i 4+ 1) are all less than i? An example of such a permutation is
976412358.

(b) [2-]* How many permutations ajas - - - a, € &, satisfy the following property: if
2 < j <mn, then |a; — aj] =1 for some 1 <i < j? Equivalently, for all 1 <i <mn,
the set {ay,aq,...,a;} consists of consecutive integers (in some order). E.g., for
n = 3 there are the four permutations 123, 213, 231, 321. More generally, find
the number of such permutations with descent set S C [n — 1].

115. [3-] Let n = 2'7 4 2 and define Q,(t) = Y gcp, 1 t7"¥). Show that e*™/™ is (at least)
a double root of Q,(t).

116. (a) [2]* Show that the expected number of cycles of a random permutation w € &,
(chosen from the uniform distribution) is given by the harmonic number H, =
1,1 1
1+§+§+~-~+5Nlogn.
(b) [3] Let f(n) be the expected length of the longest cycle of a random permutation
w € &, (again from the uniform distribuiton). Show that

() o -y
lim L) — / exp (—x —/ e—dy) da = 0.62432965 - - - .
0 T )

n—oo N

117. [24] Let w be a random permutation of 1,2, ... n (chosen from the uniform distribu-
tion). Fix a positive integer 1 < k < n. What is the probability p,; that in the disjoint
cycle decomposition of w, the length of the cycle containing 1 is k7 In other words,
what is the probability that k is the least positive integer for which w¥(1) = 1?7 Give
a simple proof avoiding generating functions, induction, etc.

118. (a) [2]* Let w be a random permutation of 1,2,...,n (chosen from the uniform dis-
tribution), n > 2. Show that the probability that 1 and 2 are in the same cycle
of wis 1/2.

(b) [2+] Generalize (a) as follows. Let 2 < k < n, and let A = (A1, A, ..., \p) F K,
where Ay, > 0 . Choose a random permutation w € &,,. Let Py be the probability
that 1,2,..., A\; are in the same cycle C; of w, and Ay +1,..., A1 + Ay are in the
same cycle Cy of w different from C', etc. Show that

A — Dl (A — 1)!

Pr= k!
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(c) [3-] Same as (b), except now we take w uniformly from the alternating group 2,,.
Let the resulting probability be 2,. Show that

=Dl (A= 1
= 2 (k(k—1)+(_1) En(n—l))'

119. [2+] Let P, denote the probability that a random permutation (chosen from the uni-
form distribution) in &,, has all cycle lengths at most n. Show that lim, .. P, =
1 —log?2 = 0.306852819 - - -.

120. [2+] Let Ex(n) denote the expected number of k-cycles of a permutation w € &,,, as
discussed in Example 1.3.5. Give a simple combinatorial explanation of the formula
Ep(n) =1/k, n > k.

121. (a) [2]* Let f(n) denote the number of fixed-point free involutions w € Sy, (i.e., w? =

1, and w(i) # ¢ for all ¢ € [2n]). Find a simple expression for ) ., f(n)z"/n!.
(Set f(0)=1.) -

(b) [2-]* If X C P, then write —X = {—i : ¢ € X}. Let g(n) be the number of ways
to choose a subset X of [n], and then choose fixed point free involutions w on
XU(=X)and w on X U(—X), where X = {i € [n] : i € X}. Use (a) to find a
simple expression for g(n).

(c) [2+]* Find a combinatorial proof for the formula obtained for g(n) in (b).

122. [2-]* Find ), #°°®) where w ranges over all fixed-point free involutions in &y, and
exc(w) denotes the number of excedances of w.

123. [2]* Let 21, denote the alternating group on [n], i.e., the group of all permutations with
an even number of cycles of even length. Define the augmented cycle indicator Zgy, of

2, by
Zan _ Z ttype(UJ)7
weAn

as in equation (1.25). Show that

7 " ; ; x3 ; x° (4 x? ; xt ; 28
E — =eX x4+ tg— +ts— +--- | - cos — A ty— St tg— + - .
e~ Al Pn 53 >3 29 4y %6

124. (a) [2] Let fx(n) denote the number of permutations w € &,, with k inversions. Show
combinatorially that for n > k,

(b) [1+] Deduce from (a) that for n > k, fx(n) is a polynomial in n of degree k and
leading coefficient 1/k!. For instance, fo(n) = 3(n + 1)(n — 2) for n > 2.
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(c) [2+] Let gx(n) be the polynomial that agrees with fi(n) for n > k. Find A7 gy (—n);
that is, find the coefficients a; in the expansion

gr(—n) = i a; (?)

J=0

125. [2+]* Find the number f(n) of binary sequences w = ajas - - - a; (where k is arbitrary)
such that a; = 1, ay = 0, and inv(w) = n. For instance, f(4) = 5, corresponding to
the sequences 10000, 11110, 10110, 10010, 1100. How many of these sequences have
exactly j 1’s?

126. [2+]* Show that
n—1
D =q" [0+ +q* + - +4Y),
w 7=0

where w ranges over all fixed-point free involutions in &s,, and where inv(w) denotes
the number of inversions of w. Give a simple combinatorial proof analogous to the
proof of Corollary 1.3.13.

127. [2]

(a) Let w € &, and let R(w) be the set of positions of the records (or left-to-right
maxima) of w. For instance, R(3265174) = {1,3,6}. For any finite set S of
positive integers, set z° = [L;cs ®i- Show that

> ™M ) =gy (my @) (ws g+ 1) (@a F g+ ¢+ + ") (1135)
wEGn

(b) Let V(w) be the set of the records themselves, e.g., V(3265174) = {3,6,7}. Show
that

> @™V = (p g+ ) (@t gt (e Q).
weG,

(1.136)

128. (a) [2] A permutation aj - - - a, of [n] is called indecomposable or connected if n is the
least positive integer j for which {a1,as,...,a;} = {1,2,...,7}. Let f(n) be the
number of indecomposable permutations of [n], and set F'(z) = >~ . n!lz". Show

that
1

> fln)an = L E T (1.137)

n>1

(b) [24+] If @y - - - a, is a permutation of [n], then a; is called a strong fized point if (1)
Jj <i=a; <a; and (2) j >i=a; > a; (so in particular a; = 7). Let g(n) be
the number of permutations of [n] with no strong fixed points. Show that

n_ _ Fl)
Zg(n)x )

n>0
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(c)

129. (a)

(b)

(c)

[2+] A permutation w € &, is stabilized-interval-free (SIF) if there does not exist
1 <i < j <n for which w- [i,j] = [i, j] (as sets). For instance, 615342 fails to be
SIF since w - [3,5] = [3,5]. Let h(n) be the number of SIF permutations w € &,,
and set

H(ﬂf)zzh(n)x”:1+x+x2+2x3+7x4+34x5+206x6+...'

n>0

Show that
x

(ano n!xn+1)<_1>’

where (~! denotes compositional inverse (§5.4). Equivalently, by the Lagrange
inversion formula (Theorem 5.4.2), H(z) is uniquely defined by the condition

H(z) =

[z NH(x)" =n!, n>1.

[2+] A permutation w € &,, is called simple if it maps no interval [z, j] of size
1 < j—14+1 < n into another such interval. For instance, 3157462 is not
simple, since it maps [3, 6] into [4, 7] (as sets). Let k(n) be the number of simple
permutations w € G,,, and set

K(z) =Y k(n)a" =z +22% + 20 + 62° + 4627 + 338" + - - - .

n>1

Show that

K(z) =

9 (=1
—_ Ip"
. (Z) |

[2]* Let fx(n) be the number of indecomposable permutations w € &,, with k
inversions. Generalizing equation (1.137), show that

ka(n)qka:” =1-—

n>1

F(q,z)’

where F(q,x) = >, 50 (m)lz". As usual, (n)! = (1+q)(1+q¢+¢*)---(1+q+
e + qnfl)'

2] Write 1/F(q,x) = )_,509n(q)2", Where g,(q) € Z[g]. Show that }_ - 9.(q)
is a well-defined formal power series, even though it makes no sense to substitute

directly z = 1 in 1/F(q, z).

[3] Write 1/F(q,z) in a form where it does make sense to substitute x = 1.

130. [2+] Let u(n) be the number of permutations w = a; - - - a, € &, such that a;;1 # a;£1
for 1 <7 < mn —1. Equivalently, f(n) is the number of ways to place n nonattacking
kings on an n x n chessboard, no two on the same file or rank. Set

U(r) =Y u(n)a" =1+ z+ 22" + 142° + 902° + 64627 + 52422° + - - - |

n>0
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Show that

Ulx) = F (M) , (1.138)

I+
where F(z) =), .onlz" as in Exercise 1.128.

131. [2+]* An n-dimensional cube K, has 2n facets (or (n — 1)-dimensional faces), which

come in n antipodal pairs. A shelling of K, is equivalent to a linear ordering F}, Fs, . .., Fy,

of its facets such that for all 1 <1i <n — 1, the set {F7,..., Fy} does not consist of i
antipodal pairs. Let f(n) be the number of shellings of K,,. Show that

-1
" "
Zf(n)H =1- (Z(2n)!a> .
n>1 n>0

132. [1+]* Let w € &,,. Which of the following items doesn’t belong?

e inv(w)=0

e maj(w) =10

e des(w) =0

e maj(w) = des(w) = inv(w)

e D(w)=10

e c(w) =n (where ¢(w) denotes the number of cycles of w)
o w=w?=1

133. (a) [24] Let A,(z) be the Eulerian polynomial. Give a combinatorial proof that
%An(Q) is equal to the number of ordered set partitions (i.e., partitions whose
blocks are linearly ordered) of an n-element set.

(b) [2+]* More generally, show that

|
—

An(z) — \ (n—k)!S(n,n—k)(z — 1)k'

0

X

B
Il

Note that (n — k)!S(n,n — k) is the number of ordered partitions of an n-set into
n — k blocks.

134. [3-] Show that
An(l') _ leeres(w)(l + x)n7172des(w)7

where w ranges over all permutations in &,, with no proper double descents (as defined
in Exercise 1.61) and with no descent at the end. For instance, when n = 4 the
permutations are 1234, 1324, 1423, 2134, 2314, 2413, 3124, 3412, 4123.

135. (a) [2] Let A, (x) be the Eulerian polynomial. Show that

—1)th2g dd
A1) = { (1) no

0, n even.
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136.

137.

138.

139.

140.

141.

(b) [3-] Give a combinatorial proof of (a) when n is odd.

[2+] What sequence ¢ = (cy,...,¢,) € N* with > ic; = n maximizes the number of
w € &, of type ¢? For instance, when n = 4 the maximizing sequence is (1,0, 1,0).

[3-] Let ¢ be a prime number and write n = ag + a1l + aol® + -+, with 0 < a; < ¢
for all ¢ > 0. Let ry(n) denote the number of sequences ¢ = (cy,¢a, ..., ¢,) € N* with
> ic; = n, such that the number of permutations w € &,, of type ¢ is relatively prime

to . Show that
ke(n) = plao) [ J(a: + 1),

i>1

where p(ap) is the number of partitions of ag. In particular, the number of ¢ such
that an odd number of w € &,, have type ¢ is 2°, where |n/2] has b 1’s in its binary
expansion.

[2+]* Find a simple formula for the number of alternating permutations ajas - - - as, €
S, satistying as < ag < ag < -+ < agp.

[2+] An even tree is a (rooted) tree such that every vertex has an even number of
children. (Such a tree must have an odd number of vertices.) Note that these are not
plane trees, i.e., we don’t linearly order the subtrees of a vertex. Express the number
g(2n+ 1) of increasing even trees with 2n 4 1 vertices in terms of Euler numbers. Use
generating functions.

[3-] Define a simsun permutation to be a permutation w € &,, such that w has no
proper double descents (as defined in Exercise 1.61(c)) and such that for all 0 < k& <
n — 1, if we remove n,n —1,--- ,n — k from w (written as a word) then the resulting
permutation also has no proper double descents. For instance, w = 3241 is not simsun
since if we remove 4 from w we obtain 321, which has a proper double descent. Show
that the number of simsun permutations in G,, is equal to the Euler number F,, ;.

(a) [2+] Let E, 1 denote the number of alternating permutations of [n + 1] with first
term k + 1. For instance, £, ,, = E,. Show that

Foo=1, E,o=0(n2>1), Epii1p1=Eny1p+Ennir (n>k2>0). (1.139)
Note that if we place the E), ;s in the triangular array

Eoo
Eynw — En
Eyp < Ey «— Ey
Esy — E3 — FEs — ks
Ey <« LB < FEp — Euy < Ey

(1.140)

and read the entries in the direction of the arrows from top-to-bottom (the so-
called boustrophedon or oz-plowing order), then the first number read in each row
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is 0, and each subsequent entry is the sum of the previous entry and the entry
above in the previous row. The first seven rows of the array are as follows:

1
0 — 1
1 « 1 « 0
0O — 1 —- 2 — 2
5 «— b5 « 4 «— 2 < 0
0O - 5 —- 10 —- 14 — 16 — 16
61 «— 61 «— 56 «— 46 «— 32 «— 16 « O.

(b) [3-] Define
m, n] = m, m+n odd
| n, m+neven.
Show that
™ y™  cosx +sinx
Z Z Em—l—n,[m,n}ﬁg = —COS(ZE T ) . (1141)
m>0 n>0 T y

142. [3-] Define polynomials f,(a) for n > 0 by fo(a) = 1, f,(0) = 0 if n > 1, and
fr(a) = foo1(1 —a). Thus

fila) = a

fola) = 5(~a®+2)

f3(a) = %(—a?’—i-?)a)

fila) = %(&-4@%8@)

fs(a) = é(a5—10a3+25a)

fola) = é(—a6 + 6a° — 40a* + 96a).

Show that » -, fu(1)z" = secz + tanx.

143. (a) [2-] Let fix(w) denote the number of fixed points (cycles of length 1) of the
permutation w € &,,. Show that

Z fix(w) = n!.

weG,

Try to give a combinatorial proof, a generating function proof, and an algebraic
proof.
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(b) [3+] Let Alt, (respectively, Ralt,) denote the set of alternating (respectively,
reverse alternating) permutations w € &,,. Define

fn) = ) fix(w)

weAlt,
g(n) = Z fix(w).
weRalty,
Show that
i) Ey—Ey o+ Eyy—- -+ (1) V2E nodd
n —=
E,—2E, 9 +2E, 4— -+ (=1)"2/22F, + (—=1)"2, n even.
() Ey—Ey o+ Eyy—-+(=1)"V2E nodd
n —=
g E, — (=1)"2 n even.

144. (a) [2] Let

(1-¢7"")
1
= 22 J2n+1 )

n>0 1 + q])

where ¢ = ($=£ +$)2/ °. Show that F (x) is well-defined as a formal power series.
Note that ¢(0) = 1 # 0, so some special argument is needed.

(b) [3+] Let F(x) be defined by (a), and write

= f(n)a" =1+az+a2°+22° + 52" + 172" + 7225 4+ 36727 +21792° + - - -

n>0

Show that f(n) is equal to the number of alternating fixed-point free involutions in
Gap, i.e., the number of permutations w € G, that are alternating permutations
and have n cycles of length two. For instance, when n = 3 we have the two
permutations 214365 and 645321, and when n = 4 we have the five permutations
21436587, 21867453, 64523187, 64827153, and 84627351.

145. [3-] Solve the following chess problem, where the condition “serieshelpmate” is defined
in Exercise 1.11(c).
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146.

147.

148.

149.

A. Karttunen, 2006

»

Serleshelpmate in 9: how many solutions?

[2+] Let fx(n) denote the number of permutations w € &,, such that
D(w) = {k,2k,3k,...} N [n—1],

as in equation (1.58). Let 1 <14 < k. Show that

. m $n1k+i

LI DO Col D e vy
Z fk mk + Z k - m xm.k
m>0 +)! Zmzo(_l) (mk)!

Note that when ¢ = k we can add 1 to both sides and obtain equation (1.59).

[2+] Call two permutations u,v € &,, equivalent if their min-max trees M (u) and
M (v) are isomorphic as unlabelled binary trees. This notion of equivalence is clearly
an equivalence relation. Show that the number of equivalence classes is the Motzkin
number M,,_; defined in Exercise 6.37 and further explicated in Exercise 6.38.

[2+] Let ®,, = ®,(c,d) denote the cd-index of &, as defined in Theorem 1.6.3. Thus
c=a-+band d=ab+ba. Let S C [n— 1], and let ug be the variation of S as defined
by equation (1.60). Show that

®,,(a + 2b,ab + ba + 2b%) = Z a(S)ug,

SCln—1]
where a(S) is given by equation (1.31).

[3-] If F(x) is any power series with noncommutative coefficients such that F(0) = 0,
then define (1 — F(z))~! to be the unique series G(x) satisfying

(1—-F(z))G(x) =G(x)(1 - F(z)) = 1.
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150.

151.

152.

153.

154.

Equivalently, G(z) = 1+ F(z) + F(z)* + ---. Show that

"™ sinh(a — b)x 1 (c-sinh(a —b)x -
E o —=— |1 - — cosh(a — +1 .
2 n(c, d) o p— { 5 ( 2 cosh(a — b)x

(1.142)
Note that the series on the right involves only even powers of a — b. Since (a — b)? =
c? — 2d, it follows that the coefficients of this series are indeed polynomials in ¢ and d.

(a) [3-]* Let f(n) (respectively, g(n)) be the total number of ¢’s (respectively, d’s)
that appear when we write the cd-index ®,(c,d) as a sum of monomials. For
instance, ®4(c,d) = & + 2cd + 2de, so f(4) = 7 and g(4) = 4. Show using
generating functions that f(n) = 2E,.; — (n + 1)E,, and g(n) = nE, — E,.1.

(b) [5-] Is there a combinatorial proof?

[3-] Let u be a monomial of degree n — 1 in the noncommuting variables ¢, d, where
deg(c) = 1 and deg(d) = 2. Show that [u]®,(c,d) is the number of sequences p =
Vo, U1, ..., Vn_1 = 1, where v; is obtained from v;_; by removing a ¢ or changing a d to
c. For instance, if p = dec there are three sequences: (dcc, cec, cc, ¢, 1), (dece, de, ce, ¢, 1),
(dee,de,d, ¢, 1).

[3-] Continue the notation from the previous exercise. Replace each ¢ in p with 0, each
d with 10, and remove the final 0. We get the characteristic vector of a set S, C [n—2].
For instance, if = cd®c?d then we get the characteristic vector 01010001 of the set
S, = {2,4,8}. Show that [u]®,(c,d) is equal to the number of simsun permutations
(defined in Exercise 1.140) in &,,_; with descent set S,.

(a) [2] Let f(n) denote the coefficient of d"* in the cd-index ®g,,+1. Show that f(n) =
2—nE2n+1‘

(b) [3] Show that f(n) is the number of permutations w of the multiset {1%,2% ... (n+
1)?} beginning with 1 such that between the two occurrences of i (1 < i < n)

there is exactly one occurrence of i 4+ 1. For instance, f(2) = 4, corresponding to
123123, 121323, 132312, 132132.

(a) [1+4] Let F(z) = > 5 f(n)2"/n!. Show that

e "F(z) =Y [A"f(0)]a"/nl.

n>0

(b) [2] Find the unique function f : P — C satisfying f(1) = 1 and A" f(1) = f(n)
for all n € P.
(c) [2] Generalize (a) by showing that

e 'Flz+t) = A" f(k)
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155.

156.

157.

158.

159.

160.

(a) [1+] Let F(z) =>_,5, f(n)z". Show that

1 ixF (1 i ;,;) = [A"f(0))a"

n>0

(b) [2+] Find the unique functions f, g : N — C satisfying A" f(0) = g(n), A?"g(0) =
f(n), A*"*1g(0) =0, f(0) = 1.

(¢) [2+] Find the unique functions f, g : N — C satisfying A" f(1) = g(n), A?"g(0) =
F(n), A?1g(0) = 0, £(0) = 1.

[24] Let A be the abelian group of all polynomials p : Z — C such that D*p : Z — Z

for all k € N. (D* denotes the kth derivative, and D°p = p.) Then A has a basis of

the form p,(z) = ¢, (i)? n € N, where ¢,, is a constant depending only on n. Find ¢,
explicitly.

[2] Let A be a complex number (or indeterminate), and let
y=1+Y fn)a", y*=> gn)a"
n>1 n>0
Show that
1 n
g(n) == [k(A+1) = nlf(k)g(n —k), n>1.
k=1

This formula affords a method of computing the coefficients of y* much more efficiently
than using (1.5) directly.

[2+] Let fi, fa,... be a sequence of complex numbers. Show that there exist unique
complex numbers aq, as, ... such that
F(z):=1+) fou" =[]0 -2
n>1 i>1

Set log F'(z) = 3,5, gn2". Find a formula for a; in terms of the g,’s. What are the
a;’s when F(x) =1+ 2 and F(z) = /(=97

2] Let F(z) =14+ a1z +--- € K[[z]], where K is a field satisfying char(K’) # 2. Show
that there exist unique series A(z), B(z) satisfying A(0) = B(0) = 1, A(z) = A(—z),
B(z)B(—z) = 1, and F(z) = A(xz)B(z). Find simple formulas for A(z) and B(z) in
terms of F'(z).

(a) [2] Let 0 < j < k. The (k, j)-multisection of the power series F(z) =} -, a,2"
is defined by
\I’kJF(.I) = Z CLkarjkaJrj.

m>0
Let ¢ = e?™/* (where i = —1). Show that

-1

¢CE(Cx).

e

Wy i F(7) =

| =

.3
I
o
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(b) [2] As a simple application of (a), let 0 < j < k, and let f(n, k, j) be the number of
permutations w € &,, satisfying maj(w) = j (mod k). Show that f(n,k,j) = n!/k
ifn>k.

(c) [2+] Show that

flk—1,k,0) = (k;ﬁl)“rz(l_ilg)“,
¢

where ¢ ranges over all primitive kth roots of unity. Can this expression be
simplified?

161. (a) [2]* Let F(x) = ap + alx + -+ € K[[z]], with ag = 1. For k > 2 define Fj(x) =
Dy o(z) = Zm>0 A ™ Show that for n > 1,

F(x)

hﬁmJQk@FTx)

=0.

(b) [24+] Let char K # 2. Given G(z) = 1+ H(x) where H(—z) = —H(z) (i.e
H(x) has only odd exponents), find the general solution F(z) = 1 + ajx + -
to F(z)/Fy(x) = G(z). Express your answer in the form F(x) = ®(G(x ))E(x),
where ®(z) is a function independent from G(z), and where E(x) ranges over
some class € of power series, also independent from G(z).

162. [3-] Let g(z) € C[[z]], 9(0) = 0, g(z) = g(—z). Find all power series f(z) such that
f(0) =0 and
flx) + f(—=
@+ Sl _
1= f(a)f(==)
Express your answer as an explicit algebraic function of g(x) and a power series h(x)
(independent from g(x)) taken from some class of power series.

163. Let f(z) € Cl[[z]], f(x) = x+ higher order terms. We say that F(z,y) € Cl[z,y]] is a
formal group law or addition law for f(x) if f(z +y) = F(f(z), f(y)).

(a) [2-] Show that for every f(x) € C|[z]] with f(z) = x4 ---, there is a unique
F(z,y) € C[[z,y]] which is a formal group law for f(z).

(b) [3] Show that F'(x,y) is a formal group law if and only if F'(x,y) = x + y+ higher
order terms, and

F(F(z,y),2) = F(z, F(y, 2)).
(c) [2] Find f(z) so that F'(z,y) is a formal group law for f(z) in the following cases:
y) =Tty
YY) =c+y+ay
) =
)

(z+y)/(1—my)
= 2y/1— 2 +yv/1 — 2?2
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164.

165.

166.

167.

168.

(d) [2+] Using equation (5.128), show that the formal group law for f(z) = ze " is
given by
w12y +y"
n!

Y

Flzy)=z+y—>» (n—1)

n>1
where we interpret 0° = 1 in the summand indexed by n = 1.

(e) [3] Find the formal group law for the function

Toodt
fo) = | =
[3-] Solve the following equation for the power series F(z,y) € C|[z,y]]:
(zy* + 2 —y)F(z,y) = 2F(x,0) — y.
The point is to make sure that your solution has a power series expansion at (0,0).

[2+] Find a simple description of the coefficients of the power series F(z) =z +--- €
C[[x]] satisfying the functional equation

T

F(x):(l—i—a:)F(a:Q)le_xQ.

2] Let n € P. Find a power series F'(z) € C[[z]] satisfying F(F(x))" = 1 + F(x)",
F(0)=1.

2] Let F(z) € C|[z]]. Find a simple expression for the exponential generating function
of the derivatives of F(z), i.e.,

tn
Y D'F(z)—, (1.143)
>0 n:

where D = d/dx.

Let K be a field satisfying char(K) # 2. If A(z) =z + ), -, a,2" € K[[z]], then let
A=Y () denote the compositional inverse of A; that is, AT (A(z)) = A(ATY (2)) = 2.

(a) [3-] Show that we can specify as,ay,... arbitrarily, and they then determine
uniquely as, as, ... so that A(—A(—z)) = . For instance
as = CL%
as = 3asao — 201‘21
a; = 13a$ — 18a4a3 + 2a3 + 4ayas.

NoTE. Let E(z) = A(—xz). Then the conditions A(z) = z+--- and A(—A(—x)) =
x are equivalent to E(z) = —z +--- and F(E(z)) = .

(b) [5-] What are the coefficients when ag,; is written as a polynomial in as, ay, . ..
as in (a)?
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(c) [2+]* Show that A(—A(—z)) = x if and only if there is a B(x) =z + Y, -, b,2"
such that A(z) = B (—B(—x)).

(d) [2+] Show that if A(—A(—z)) = z, then there is a unique B(x) as in (c) of the
form B(z) = x + Y, -, byp2®". For instance,

1
bg = —5&2

b= (ba}— das)

1
bg = T (49ag — 56asay + 8a6) .
(e) [5-] What are the coefficients when b, is written as a polynomial in as, ay, ... as
in (d)?
(f) [2+] For any C(z) = x+ cox? +c32® +- - -, show that there are unique power series

Alx) = x4 ayr® +azz® +---
D(z) = x+dsz®+dsz®+---

such that A(—A(—z)) =z and C(x) = D(A(z)). For instance,

a2 = (2

dg = (3 — C%

ag = C4 — 30302 + 30:23

d5 = ¢35+ 30363 - 36204 - Cg.

(g) [2+] Find A(z) and D(z) as in (f) when C(z) = —log(1 — x).

(h) [5-] What are the coefficients when as, and dy,;; are written as a polynomial in
C2,C3,... asin (f)7

(i) [2+] Note that if A(z) = /(1 + 2x), then A(—A(—=x)) = x. Show that
BV (=B(—-x)) = z/(1 + 22)

if and only if e™* )" . bny12™/n! is an even function of z (i.e., has only even
exponents).

(j) [2+] Identify the coefficients by, of the unique B(z) = 2 + 37, - by, x™" satisfying
BV (—B(—x)) = x/(1 + 2x).

169. [2] Find a closed-form expression for the following generating functions.

(a) Y (n+2)%"

n>0
xn
b 2)2
() 3 +2)°5
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2n
2 n
(c) Z(n+2) (n)x
n>0
170. (a) [2-] Given ay = «, a3 = 3, apy1 = ay + ap—q for n > 1, compute y = ano apx".
(b) [24] Given ap = 1 and an1 = (n + 1)a, — (5)an—s for n > 0, compute y =
ano a,x"/nl.

(c) [2] Given ap = 1 and 2a,41 = Y ., (T;)aian,i for n > 0, compute ano a,x™/n!
and find a, explicitly. Compare equation (1.55), where (in the notation of the
present exercise), a; = 1 and the recurrence holds for n > 1.

(d) [3] Let ag(0) = o, and for 1 < k <mn+1 let

n

ag(n+1) = Z (n) Z (a2:-(j) + agr+1(7))as(n — j).

J 2r+s=k—1
r,5>0

J=0

Compute A(z,t) := 3, ~oax(n)t*z" /nl.
171. Given a sequence ag, aq, ... of complex numbers, let b, = ag+ a1 + - - - + a,.

(a) [1+]* Let A(z) = >_ 50 an2™ and B(z) = > -, b,z". Show that

(b) [2+4] Let A(z) = 3,5 ansy and B(z) = Y7, oo bn%;. Show that
B(z) = (I(e ™" A'(z)) + ao) €, (1.144)

where I denotes the formal integral, i.e.,

n+1 n
1 <chx”> :chs+1 :ch_l%.

n>0 n>0 n>1

172. [3-] The Legendre polynomial P,(x) is defined by

1
D —— P,(x)t".
V1 — 2zt + 2 ; (z)

Show that (1 — )" Po((1 4+ 2)/(1 — ) = Sr_ (2)a*.

173. [2+] Find simple closed expressions for the coefficients of the power series (expanded

about x = 0):
1+
(@) \/ 1

152



r) sin(wx) sin(w?r), where w = ¢27/3

s
(g) cos(log(1+ x)) (express the answer as the real part of a complex number)
174. [1-] Find the order (number of elements) of the finite field Fs.

175. [2+]* Fori,j > 0and n > 1, let f,(i, ) denote the number of pairs (V, W) of subspaces
of Fy such that dimV =4, dim W = j, and V. N W = {0}. Find a formula for f, (3, j)
which is a power of ¢ times a ¢g-multinomial coefficient.

176. [2+] A sequence of vectors vy, vy, ... is chosen uniformly and independently from .
Let E(n) be the expected value of k for which vy, ..., v span IFZ but vy, ..., vx_1 don’t
span Fy. For instance

q
E(1) = et

q(2g+1)
2 = e

g3 +4¢°+3q+1)
E®) = GoDa D@ rar
Show that . ‘
E(n) = qiq_l.

177. (a) [2+]* Let f(n,q) denote the number of matrices A € Mat(n, q) satisfying A? = 0.

Show that @
Tn\q

f(n,q) = E —— ,

(n.4) o, @i(9)5(a)

where 7,,(q) = #GL(m, q). (The sum ranges over all pairs (7, j) € NxN satisfying
2i+j=n)

(b) [2]* Write f(n,q) = g(n,q)(¢ — 1) so that g(n,1) # 0,00. Thus f(n,q) may be
regarded as a g-analogue of g(n,1). Show that

Zgnl

n>0

(c) [5-] Is there an intuitive explanation of why f(n,q) is a “good” g-analogue of
g(n,1)?
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178.

179.

180.

181.

182.

183.

184.

185.

[2+]* Let f(n) be the number of pairs (A, B) of matrices in Mat(n, q) satisfying AB =
0. Show that

) =) 0 = )= )

[2-]* How many pairs (A, B) of matrices in Mat(n, q) satisfy A+ B = AB?

[5-] How many matrices A € Mat(n,q) have square roots, i.e., A = B? for some
B € Mat(n,q)? The g = 1 situation is Exercise 5.11(a).

[2]* Find a simple formula for the number f(n) of matrices A = (4;;) € GL(n, ¢) such
that A11 = Aln = Anl = Ann = 0.

[2+] Let f(n,q) denote the number of matrices A = (A4;;) € GL(n, ¢) such that A;; # 0
for all 4,j. Let g(n,q) denote the number of matrices B = (B;;) € GL(n — 1, ¢q) such
that B;; # 1 for all 4, 7. Show that

f(n7 Q) = (q - 1)2n—lg(n7 Q)'

2] Prove the identity

L _ TT—ah", (1.145)

1—gqzx S

where (3(d) is given by equation (1.103).

(a) [2]* Let f,(n) denote the number of monic polynomials f(z) of degree n over F,
that do not have a zero in Fy, i.e., for all & € F, we have f(«) # 0. Find a simple
formula for F(z) = ) -, fy(n)z™. Your answer should not involve any infinite
sums or products. N

NoOTE. The constant polynomials f(z) =  for 0 # § € F, are included in the
enumeration, but not the polynomial f(z) = 0.

(b) [2]* Use (a) to find a simple explicit formula for f(n, q) when n is sufficiently large
(depending on q).

(a) [1]* Show that the number of monic polynomials of degree n over F, is ¢".

(b) [24+] Recall that the discriminant of a polynomial f(z) = (z —6;)---(x — 6,) is
defined by

disc(f) = ] (6 -6,

1<i<j<n

Show that the number D(n,0) of monic polynomials f(z) over F, with discrimi-
nant 0 (equivalently, f(z) has an irreducible factor of multiplicity greater than 1)
: n—1

isqg" ", n>2.
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(c) [2+] Generalize (a) and (b) as follows. Fix k& > 1, and let X be any subset
of N* containing (0,0,...,0). If fi,..., fx is a sequence of monic polynomials
over F,, then set f = (f1,..., fx) and deg(f) = (deg(f1),...,deg(fx)). Given
an irreducible polynomial p € F,[z], let mult(p, f) = (u1, ..., ), where p; is
the multiplicity of p in f;. Given 8 € N* let N(3) be the number of k-tuples
f = (fi,-.., fx) of monic polynomials over F, such that deg(f) = § and such
that for any irreducible polynomial p over F, we have mult(p, f) € X. By a
straightforward generalization of Exercise 1.158 to the multivariate case, there
are unique a, € Z such that

Fx(x) := Z ¢ = H (1 — z%)%, (1.146)

acX aeNk
a#(0,0,...,0)
where if o = (o, ..., ay) then 2® = 2{* - - -z*. Show that
S A= I 0w
BENF aeNk
a#(0,0,...,0)

Note that if k = 1 and X = N, then N(3) is the total number of monic polynomials
of degree 8. We have fy(z) = 1/(1 — ) and >_ 5 Nz’ = 1/(1 — qz) =
> ns0 42", agreeing with (a).

186. Deduce from Exercise 1.185(c) the following results.

(a) [2] The number N,(n) of monic polynomials f € F,[z] of degree n with no factor
of multiplicity at least r is given by

Ny (n) =¢"=¢"7"*, n>r (1.147)

Note that the case r = 2 is equivalent to (b)

(b) [2] Let N(m,n) be the number of pairs (f, g) of monic relatively prime polynomials
over F, of degrees m and n. In other words, f and g have nonzero resultant. Then

N(m,n) =¢™" ' mn>1 (1.148)

(¢) [24] A polynomial f over a field K is powerful if every irreducible factor of f
occurs with multiplicity at least two. Let P(n) be the number of powerful monic
polynomials of degree n over IF,. Show that

187. (a) [3-] Let ¢ be an odd prime power. Show that as f ranges over all monic polyno-
mials of degree n > 1 over F,, disc(f) is just as often a nonzero square in F, as a
nonsquare.
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(b) [24] For n > 1 and a € F,, let D(n,a) denote the number of monic polynomials
of degree n over F, with discriminant a. Thus by Exercise 1.185(b) we have
D(n,0) = ¢"*. Show that if (n(n—1),q—1) =1 (so ¢ = 2™) or (n(n—1),q—1) = 2
(so q is odd) then D(n,a) = ¢" ! for all a € F,. (Here (r, s) denotes the greatest
common divisor of r and s.)

(c) [5-] Investigate further the function D(n,a) for general n and a.

188. [3] Give a direct proof of Corollary 1.10.11, i.e., the number of nilpotent matrices in
Mat(n, q) is ¢"" V),

189. [3-] Let V be an (m + n)-dimensional vector space over F,, and let V = V; @ V5,
where dimV; = m and dimV, = n. Let f(m,n) be the number of nilpotent linear
transformations A: V — V satisfying A(V;) C V; and A(V3) C V4. Show that

f(m, n) _ qm(n—l)-l—n(m—l)(qm + qn . 1)’

190. (a) [2] Let w*(n,q) denote the number of conjugacy classes in the group GL(n,q).
Show that w*(n, ¢) is a polynomial in ¢ satisfying w*(n, 1) = 0. For instance,

w*(1,q) qg—1
w*(2,9) ¢ —1
w39 = ¢ —q
w49 = ¢ —q
wBq) = ¢ —¢ —q+1
w69 = ¢"—¢
w (7, q) - +1
w*(8,9) ¢ -7 -7 +q

(b) [2+] Show that

w(n,q) = q" — qL(n—l)/2J + O(qL(n—l)/2J—1)'

(c) [3-] Evaluate the polynomial values w*(n,0) and w*(n,—1). When is w*(n,q)
divisible by ¢?

191. [3-] Give a more conceptual proof of Proposition 1.10.2, i.e., the number w(n,q) of
orbits of GL(n, q) acting adjointly on Mat(n, ¢) is given by

w(n,g) =Y _pi(n)g.
J
192. (a) [2]* Find a simple formula for the number of surjective linear transformations
A:Fp — IF']; .
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(b) [2]* Show that the number of m x n matrices of rank k over F, is given by

CZ) (¢" = 1)(¢" =)+ (¢" —¢" ).

193. [2] Let p, denote the number of projections P € Mat(n, q), i.e., P> = P. Show that
2
" z® >
2 =2
S M (M (k)
where as usual y(k) = y(k, q¢) = #GL(k, q).

194. [24] Let r, denote the number of regular (or cyclic) M € Mat(n, q), i.e., the charac-
teristic and minimal polynomials of A are the same. Equivalently, there is a column
vector v € F7 such that the set {A' : i > 0} spans F} (where we set A’ = I). Show

that
. L 8(a)
nzon"W - };[1 (1 i (¢ = 1)1 - (OC/Q)d))
1 2 B(d)
= 111 (1 * m) '

d>1

195. [2] A matrix A is semisimple if it can be diagonalized over the algebraic closure of the
base field. Let s,, denote the number of semisimple matrices A € Mat(n, ¢). Show that

S (S )

d
= ")\ 0

196. (a) [2+] Generalize Proposition 1.10.15 as follows. Let 0 < k < n, and let fi(n) be
the number of matrices A = (a;;) € GL(n, q) satisfying a11 + ago + - - - + ag = 0.
Then
1 (2
fuln) = < (9(m.0) + (DM = DD —kg)) . (1150

(b) [2+] Let H be any linear hyperplane in the vector space Mat(n, ¢). Find (in terms
of certain data about H) a formula for #(GL(n,q) N H).

197. [3] Let f(n) be the number of matrices A € GL(n,q) with zero diagonal (i.e., all
diagonal entries are equal to 0). Show that

n

7y = (g -1y Z(—w(?) (n— i)

1=0
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For instance,

f(1)y =0

f2) = (¢—1)?

f3) = alg—1)(¢" —4¢" + 49— 1)

f(4) ¢*(¢—1)(¢° — ¢® = 5¢° + 3¢" + 11¢° — 14¢* + 6¢ — 1).

198. (a) [2+] Let h(n,r) denote the number of n x n symmetric matrices of rank r over
F,. Show that

h(n+1,7) = ¢ h(n,r)+ (¢g—1)¢" 'h(n,r — 1)+ (¢"' —¢" " h(n,r —2), (1.151)

with the initial conditions h(n,0) =1 and h(n,r) = 0 for r > n.
(b) [2] Deduce that

S 2 2s—1

q n—i _
Hq%_l-H(q —1), 0<r=2s<n
h(n 7‘) — =1 =0
? S q2i 2s .
T Tl i—-1). 0<r=2s+1<n.
Hqu—l Zlll(q ), <r s+1<n

In particular, the number h(n,n) of n x n invertible symmetric matrices over F,
is given by

h(n,n) = { g ™D (g —1) (g — 1) (™), n=2m—1
¢ (g = 1)(@* = 1) (¢#"7), n=2m.

199. (a) [3] Show that the following three numbers are equal:

e The number of symmetric matrices in GL(2n, ¢q) with zero diagonal.
e The number of symmetric matrices in GL(2n — 1, ¢q).
e The number of skew-symmetric matrices (A = —A") in GL(2n, q).

(b) [5] Give a combinatorial proof of (a). (No combinatorial proof is known that two
of these items are equal.)

200. [3] Let C},(¢q) denote the number of n x n upper-triangular matrices X over F, satisfying
X? = 0. Show that

cui) = 2[(, 7)) - (i) o

J

2n+1 27L+1 n24n—3i2_9
Cony1(q) = Z{(n—?)j)_(n—?)j—l)].q 82

J

201. This exercise and the next show that simply-stated counting problems over F, can have
complicated solutions beyond the realm of combinatorics. (See also Exercise 4.39(a).)
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202.

203.

(a) [3] Let
flq) = #{(z,y,2) € Fg crx+y+2z=0, zyz =1}
Show that f(q) = ¢+ a — 2, where:
e if ¢ =2 (mod3) then a =0,
e if ¢ = 1(mod3) then a is the unique integer such that ¢ = 1 (mod3) and
a® + 27b* = 4q for some integer b.

(b) [2+] Let
9(q) = #{A € GL(3,q) : tr(A) =0, det(A) =1.}

Express ¢g(¢) in terms of the function f(q) of part (a).

[4-] Let p be a prime, and let N, denote the number of solutions modulo p to the
equation y? +y = 23 — x. Let a, = p — N,. For instance, as = =2, az3 = 1, a5 = 1,
a7 = —2, etc. Show that if p # 11, then

a, = [2P]x H(l —2")?(1 — 2M™)?

n>1

= [2")(z —22® — 2 + 22" + 2%+ 22° — 227 — 227 + ... )

[3] The following quotation is from Plutarch’s Table-Talk VIII. 9, 732: “Chrysippus
says that the number of compound propositions that can be made from only ten simple
propositions exceeds a million. (Hipparchus, to be sure, refuted this by showing that
on the affirmative side there are 103,049 compound statements, and on the negative
side 310,952.)”

According to T. L. Heath, A History of Greek Mathematics, vol. 2, p. 245, “it seems
impossible to make anything of these figures.”

Can in fact any sense be made of Plutarch’s statement?
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SOLUTIONS TO EXERCISES

1. Answer: 2. There is strong evidence that human babies, chimpanzees, and even rats
have an understanding of this problem. See S. Dehaene, The Number Sense: How the
Mind Creates Mathematics, Oxford, New York, 1997 (pages 23-27, 52-56).

2. Here is one possible way to arrive at the answers. There may be other equally simple
(or even simpler) ways to solve these problems.

(a) 210 — 25 = 992
(b) 5(7—1)!' =360
(¢) 5-5! (or 6! —5!) =600

o (e (et
o)

(- (6560~

<§ L) ()
e

1
8 )—126

8 8 8
k) 2 =2
) (1,3,4) +3(2,3,3) i (2,2,4) o
5

(1) 5!'+ (2) (5)4 + % G) (;l) (5)3 = 2220

3. (a) Given any n-subset S of [z+n+1], there is a largest k for which #(SN[z+k]) = k.
Given k, we can choose S to consist of any k-element subset in (g”;:k) ways, together
with { +k+ 2,2 +k+3,...,2+n+1}.

(b) First proof. Choose a subset of [n] and circle one of its elements in Y k(}) ways.
Alternatively, circle an element of [n] in n ways, and choose a subset of what
remains in 2"~ ! ways.

Second proof (not quite so combinatorial, but nonetheless instructive). Divide
the identity by 2". It then asserts that the average size of a subset of [n] is n/2.
This follows since each subset can be paired with its complement.
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(c)

(d)
(e)

(f)

To give a non-combinatorial proof, simply square both sides of the identity (Ex-

ercise 1.8(a))
=\n v1—4dx

and equate coefficients. The problem of giving a combinatorial proof was raised
by P. Veress and solved by G. Hajos in the 1930s. For some published proofs,
see D. J. Kleitman, Studies in Applied Math. 54 (1975), 289-292; M. Sved, Math.
Intelligencer, 6(4) (1984), 44-45; and V. De Angelis, Amer. Math. Monthly 113
(2006), 642-644.

G. E. Andrews, Discrete Math. 11 (1975), 97-106.

Given an n-element subset S of [2n — 1], associate with it the two n-element
subsets S and [2n] — S of [2n].

What does it mean to give a combinatorial proof of an identity with minus signs?
The simplest (but not the only) possibility is to rearrange the terms so that all
signs are positive. Thus we want to prove that

> (Z) = <Z>, n =l (1.152)

k even k odd

Let &, (respectively O,,) denote the sets of all subsets of [n] of even (respectively,
odd) cardinality. The left-hand side of equation (1.152) is equal to #¢&,, while
the right-hand side is #0,,. Hence we want to give a bijection ¢: &, — O,. The
definition of ¢ is very simple:

_f Su{n}, n¢gS
ww“‘{S—@q,nes

Another way to look at this proof is to consider ¢ as an involution on all of
2" Every orbit of ¢ has two elements, and their contributions to the sum
> s (=177 cancel out, i.e., (=1)#S4(=1)##9) = 0. Hence ¢ is a sign-reversing
inwvolution as in the proof of Proposition 1.8.7.

The left-hand side counts the number of triples (S, T, f), where S C [n], T C
[n+1,2n], #S = #T, and f: S — [z]. The right-hand side counts the number
of triples (A, B, g), where A C [n], B € ([2"}”*‘4), and g : A — [z — 1]. Given
(S,T, f), define (A, B, g) as follows: A = f~1([z —1]), B = ([n] — S)UT, and
g(i) = f(i) for i € [z —1].

We have that (’JZ”) (ij) (kj’) is the number of triples («, 3,7), where (i) « is a
sequence of i+ j + 2 letters a and b beginning with a and ending with b, with 7+ 1
a’s (and hence j + 1 b’s), (ii) 8 = (B1,...,0;+1) is a sequence of j + 1 positive
integers with sum j + k + 1, and (iii) v = (91,...,741) is a sequence of i + 1
positive integers with sum k£ +1¢+ 1. Replace the rth a in a by the word ¢ d, and
replace the rth b in o by the word d”c. In this way we obtain a word ¢ in ¢, d of
length 2n+4 with n+2 ¢’s and n+2 d’s. This word begins with ¢ and ends with
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d(de)™ for some m > 1. Remove the prefix ¢ and suffix d(dc)™ from § to obtain
a word € of length 2(n —m+ 1) with n —m +1 ¢’s and n — m + 1 d’s. The map
(cr, B,7) + € is easily seen to yield a bijective proof of (h). This argument is due
to Roman Travkin (private communication, October 2007).

Example. Let n =8, 1 =2, j = k =3, a = abbaabb, = (2,3,1,1), v = (2,3,1).
Then
§ = (Pd)(d’c)(d’c)(c*d)(cd)(de)(de),

so € = cd?cd3cde.

NoOTE. Almost any binomial coefficient identity can be proved nowadays automatically
by computer. For an introduction to this subject, see M. Petkovsek, H. S. Wilf, and
D. Zeilberger, A=B, A K Peters, Wellesley, MA, 1996. Of course it is still of interest
to find elegant bijective proofs of such identities.

8. (a) We have 1/v1—4z =) (_1/2) (—4)"z". Now

n
n>0

() CHED R oy

n

(b) Note that (*"-') = £(*"), n > 0 (see Exercise 1.3(e)).

n 2\n

9. (b) While powerful methods exist for solving this type of problem (see Example 6.3.8),
we give here a “naive” solution. Suppose the path has k steps of the form (0, 1), and
therefore k (1,0)’s and n—k (1,1)’s. These n+ k steps may be chosen in any order, so

fnm) =3 () - 2 (") ()

= ;f(n, nja" = ; (2:) % <n2ﬂ;k)xn
= > (2:) #

k

1 4 —-1/2
i (1 - ﬁ) , by Exercise 1.8(a)

1
V1—6x + 22

10. Let the elements of S be a; < as < -+ < ay45. Then the multiset {a;,as — 2, a3 —
4,... a5 — 2(r+ s — 1)} consists of r odd numbers and s even numbers in [2(n —
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11.

r —s+1)]. Conversely we can recover S from any r odd numbers and s even numbers
(allowing repetition) in [2(n —r — s + 1)]. Hence

=TT C0C)

This result is due to Jim Propp, private communication dated 29 July 2006. Propp
has generalized the result to any modulus m > 2 and has also given a g-analogue.

(a) Choose m+n+1 points uniformly and independently from the interval [0, 1]. The
integral is then the probability that the last chosen point u is greater than the
first m of the other points and less than the next n points. There are (m+n—+1)!
orderings of the points, of which exactly m!n! of them have the first m chosen
points preceding u and the next n following u. Hence

m! n!

The function B(z,y) for Re(x),Re(y) > 0 is the beta function.

There are many more interesting examples of the combinatorial evaluation of
integrals. Two of the more sophisticated ones are P. Valtr, Discrete Comput.
Geom. 13 (1995), 637-643; and Combinatorica 16 (1996), 567-573.

(b) Choose (1+r+s)n+2t(}) points uniformly and independently from [0, 1]. Label
the first n chosen points x, the next r chosen points y, etc., so that the points
are labelled by the elements of M. Let P be the probability that the order of the
points in [0, 1] is a permutation of M that we are counting. Then

nlrlnsln(2t)! 1(3)
((r+s+1)n+tn(n—1))!

:/ / (=) (=2 ] (o —a)2dar---da.

1<i<j<n

P f(n, T, 8, 1)

This integral is the famous Selberg integral; see e.g. G. E. Andrews, R. Askey, and
R. Roy, Special Functions, Cambridge University Press, Cambridge/New York,
1999 (Chapter 8), and P. J. Forrester and S. O. Warnaar, Bull. Amer. Math.
Soc. 45 (2008), 489-534. The evaluation of this integral immediately gives equa-
tion (1.119). No combinatorial proof of (1.119) is known. Such a proof would
be quite interesting since it would give a combinatorial evaluation of Selberg’s
integral.

(c) One solution is 1.Pa5 2.Pa4 3.Pa3 4.Ra4 5.Ra8 6.Paxb2 7.Pb1=B 8.Pe2 9.Pe3
10.Bxf5 11.Bxe6 12.Bc8 13.Pg3 14.Pg2, after which White plays Bh2 mate. We
attach indeterminates to each of the Black moves as follows: 1.a19 2.a12 3.2 4.a94
5.@24 6.@23 7.@23 8.@13 9.@13 10.x 11.@34 12.@34 13.@14 14.@14. We also place an in-
determinate x before Black’s first move and after Black’s last move. All solutions
are then obtained by permutations of Black’s 14 moves, together with = at the
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13. Let S consist of all p-tuples (ny,na, ..

14.

Pg:

Paxb2 Pg:

Pe2
Pa3
Pa4

Pa5

Figure 1.29: The solution poset for Exercise 1.11(c)

beginning and end, with the property that moves labelled by the same indetermi-
nate must be played in the same order, and moves labelled a;; must occur between
the ith x and jth z. In the terminology of Chapter 3, the solutions correspond
to the linear extensions of the poset shown in Figure 1.29. Hence the number of
solutions is

£(4,0,0,1) = 54054.

For similar serieshelpmates (called queue problems) whose number of solutions
has some mathematical significance, see Exercises 1.145, 6.23 and 7.18. Some
references are given in the solution to Exercise 6.23. The present problem comes
from the article R. Stanley, Suomen Tehtdviniekat 59, no. 4 (2005), 193-203.

(a) We use the well-known and easily proved fact that (z 4+ 1)? = 2P + 1 (modp),
meaning that each coefficient of the polynomial (z 4 1)? — (2 + 1) is divisible by
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.,n,) of integers n; € [a] such that not all the
n;’s are equal. Hence #S = a? — a. Define two sequences in S to be equivalent if one
is a cyclic shift of the other (clearly an equivalence relation). Since p is prime each
equivalence class contains exactly p elements, and the proof follows. For additional
results of this nature, see I. M. Gessel, in Enumeration and Design (Waterloo, Ont.,
1982), Academic Press, Toronto, ON, 1984, pp. 157197, and G.-C. Rota and B. E.
Sagan, European J. Combin. 1 (1980), 67-76.



p. Thus

(z+1)" = (z41)xo

II(xﬂ-+1)M (mod p)
> ( )x (mod p).

i j=0

The coefficient of ™ on the left is (:1) and on the right is (‘ZO) (b ) -+, This

congruence is due to F. E. A. Lucas, Bull. Soc. Math. France 6 (1878) 49-54.

(b) The binomial coefficient (") is odd if and only if the binary expansion of m is
“contained” in that of n; that is, if m has a 1 in its ith binary digit, then so does n.
Hence (:1) is odd for all 0 < m < n if and only if n = 2¥ — 1. More generally, the
number of odd coefficients of (14 z)" is equal to 2", where b(n) is the number
of 1’s in the binary expansion of n. See Exercise 1.15 for some variations.

(c) Consider an a x p rectangular grid of squares. Choose pb of these squares in

(Z‘Z) ways. We can choose the pb squares to consist of b entire rows in (Z) ways.
Otherwise in at least two rows we will have picked between 1 and p — 1 squares.
For any choice of pb squares, cyclically shift the squares in each row independently.
This partitions our choices into equivalence classes. Exactly (Z) of these classes

contain one element; the rest contain a number of elements divisible by p?.

(d) Continue the reasoning of (c). If a choice of pb squares contains fewer than b — 2
entire rows, then its equivalence class has cardinality divisible by p3. From this
we reduce the problem to the case a =2, b = 1. Now

() - ,?;(Zf
~ 94y Z *(p — Q)k!2 (p—k+1)

= 2497 Zk (mod p?).

But as k ranges from 1 to p — 1, so does £~! modulo p. Hence

-1
E2=Y k*(modp).

1

T
A
s

i

1

i

Now use, for example, the identity

. n(n+1)2n+1)
Z’f ;
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to get

p—1

ZkQ = 0(modp), p>5.

k=1
The exponent of the largest power of p dividing (:1) is the number of carries
needed to add m and n — m in base p. See E. Kummer, Jour. fir Math. 44
(1852), 115-116, and L. E. Dickson, Quart. J. Math. 33 (1902), 378-384.

We have

— 3

1
l+x+a2= = (1 —2)* (mod 3).

1—x
Hence (14 z + 2?)" = (1 — 2)*" (mod 3). It follows easily from Exercise 1.14(a)
that if 2n has the ternary expansion 2n = > a;3", then the number of coefficients
of (1+z+ %)™ not divisible by 3 is equal to [[(1 + a;). This result was obtained
in collaboration with T. Amdeberhan.
Let f(n) be the desired number. First consider the case n = 27(2" — 1). Since
(1+z422)% =1+2% +22" (mod?2), we have f(n) = f(2¥ —1). Now

2k+1

gy 142 o
- l4a+a?
It is easy to check that modulo 2 we have for k£ odd that

(14 x+2%) (mod 2).

2k+l

1+22" 12

14z + 22 - 1+x+$3+$4+x6+x7+...+x2k72+x2k71+x2k

a2 g 2D g 26 Ly 2R 2t

It follows that f(2% — 1) = (2¥2 4+ 1)/3. Similarly, when & is even we have

1422 + 22"

14z + 22

= lta+a®+at +a5+a7 + 42?2?02

—|—x2k+1 + 225 +2 + 224 + 22545 4t 223 + 222

Hence in this case f(2¥—1) = (2¥2—1)/3. For a generalization, see Exercise 4.25.
Now any positive integer n can be written uniquely as n = >_._, 2%i(2% — 1),
where k; > 1, 73 > 0, and j;41 > 7; + k;. We are simply breaking up the binary
expansion of n into the maximal strings of consecutive 1’s. The lengths of these
strings are ki, ..., k.. Thus

T

(1+z+2?)" =1 +2* +22")? ! (mod 2).
=1

There is no cancellation among the coefficients when we expand this product since
ji+1 > jz —+ 1. Hence

f(n) = Hf(ka - 1)’
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16.

where f(2% — 1) is given above.

Ezxample. The binary expansion of 6039 is 1011110010111. The maximal strings
of consecutive 1’s have lengths 1, 4, 1 and 3. Hence

£(6039) = F(1)f(15)f(1)f(7) = 3-21-3-11 = 2079.

We have
H (2; + ;) = H (x; —x;) (mod2),

1<i<j<n 1<i<j<n
where the notation means that the corresponding coefficients of each side are
congruent modulo 2. The latter product is just the value of the Vandermonde
determinant det[xffl]?’j:l, so the number of odd coefficients is n!. This result
can also be proved by a cancellation argument; see Exercise 2.34. A more subtle
result, equivalent to Exercise 4.64(a), is that the number of nonzero coefficients of
the polynomial [, <icj<n (x;+x;) is equal to the number of forests on an n-element

vertex set.

Some generalizations of the results of this exercise appear in T. Amdeberhan and R.
Stanley, Polynomial coefficient enumeration, preprint dated 3 February 2008;

(http://math.mit.edu/~rstan/papers/coef .pdf).

See also Exercise 4.24.

(a)

This result was first given by N. Strauss as Problem 6527, Amer. Math. Monthly
93 (1986), 659, and later as the paper Linear Algebra Appl. 90 (1987), 65-72.
An elegant solution to Strauss’s problem was given by I. M. Gessel, Amer. Math.
Monthly 95 (1988), 564-565, and by W. C. Waterhouse, Linear Algebra Appl.
105 (1988), 195-198. Namely, let V be the vector space of all functions F, — F,,.
A basis for V consists of the functions fij(a) =a/,0<j<p—1. Let ®: V —V
be the linear transformation defined by (®f)(x) = (1 — z)?~*f(1/(1 — z)). Then
it can be checked that A is just the matrix of ® with respect to the basis f;. It is
now routine to verify that A3 = I.

Answer: (p+ 2¢)/3, where e =1 if p = 1(mod3) and e = —1 if p = —1 (mod 3).
Both Strauss, op. cit., and Waterhouse, op. cit., in fact compute the Jordan

normal form of A. Waterhouse uses the linear transformation ® to give a proof
similar to that given in (a).

Think of a choice of m objects from n with repetition allowed as a placement of
n — 1 vertical bars in the slots between m dots (including slots at the beginning
and end). For example,

corresponds to the multiset {1°,2% 3% 43 52}, Now change the bars to dots and
vice Versa:
SIS
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19.

yielding {1!,2°, 32 4° 5° 6!, 7%, 8°}. This procedure gives the desired bijection.
(Of course a more formal description is possible but only seems to obscure the
elegance and simplicity of the above bijection.)

One way to prove (1.120) is to recall the Lagrange interpolation formula. Namely,
if P(x) is a polynomial of degree less than n and 1, ..., z, are distinct numbers
(or indeterminates), then

Now set P(z) =1 and z = 0.

Applying the hint, we see that the constant term C(ay,...,a,) satisfies the re-

currence
k

C(al,...,an):ZC(al,...,ai—l,...,an),

i=1

if a; > 0. If, on the other hand, a; = 0, we have
C’(al, cee ,ai_l,O,aiH, cee ,an) = C’(al, vy A1, Qg 1y - - - ,an).

, and the initial conditions

.....

.....

This result was conjectured by F. J. Dyson in 1962 and proved that same year by
J. Gunson and K. Wilson. The elegant proof given here is due to I. J. Good in
1970. For further information and references, see [1.3, pp. 377-387].

This identity is due to A. C. Dixon, Proc. London Math. Soc. 35(1), 285-289.

This is the “g-Dyson conjecture,” due to G. E. Andrews, in Theory and Appli-
cation of Special Functions (R. Askey, ed.), Academic Press, New York, 1975,
pp. 191-224 (see §5). It was first proved by D. M. Bressoud and D. Zeilberger,
Discrete Math. 54 (1985), 201-224. A more recent paper with many additional
references is I. M. Gessel, L. Lv, G. Xin, and Y. Zhou, J. Combinatorial Theory,
Ser. A 115 (2008), 1417-1435.

I. G. Macdonald conjectured a generalization of (a) corresponding to any root
system R. The present problem corresponds to R = D,,, while (a) is the case
R = A, _; (when all the a;’s are equal). After many partial results, the conjecture
was proved for all root systems by E. Opdam, Invent. math. 98 (1989), 1-18.
Macdonald also gave a g-analogue of his conjecture, which was finally proved by
I. Cherednik in 1993 and published in Ann. Math. 141 (1995), 191-216. For
the original papers of Macdonald, see Sem. d’Alg. Paul Dubriel et Marie-Paule
Malliavin, Lecture Notes in Math., no. 867, Springer, Berlin, pp. 90-97, and STAM
J. Math. Anal. 13 (1982), 988-1007.
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22.

n
Fz) = Flay,....100)= Y. [H(q_‘“ g | g
a,...,an>0 Li=1
i=1 j>0
i=1 j>0 1—q

N (1—161) ﬁ{l—;lw 1—qqxi]

=1

n 1+Z
:Hl 37

(L= gay)(1 - qz)

We seek the term Fy(z) independent from ¢g. By the Cauchy integral formula
(letting each x; be small),

1 dq 1 +’xz
F —
() 2mi H (1 —qtx)(1 — qx;)

B (1+:c1) (+a:n74 ﬁ -
n 27 (g —z)( l—qxz)

=1

where the integral is around the circle |¢| = 1. The integrand has a simple pole at
q = x; with residue 2" /(1 — 22) [1i(zi — 2;)(1 — i), and the proof follows
from the Residue Theorem.

NoOTE. The complex analysis in the above proof can be replaced with purely
formal computations using the techniques of Section 6.3.

Let a; + --- + ax be any composition of n > 1. If a; = 1, then associate the
composition (a; + ag) +ag+ -+ ag. If a; > 1, then associate 1 + (a; — 1) +as +
-+ + ag. This defines an involution on the set of compositions of n that changes
the parity of the number of even parts. Hence the number in question is 2772,
n > 2. (Note the analogy with permutations: there are %n! permutations with an
even number of even cycles—namely, the elements of the alternating group.)

It is easily seen that

> (e(n) —o(n)a" = [ (1 + (=1)'z")~".

n>0 i>1

In the first proof of Proposition 1.8.5 it was shown that

H(l + .TZ) _ H(l _ x2i71)71‘

i>1 i>1
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23.

24.

ooooo‘@‘o

Figure 1.30: First step of the solution to Exercise 1.24

Hence (putting —z for x and taking reciprocals),

H(l_i_(_l)ixi)fl _ H(1+x2i+l)

= Zk(n)x”,

n>0

by Proposition 1.8.4. A simple combinatorial proof of this exercise was given by
the Cambridge Combinatorics and Coffee Club in December, 1999.

Form all 2! compositions of n as in (1.19). Each bar occurs in half the compositions,
so there are (n — 1)2"2 bars in all. The total number of parts is equal to the total
number of bars plus the total number of compositions, so (n — 1)2"2 + 21 = (n +
1)2"2 parts in all. This argument is due to D. E. Knuth (private communication, 21
August 2007).

Variant argument. Draw n dots in a row. Place a double bar before the first dot or
in one of the n — 1 spaces between the dots. Choose some subset of the remaining
spaces between dots and place a bar in each of these spaces. The double bar and
the bars partition the dots into compartments that define a composition « of n as in
equation (1.19). The compartment to the right of the double bar specifies one of the
parts of a. Hence the total number f(n) of parts of all compositions of n is equal to
the number of ways of choosing the double bar and bars as described above. As an
example, the figure

corresponds to the composition (2, 1,2, 3) of 8 with the third part selected.

If we place the double bar before the first dot, then there are 27! choices for the
remaining bars. Otherwise there are n — 1 choices for the double bar and then 272
choices for the remaining bars. Hence f(n) =2""' 4+ (n —1)2"2? = (n + 1)2" 2.

Draw a line of n dots and circle k& consecutive dots. Put a vertical bar to the left and
right of the circled dots. For example, n =9, k = 3: see Figure 1.30.

Case 1. The circled dots don’t include an endpoint. The above procedure can then be
done in n — k — 1 ways. Then there remain n — k — 2 spaces between uncircled dots.
Insert at most one vertical bar in each space in 2"#~2 ways. This defines a composition
with one part equal to k circled. For example, if we insert bars as in Figure 1.31 then
we obtain 3+ 1+ 1+ @+ 1.

Case 2. The circled dots include an endpoint. This happens in two ways, and now
there are n — k — 1 spaces into which bars can be inserted in 2" %=1 ways.

Hence we get the answer

(n—k—1)2"* 2429k = (n — k4 3)2" k2
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Figure 1.31: Continuation of the solution to Exercise 1.24

25. It is clear that

. qx ta? \’
S sonr e =3 (P2 )

n,r,s 7>0

The coefficient of ¢"t* is given by

r42s -1
r+s x _(Tts Z m-+r—+s 2T
r ) (1 —a?)rts ro) = r+s—1

and the proof follows.

r+k—1
r+s—1
Multiply r of these parts by 2 in (rjs) ways. Multiply each of the other parts by 2

and subtract 1. We obtain each composition of n with r odd parts and s even parts
exactly once, and the proof follows.

For a bijective proof, choose a composition of  + k into r + s parts in ( ) ways.

27. Answer: (n+ 3)2""2 — 1.

30. Let b = a; — i1+ 1. Then 1 < b < by < --- < b, < n—%k+1 and each b; is

odd. Conversely, given the b;’s we can uniquely recover the a;’s. Hence setting m =
|(n — k4 2)/2], the number of odd integers in the set [n— k1], we obtain the answer
(7)) = (") = (7). where g = [(n+k)/2].
This exercise is called Terquem’s problem. For some generalizations, see M. Abramson
and W. O. J. Moser, J. Combinatorial Theory 7 (1969), 171-180; S. M. Tanny, Canad.
Math. Bull. 18 (1975), 769-770; J. de Biasi, C. R. Acad. Sci. Paris Sér. A-B 285
(1977), A89-A92; and I. P. Goulden and D. M. Jackson, Discrete Math. 22 (1978),
99-104. A further generalization is given by Exercise 1.10.

w0 et (1) ()

(b) (e — Vs = 1! (” - 1)

rz—1
0500

32. The key feature of this problem is that each element of S can be treated independently,
as in Example 1.1.16.

(a) For each z € S, we may specify the least ¢ (if any) for which = € T;. There are
k + 1 choices for each x, so (k+ 1)" ways in all.
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Figure 1.32: An illustration of the solution to Exercise 1.35(f)

(b) Now each z can be in at most one T}, so again there are k + 1 choices for x
and (k + 1)™ choices in all. (In fact, there is a very simple bijection between the
sequences enumerated by (a) and (b).)

(c) Now each x can be in any subset of the T;’s except the subset (). Hence there are
2% — 1 choices for each z and (2¥ — 1)" ways in all.

34. Let by = a; — (i —1)j toget 1 < b < --- < by <n—(k—1)j, so the number of
sequences is (( ”_(l};—l)j ))

35. (a) Obtain a recurrence by considering those subsets S which do or do not contain
n. Answer: F,o.

) Consider whether the first part is 2 or at least 3. Answer: F,_;.
(c) Consider whether the first part is 1 or 2. Answer: F, .
(d) Consider whether the first part is 1 or at least 3. Answer: F,.
) Consider whether ¢ = 0 or 1. Answer: F, .
)

The following proof, as well as the proofs of (g) and (h), are due to Ira Gessel.
Gessel (private communication, 2 May 2007) has developed a systematic approach
to “Fibonacci composition formulas” based on factorization in free monoids as
discussed in Section 4.7. The sum ) ajas---a) counts the number of ways of
inserting at most one vertical bar in each of the n — 1 spaces separating a line of
n dots, and then circling one dot in each compartment. An example is shown in
Figure 1.32. Replace each bar by a 1, each uncircled dot by a 2, and each circled
dot by a 1. For example, Figure 1.32 becomes

212211211111211122111212.

We get a composition of 2n — 1 into 1’s and 2’s, and this correspondence is
invertible. Hence by (c) the answer is Fy,.

A simple generating function proof can also be given using the identity

z/(1— =)
222 3% 4. ) =
Z(ac—i— T+ 37+ ) 1= 2/(1— )
k>1
B T
1 —-3x+a?
- R
n>1
(g) Given a composition (aq,...,ax) of n, replace each part a; with a composition

a; of 2a; into parts 1 and 2, such that a; begins with a 1, ends in a 2, and for
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all j the 2j5-th 1 in « is followed by a 1, unless this 2j-th 1 is the last 1 in «.
For instance, the part a; = 4 can be replaced by any of the seven compositions
1111112, 111122, 111212, 11222, 121112, 12122, 12212. It can be checked that (i)
every composition of 2n into parts 1 and 2, beginning with 1 and ending with 2,
occurs exactly once by applying this procedure to all compositions of n, and (ii)
the number of compositions that can replace a; is 2% ! — 1. It follows from part
(c) that the answer is Fy, 5. A generating function proof takes the form

2?/(1 —z)(1 — 2x)
1—22/(1—2)(1 —22)

D (@ + 328+ Tt )F =

k>1
1 —-3x+a?
= ZF%fziﬂ
n>2
Given a composition (aq,...,ax) of n, replace each 1 with either 2 or 1,1, and
replace each j > 1 with 1,2,...,2 1, where there are j —1 2’s. Every composition

of 2n with parts 1 and 2 is obtained in this way, so from part (¢) we obtain the
answer Fy, .. A generating function proof takes the form

1 1
1 -2 —a?—a3 —at—--- l—z—- %

Answer: 2F3, 4 (with F,, defined for all n € Z using the recurrence F,, = F,,_; +
F,_2), a consequence of the expansion

L =1- 22F3n_4$n.

T T
L+ 1-5z + 11—z n>1

A bijective proof is not known. This result is due to D. E. Knuth (private com-
munication, 21 August 2007).

Answer: Fy, . Let f(n) be the number in question. Now
Pn = Pn,1 +Pnflxn+ann+l' (1153)

Each term of the above sum has f(n — 1) terms when expanded as a polynomial
in the z;’s. Since

Pnfl + Pnflxn = n72(1 + Tp_1 + xn) + Pan(l + Tp_1 + xn)xn>

the only overlap between the three terms in equation (1.153) comes from P, oz,
which has f(n—2) terms. Hence f(n) = 3f(n—1)— f(n—2), from which the proof
follows easily. This problem was derived from a conjecture of T. Amdeberhan
(November 2007). For a variant, see Exercise 4.20.
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36.

37.

39.

41.

Let f.(k) denote the answer. For each ¢ € [n] we can decide which 7} contains ¢
independently of the other ¢/ € [n]. Hence f,(k) = fx(1)". But computing fr(1) is
equivalent to Exercise 1.35(e). Hence f, (k) = F[\,.

While it is not difficult to show that the right-hand side of equation (1.122) satisfies the
Fibonacci recurrence and initial conditions, we prefer a more combinatorial proof. For
instance, Exercise 1.34 in the case 5 = 2 shows that (";k) is the number of k-subsets
of [n — 1] containing no two consecutive integers. Now use Exercise 1.35(a).

First solution (sketch). Let a,,, be the number of ordered pairs (S,7") with S C [m]
and T C [n] satisfying s > #7T for all s € S and t > #S for all t € T. An easy
bijection gives

Umn = Qm—1,n + Am—1,n—1-

Using a;; = aj; we get

Apn = an,n—1+an—1,n—1
App-1 = anfl,nfl_‘_&nfl,nf%
from which it follows (using the initial conditions ago = 1 and a; o = 2) that a,, =
Fy, 42 and Anpn—1 = Fongi.

Second solution (sketch). It is easy to see that

m—73\[(n—1
o 0!
i,j>0 ! J

i+j<min{m,n}

It can then be proved bijectively that > ; j>o (";] ) (”;Z) is the number of compositions
i+j<n
of 2n + 1 with parts 1 and 2. The proof follows from Exercise 1.35(c).

This problem (for the case n = 10) appeared as Problem A-6 on the Fifty-First William
Lowell Putnam Mathematical Competition (1990). The two solutions above appear in
K. S. Kedlaya, B. Poonen, and R. Vakil, The William Lowell Putnam Mathematical
Competition, Mathematical Association of America, Washington, DC, 2002 (pp. 123-
124).

(a) Perhaps the most straightforward solution is to let #S = k, giving

) = == (})

k=0
" /n—k
= |
n.z( 5 )
k=0

Now use Exercise 1.37. It is considerably trickier to give a direct bijective proof.
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(b) We now have

n

on) = 1<n—k>k<n—k—1>!(2)

k=0
n—1

n n—=k

= — 1! )

(n );n—k< k )

There are a number ways to show that L, = Z;(l) ﬁ(”;k), and the proof

follows. This result was suggested by D. E. Knuth (private communication, 21
August 2007) upon seeing (a). A simple bijective proof was suggested by R. X. Du
(private communication, 27 March 2011); namely, choose an n-cycle C'in (n —1)!
ways, and regard the elements of C' as n points on a circle. We can choose S to be
any subset of the points, no two consecutive. By Exercise 1.40 this can be done
in L, ways, so the proof follows.

42. Let [],5,(1 — ™) = >, oaxa®. Split the interval [F,, F,4; — 1] into the three
subintervals [F,,, F},+ F,,_3—2|, [F,+ F,_3—1, F,+ F,_o—1], and [F,,+ F},_2, Fj, 11 —1].
The following results can be shown by induction:

n—1

e The numbers ar,, ap,11,...,aF, +£,_, 2 are equal to the numbers (—1)" " tap, . o,
(—1)"tap, . 3,...,(=1)""tag in that order.

e The numbers ap,+r, s-1, GF,+F, s,---,0F,+F,_,—1 are equal to 0.

e The numbers ag, 45, o, F,+F,_ot1,---,0F,.,—1 are equal to the numbers ag, a;,

..., ap,_,—1 in that order.

From these results the proof follows by induction.

N. Robbins, Fibonacci Quart. 34.4 (1996), 306-313, was the first to prove that the
coefficients are 0, £1. The above explicit recursive description of the coefficents is due
to F. Ardila, Fibonacci Quart. 42 (2004), 202-204. Another elegant proof was later
given by Y. Zhao, The coefficients of a truncated Fibonacci series, Fib. Quarterly, to
appear, and a significant generalization by H. Diao, arXiv:0802.1293.

43. Answer:
S(n,1)=1  ¢(n,1)=(n—1)!
Sn,2)=2""1-1 ¢n,2)=n-1H,
S(n,n)=1 ¢(n,n)=1
S(n,n—1)= (Z) cnyn—1)= <Z)

stn-2=(3)+3(})  etmn-2=2(;)+3(}).

An elegant method for computing c¢(n,2) is the following. Choose a permutation
ajag---a, € &, with a; = 1 in (n — 1)! ways. Choose 1 < j < n — 1 and let
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46.

w be the permutation whose disjoint cycle form is (ai, as, ..., a;)(aj41,aj10, ..., an).
We obtain exactly j times every permutation with two cycles such that the cycle not
containing 1 has length n — j. Hence ¢(n,2) = (n — 1)!H,,_;.

As a further example, let us compute S(n,n — 2). The block sizes of a partition of [n]
with n — 2 blocks are either 3 (once) and 1 (n — 3 times), or 2 (twice) and 1 (n —4
times). In the first case there are (g) ways of choosing the 3-element block. In the
second case there are (Z) ways of choosing the union of the two 2-element blocks, and
then three ways to choose the blocks themselves. Hence S(n,n — 2) = (g) + 3(2) as
claimed.

Define a;11 + a;12 + - - - + ax to be the least r such that when 1,2, ... r are removed
from 7, the resulting partition has ¢ blocks.

(a) We have by equation (1.94c) that

I‘k

(1—2)(1 —2x)---(1 —kx)

Z S(n,k)z" =
n>0

ZL‘k

(1 — 2)l%/21 (mod 2)

(b) The first of several persons to find a combinatorial proof were K. L. Collins and
M. Hovey, Combinatorica 31 (1991), 31-32. For further congruence properties of
S(n, k), see L. Carlitz, Acta Arith. 10 (1965), 409-422.

(c) Taking equation (1.28) modulo 2 gives

n

> cln, )tk =21 (¢ + 1)1/ (mod 2).

k=0

= () (12

(a) This remarkable result is due to J. N. Darroch, Ann. Math. Stat. 35 (1964),
1317-1321. For a nice exposition including much related work, see J. Pitman, J.
Combinatorial Theory, Ser. A 77 (1997), 279-303.

(b) Let P(z) = > ,_,c(n, k)z*. Tt is routine to compute from Proposition 1.3.7 that

Hence

Pl(l)—1+1+1+ .
P(1) 2 3 n’

and the proof follows from (a). For further information on the distribution of the
number of cycles of a permutations w € &,,, see Pitman, #bid., pp. 289-290.

(c) This result is due to E. R. Canfield and C. Pomerance, Integers 2 (2002), Al
(electronic); Corrigendum 5(1) (2005), A9, improving earlier expressions for K,
due to Canfield and Menon (independently). Previously it was shown by L. H.
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50.

Harper, Ann. Math. Stat. 38 (1966), 410414 (Lemma 1), that the polynomial
>pS(n, k)x* has real zeros. As Pitman points out in his paper cited above
(page 291), the result (a) of Darroch reduces the problem of estimating K, to
estimating the expected number of blocks of a random partition of [n]. For further

discussion, see D. E. Knuth, The Art of Computer Programming, vol. 4, Fascicle 3,
Addison-Wesley, Upper Saddle River, NJ, 2005 (Exercises 7.2.1.5-62 and 7.2.1.5—

63(e)).

Let Fy(z) = Aq4(z)/(1 — x)®!. Differentiate equation (1.37) and multiply by =,
yielding

d
Fi(z) = x%Fd(x),

ete.

The proof is by induction on d. Since A;(z) = z, the assertion is true for d = 1.
Assume the assertion for d. By Rolle’s theorem, the function f(z) = -L(1 —
1)1 A4(z) has d — 1 simple negative real zeros that interlace the zeros of A4(z).
Since lim,_,_ f(x) = 0, there is an additional zero of f(x) less than the smallest
zero of Ay(z). Using equation (1.38), we have accounted for d strictly negative
simple zeros of Ay.1(x), and = = 0 is an additional zero. The proof follows by
induction. This result can be extended to permutations of a multiset; see R.
Simion, J. Combinatorial Theory, Ser. A 36 (1984), 15-22.

Let D = d/dz. By Rolle’s theorem, Q(x) = D*"'P(x) has real zeros, and thus
also R(x) = 2" 1Q(1/z). Again by Rolle’s theorem, D"~"~! R(z) has real zeros.
But one computes easily that

A |
Dn—l—lR(Q?) - % (bi—1$2 + 2bjx + bi+1) :

In order for this quadratic polynomial to have real zeros, we must have b7 >
bi_1b;11. This result goes back to I. Newton; see e.g. G. H. Hardy, J. E. Littlewood,
and G. Polya, Inequalities, second ed., Cambridge University Press, Cambridge,
England, 1952 (page 52).

Let us say that a polynomial P(z) = Y " a;x" with coefficients satisfying a; =
am—; has center m/2. (We don’t assume that deg P(z) = m, i.e., we may have
ay = 0.) Thus P(x) has center m/2 if and only if P(z) = 2™ P(1/z). If also
Q(z) = 2"Q(1/x) (so Q(z) has center n/2), then P(z)Q(x) = 2™ P(1/x)Q(1/x).
Thus P(z)Q(x) has symmetric coefficients (with center (m+n)/2). It is also easy
to show this simply by computing the coefficients of P(z)Q(x) in terms of the
coefficients of P(x) and Q(z).

Now assume that P(xz) = Y ;" a;z* has center m/2 and has unimodal coefficients,
and similarly for Q(z) = Y©  bia’. Let Aj(z) = 27 + 27 4+ - 4 2™, a
polynomial with center m/2, and similarly B;(z) = 2/ + 27T + -+« + 2", Tt is
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easy to see that

[m/2]
P(z) = Z (a; — a;_1)Ai(z)
L;2J
Qz) = Z(bj—bj—l)Bj(f)-
Thus
lm/2] [n/2]
Z Z —a;_1)(bj — bj_1) Ai(z) By ().

It is easy to check by explicit computation that A;(x)B;(x) has unimodal coeffi-
cients and center (m +n)/2. Since P(z) and Q(x) have unimodal coefficients, we
have

(a;i — a;-1)(bj — bj—1) > 0.

Hence we have expressed P(z)Q(z) as a nonnegative linear combination of uni-
modal polynomials, all with the same center (m +n)/2. It follows that P(z)Q(x)
is also unimodal (with center (m + n)/2).

Perhaps the most elegant proof (and one suggesting some nice generalizations)
uses linear algebra. Write P(z) = Y " a2’ and Q(x) = > biz’. Set a; = 0 if
i ¢ [0,m], and similarly for b;. If X and Y are r x r real matrices all of whose
k x k minors are nonnegative, then the Cauchy-Binet theorem shows that the
same is true for the matrix XY. Moreover, it is easily seen that if ¢g, ¢y, ..., ¢, is
nonnegative and log-concave with no internal zeros, then c;c; > ¢;_sc;4s whenever
i <jands > 0. Now take k = 2, X = [a;_J;;L, and Y = [b; ]/, and the
proof follows.

The symmetry of the two polynomials is easy to see in various ways. The poly-
nomial ) o 295 is the Eulerian polynomial A, (x) by equation (1.36); now
use (a), (b) and Exercise 1.49. The unimodality of the polynomial Y-, & @™®)
follows from (c) and the product formula (1.30). NOTE. A combinatorial proof

of the unimodality of ) o @) is implicit in the proof we have given, while

a combinatorial proof of the log-concavity and unimodality of A, (x) is due to V.
Gasharov, J. Combinatorial Theory, Ser. A 82 (1998), 134-146 (§54-5).

This result was proved by F. De Mari and M. Shayman, Acta Appl. Math. 12
(1988), 213-235, using the hard Lefschetz theorem from algebraic geometry. It
would be interesting to give a more elementary proof. A related result was proved
by M. Béna, Generalized descents and normality, arXiv:0709.4483.

Let n =4 and S = {(1,2),(2,3),(3,4),(1,4)}. Then
Ps(z) = 2* + 82 + 62> + 8z + 1.

Note that part (f) asserts that Pg(z) is unimodal for S = {(,5) : 1 <i < j <
n, j <i+ p}. It seems likely (though this has not been checked) that the proof
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96.

of De Mari and Shayman can be extended to the case S = {(i,j) : 1 <i<j <
n, j < i+ p;}, where p1,...,p,_1 are any nonnegative integers. Can anything
further be said about those S for which Pg(z) is unimodal?

For further information on the fascinating topic of unimodal and log-concave
sequences, see R. Stanley, in Graph Theory and Its Applications: East and West,
Ann. New York Acad. Sci., vol. 576, 1989, pp. 500-535, and the sequel by F.
Brenti, in Contemp. Math. 178, Amer. Math. Soc., Providence, RI, 1994, pp. 71—
89. For the unimodality of the ¢-binomial coefficient (:) and related results, see
Exercise 7.75.

This result goes back to P. S. de Laplace. The following proof is due to R. Stanley, in
Higher Combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976), M. Aigner,
ed., Reidel, Dordrecht/Boston, 1977, p. 49. Given w € &, let S,, denote the region
(a simplex) in R"™ defined by

0 < Tuwa) < Tue) <0 < Tpm) < 1

Define S, = U, Sw, where w ranges over all permutations in &,, with exactly k& — 1
descents. It is easy to see that vol(S,,) = 1/n!, so vol(S,x) = A(n, k)/n!. Define a map

©: Spk — Rk by (21, ..., 2,) = (Y1, -, Yn), Where

Y = Tip1 — 2, if 2y <y
' L+ @i — g, if 2 > 2440,

Here we set z,,1 = 1, and we leave ¢ undefined on the set of measure zero consisting
of points where some z;_; = x;. One can check that ¢ is measure-preserving and a
bijection up to a set of measure zero. Hence vol(R,x) = vol(S,.x) = A(n, k)/n!. For
some additional proofs, see W. Meyer and R. von Randow, Math. Annalen 193 (1971),
315-321, and S. M. Tanny, Duke Math. J. 40 (1973), 717-722, and J. W. Pitman, J.
Combinatorial Theory, Ser. A T7 (1997), 279-303 (pp. 295-296). For a refinement and
further references, see R. Ehrenborg, M. A. Readdy, and E. Steingrimsson, J. Combi-
natorial Theory, Ser. A 81 (1998), 121-126. For some related results, see Exercise 4.62.

This amusing result is due to J. Holte, Amer. Math. Monthly 104 (1997), 138-149.
Holte derived this result in the setting of Markov chains and obtained many additional
results about the combinatorics of carrying. Further work on this subject is due to P.
Diaconis and J. Fulman, Amer. Math. Monthly 116 (2009), 788-803, and Advances in
Applied Math. 43 (2009), 176-196, and A. Borodin, P. Diaconis, and J. Fulman, Bull
Amer. Math. Soc. 47 (2009), 639-670. There is a simple intuitive reason, which is
not difficult to make rigorous, why we get the Fulerian numbers. The probability that
we carry j in a certain column is roughly the probability that if ¢,..., 7, are random
integers in the interval [0,b — 1], then bj <y +---+ i, < b(j + 1). Now divide by b
and use Exercise 1.51.

Let ¢(w) denote the standardization (as defined in the second proof of Proposition 1.7.1)
of we Gy U M={1"™,2" ..} and #M = n, then {p(w) : w € Sy} consists
of all permutations v € &,, such that D(v™!) = {my,m; + may,---} N [n —1]. Tt is

179



o7.

58.

59.

60.

61.

easy to see that inv(w) = inv(v) (a special case of (1.71)) and maj(w) = maj(v). The
proof now follows from equation (1.43) and Theorem 1.4.8. This result is due to P.
A. MacMahon, stated explicitly on page 317 of his paper [1.54]. Some other classes
of permutations that are equidistributed with respect to inv and maj are given by A.
Bjorner and M. L. Wachs, J. Combinatorial Theory, Ser. A 52 (1989), 165-187, and
D. Foata and D. Zeilberger, J. Comput. Applied Math. 68 (1996), 79-101. See also the
solution to Exercise 5.49(e).

Condition (i) does not hold if and only if there are indices i < ¢’ and j < j’ such
that (i,) € D(w), (7, ) € D(w), (i, & D(w), (7,j) & D(w). Let w(i") = j and
w(i”) = j'. It is easy to check by drawing a diagram that i < " < i’ < " and
w(?") < w(i) < w(@”) < w(?'), so w is not 2143-avoiding. The steps are reversible, so
(i) and (iii) are equivalent. The equivalence of (i) and (ii) follows from the fact that the
jth term of I(w) (respectively, I(w™')) is the number of elements of D(w) in column
(respectively, row) j.

The permutations of this exercise are called vezillary. For further information on their
history and properties, see Exercise 7.22(d,e).

(b) The final step in obtaining this result was achieved by Z. Stankova, Furop. J.
Combin. 17 (1996), 501-517. For further information, see H. S. Wilf, Discrete Math.
257 (2002), 575-583, and M. Béna [1.11, §4.4].

This result is known as the Stanley- Wilf conjecture. It was shown by R. Arratia,
FElectronic J. Combinatorics 6(1) (1999), N1, that the conjecture follows from the
statement that there is a real number ¢ > 1 (depending on u) for which s,(n) < "
for all n > 1. This statement was given a surprisingly simple and elegant proof by A.
Marcus and G. Tardos, J. Combinatorial Theory, Ser. A 107 (2004), 153-160. A nice
exposition of this proof due to D. Zeilberger is available at

(www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/paramath.html).
Another nice exposition is given by M. Béna, [1.11, §4.5].

Answer. The equivalence classes consist of permutations whose inverses have a fixed
descent set. The number of equivalence classes is therefore 27!, the number of subsets
of [n —1].

While it is not difficult to prove this result directly, it also can be understood in a nice

way using the “Cartier-Foata theory” of Exercise 3.123.

(a) By the properties of the bijection w +— T'(w) discussed in Section 1.5, we have
that

F(z;a,b,c,d) = Z Z alr(T)be(T)’lc’"(T)dl(T)x—n,

n!
n>1 T

where T ranges over all increasing binary trees on the vertex set [n], with Ir(7)
vertices with two children, e(T') vertices that are endpoints, {(T') vertices with
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just a left child, and r(T') vertices with just a right child. By removing the root
from T', we obtain the equation

%(F —bz) = abF? + (c + d)F. (1.154)
Solving this equation (a Ricatti equation, with a well-known method of solution)
with the initial condition F'(0;a,b,c,d) = 0 yields equation (1.124).

This result is due to L. Carlitz and R. Scoville, J. reine angew. Math. 265 (1974),
110-137 (§7). Our presentation follows Exercise 3.3.46 of I. P. Goulden and D.
M. Jackson, Combinatorial Enumeration, John Wiley & Sons, New York, 1983;
reprinted by Dover, Mineola, NY, 2004. This latter reference contains more details
on solving the differential equation (1.154).

The generating function is given by 1+ ¢F(z;1,t,1,1), which can be simplified to
the right-hand side of equation (1.125).

The enumeration of permutations by number of peaks was first considered by
F. N. David and D. E. Barton, Combinatorial Chance, Hafner, New York, 1962
(pp. 162-164). They obtain a generating function for r(n, k) written in a different
form from equation (1.125).

We have that f(n) is the number of increasing binary trees on [n] such that no
vertex has only a left child except possibly the last vertex obtained by beginning
with the root and taking right children. Let g(n) be the number of increasing
binary trees on [n] such that no vertex has only a left child. Then

frn) = 3 (3) om0

k=0

n—1
s+ 1)+ 3 () ot - b,
k=0

with f(0) = ¢g(0) = 1. Setting F'(z) = >_ f(n)az™/n! and G(z) = > g(n)x"/n!, we
obtain I’ = FG and G + G' = G? 4+ 1. We can solve these differential equations
to obtain equation (1.126). Goulden and Jackson, op. cit. (Exercise 5.2.17, attri-
bution on page 306) attribute this result to P. Flajolet (private communication,
1982). The proof in Goulden and Jackson is based essentially on the Principle of
Inclusion-Exclusion, and is given here in Exercise 2.23.

First note that

P =303 d(w( )™, (1.155)
dn A

where A ranges over all aperiodic cycles of length d (i.e., cycles of length d that
are unequal to a proper cyclic shift of themselves). Now substitute (1.155) into
the expansion of log [T(1 — px) ™! and simplify.

This result is implicit in the work of R. C. Lyndon (see Lothaire [4.31, Thm. 5.1.5]).
See also N. G. de Bruijn and D. A. Klarner, SIAM J. Alg. Disc. Meth. 3 (1982),
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65.

70.

359-368. The result was stated explicitly by I. M. Gessel (unpublished). A
different theory of cycles of multiset permutations, due to D. Foata, has a nice ex-
position in §5.1.2 of D. E. Knuth [1.48]. In Foata’s theory, a multiset permutation
has the meaning of Section 1.7.

(c) Let z; = =z =2, and x; =0 if j > k.

(d) Let 0 = (a1,a9,...,aj;) be a multiset cycle of length jk, where k is the largest
integer for which the word u = ajas - - - a;; has the form v* for some word v of
length j (where v* denotes the concatenation of k copies of v). Let T'(0) = pl.
Given a multiset permutation m = o105 - - - 0, where each o; is a multiset cycle,
define I'(m) = I'(0y) -+ - T'(0,). It can then be verified combinatorially that the
number of multiset permutations 7 with fixed w(mw) and I'(r) is equal to the
coefficient of w(r) in ['(7), leading to the desired bijection.

Label the envelopes 1,2,...,n in decreasing order of size. Partially order an arrange-
ment of envelopes by inclusion, and adjoin a root labelled 0 at the top. We obtain
an (unordered) increasing tree on n + 1 vertices, and this correspondence is clearly in-
vertible. Hence by Proposition 1.5.5 there are n! arrangements in all, of which ¢(n, k)
have k envelopes not contained in another and A(n, k) have k envelopes not containing
another.

(a) Let u be a sequence being counted, with m; occurrences of i. Replace the 1’s
in u from right-to-left by 1,2,...,m;. Then replace the 2’s from right-to-left
by my +1,m; + 2,...,my + mo, etc. This procedure gives a bijection with &,,.
For instance, 13213312 corresponds to 38527614. Note that this bijection could
also be described as u — pyp(u), where p(v) is the reversal of v, and ¢ denotes
standardization (defined after the second proof of Proposition 1.7.1).

(b) The bijection in (a) has the property that max{a,...,a,} = des(p(w)~1)+1, etc.
This result was pointed out by D. E. Knuth (private communication, 21 August
2007) upon seeing (a).

It follows from a general theorem of Ramanujan (see D. Zagier, in J. H. Bruinier, G.
van der Geer, G. Harder and D. Zagier, eds., The 1-2-3 of Modular Forms, Springer-
Verlag, Berlin, 2008 (Prop. 16, p. 49)) that y satisfies a third order algebraic differential
equation, but it is considerably more complicated than the fourth degree equation
(1.127). This equation was first computed by M. Rubey in 2010. See W. Hebisch and
M. Rubey, J. Symbolic Computation, to appear.

(a) Draw a line L along the main diagonal of the Ferrers diagram of A\. Then q; is

the number of dots in the ith row to the right of L, while b; is the number of dots

in the ith column below 7. Figure 1.33 shows that A7 = < i g (1) ) This
bijection is due to F. G. Frobenius, Sitz. Preuss. Akad. Berlin (1900), 516-534,
and Gesammelte Abh. 3, Springer, Berlin, 1969, pp. 148-166, and the array A, is

called the Frobenius notation for \.
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72.

4 2 0
Figure 1.33: Frobenius notation
(b) Suppose that the path P consists of ¢; steps N, followed by ¢ steps E, then c3

steps S, etc., ending in ¢, steps. If £ = 2r then associate with P the partition A
whose Frobenius notation is

A, — Cr—1 Ce—3 Ce—5 IR
A Cg—l 0572—1 Cg,4—1 02—1 '
If £ =2r — 1 then associate with P the partition A whose Frobenius notation is
o C1 Coe3 e e 0
A)\_(Cg—l Croo—1 v c5—1 01—1)'

This sets up the desired bijection. For instance, the CSSAW of Figure 1.34(a)

corresponds to the partition A = (8,6,5,2,1) with A, = ( Z ;l ?) ), while

Figure 1.34(b) corresponds to A = (4,3,3,3,2,1,1) with A, = ( 2 ; . This

result is due to A. J. Guttman and M. D. Hirschhorn, J. Phys. A Math. Gen.
17 (1984), 3613-3614. They give a combinatorial proof equivalent to the above,
though not stated in terms of Frobenius notation. The connection with Frobenius
notation was given by G. E. Andrews, Electronic J. Combinatorics 18(2) (2011),
P6.

0
1

Answer. p(0) + p(1) + -+ + p(n). Given v F k < n, define A to be v with the part
n — k adjoined (in the correct position, so the parts remain weakly decreasing), and
define p to be v with n — k + 1 adjoined. This yields the desired bijection. For some
generalizations, see Theorem 3.21.11 and Exercise 3.150.

This exercise gives a glimpse of the fascinating subject of plane partitions, treated
extensively in Sections 7.20-7.22.

(a) Although equation (1.128) can be proved by ad hoc arguments, the “best” proof
is a bijection using the RSK algorithm, the special case ¢ =1, r =2 and ¢ — o0
of Theorem 7.20.1. A different generalization, but with a non-bijective proof, is
given by Theorem 7.21.7.
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75.
76.

@ (b)

Figure 1.34: Two concatenated spiral self-avoiding walks

(b) This result is due to B. Gordon, Proc. Amer. Math. Soc. 13 (1962), 869-873. A
bijective proof was given by C. Sudler, Jr., Proc. Amer. Math. Soc. 16 (1965),
161-168. This result can be generalized to a chain A\' C A2 C ... C A\¥ of any
fixed number k of strict partitions, and with a fixed bound on the largest part
of A\¥. See [7.146, Prop. 16.1] and G. E. Andrews, Pacific J. Math. 72 (1977),
283-291.

Consider for instance A = (5,4,4,2,1,1), and put dots in the squares of the diagram
of A as follows:

Count the total number of dots by rows and by columns to obtain the first identity.
The other formulas are analogous. There are many further variations.

Subtract one from each part of a partition of n into n—t parts to deduce that p,_(n) =
p(t) if and only if n > 2t.

The partition \;y > Ay > -+ > A\p corresponds to Ay +k—1> X+ k—2>--- > \p.

By the bijection illustrated in Figure 1.16, the coefficient of ¢*2™ in the left-hand side
of equation (1.129) is equal to the number of self-conjugate partitions A of n whose
rank is k. If we remove the Durfee square from the diagram of A, then we obtain two
partitions p and g’ (the conjugate of p) with largest part at most k. Hence we obtain
the right-hand side of (1.129).
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One can also prove this identity by making the substitution  — 2? and ¢ — g~ into
equation (1.83).

Given r € Z, let A\ be a partition satisfying A} +r > A; — 1. Define 1,()\) to be the
partition obtained by removing the first column of (the diagram of) A and adding a
new row at the top of length A} + 7. We need to give a bijection

UParn— 3m—1)/2) — U Par(n — m(3m — 1)/2).

me27 mel+27

One can check that we can define v, as follows: for A € |J Par(n —m(3m —1)/2),

let

me27

Y ama(N), if AL — N 4 3m > 0.

This proof appears in D. M. Bressoud and D. Zeilberger, Amer. Math. Monthly 92
(1985), 54-55. Our presentation follows Pak [1.62, §5.4.1].

¢—3m—1()\)7 if /\1 - /\,1 + 3m S 0
'Vn()‘) =

(a) Some related results are due to Euler and recounted in [1.55, §303].

(b) This problem was suggested by Dale Worley. For each 1 < i < n, each partition
A of n — 1, and each divisor d of 7, we wish to associate a d-element multiset M
of partitions of n so that every partition of n occurs exactly n times. Given 7, A,
and d, simply associate d copies of the partition obtained by adjoining i/d d’s to
A

(a) See [1.2, Cor. 8.6].

(b) Clearly ps(n) = 1 for all n, so the statement gg(n) = 1 is just the uniqueness of
the binary expansion of n.

For each partition A of n and each part j of A occurring at least k£ times, we need to
associate a partition p of n such that the total number of times a given p occurs is the
same as the number fi(u) of parts of u that are equal to k. To do this, simply change
k of the j’s in A to j k’s. For example, n = 6, k = 2:

A J I
111111 1 21111
21111 1 2211
3111 1 321
411 1 42
2211 2 2211
2211 1 222
2292 2 222
33 3 222

This result was discovered by R. Stanley in 1972 and submitted to the Problems and
Solutions section of Amer. Math. Monthly. It was rejected with the comment “A bit
on the easy side, and using only a standard argument.” Daniel I. A. Cohen learned
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81.

82.

83.

of this result and included the case k = 1 as Problem 75 of Chapter 3 in his book
Basic Techniques of Combinatorial Theory, Wiley, New York, 1978. For this reason
the case £k = 1 is sometimes called “Stanley’s theorem.” The generalization from
k = 1 to arbitrary k£ was independently found by Paul Elder in 1984, as reported by
R. Honsberger, Mathematical Gems III, Mathematical Association of America, 1985
(page 8). For this reason the general case is sometimes called “Elder’s theorem.” An
independent proof of the general case was given by M. S. Kirdar and T. H. R. Skyrme,
Canad. J. Math. 34 (1982), 194-195, based on generating functions. The bijection
given here also appears in A. H. M. Hoare, Amer. Math. Monthly 93 (1986), 475-476.
Another proof appears in L. Solomon, Istituto Nazionale di Alta Matematica, Symposia
Matematica, vol. 13 (1974), 453-466 (lemma on p. 461).

Given an ordered factorization n+1 = ajas - - - ax, set ag = 1 and let A be the partition
for which the part apa; - - - a;-1 occurs with multiplicity a; —1, 1 < 57 < k. For instance,
if 24 = 3 -2 -4 then we obtain the partition 666311 of 23. This procedure sets up a
bijection with perfect partitions of n, due to P. A. MacMahon, Messenger Math. 20
(1891), 103-119; reprinted in [1.3, pp. 771-787]. Note that if we have a perfect partition
A of n with largest part m, then there are exactly two ways to add a part p to A to
obtain another perfect partition, viz., p=mor p=n+ 1.

This result is due to S. Ramanujan in 1919, who obtained the remarkable identity

n I1 21(1 — 2%F)
;p@n +4)2" =5 Hkk>1(1 —

F. J. Dyson conjectured in 1944 that for each 0 < i < 4, exactly p(5n+4)/5 partitions
A of bn + 4 satisfy A\; — A] = i (modb5). This conjecture was proved by A. O. L.
Atkin and H. P. F. Swinnerton-Dyer in 1953. Many generalizations of these results are
known. For an introduction to the subject of partition congruences, see Andrews [1.2,
Ch. 10]. For more recent work in this area, see K. Mahlburg, Proc. National Acad. Sci.
102 (2005), 15373-15376.

Some hints. Let A be the set of all partitions A such that \y;_1 — Ay; < 1 for all 7, and
let B be the set of all partitions A such that A\’ has only odd parts, each of which is
repeated an even number of times. Verify the following statements.

e There is bijection A x B — Par satistying w(p)w(v) = w(A) if (u,v) — A

e We have 1
> v =]1 1— b1

\EB j=1

e Let A € A. Then the pairs (Ag;—1, A2;) fall into two classes: (a,a) (which can occur
any number of times), and (a+1,a) (which can occur at most once). Deduce that

Zw()\) B H 1+ (1 + VI
N (1—albicddi)(1 — albici—1di—1)

AEA Jj=1
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88.

36.

89.

This elegant bijective proof is due to C. Boulet, Ramanujan J. 3 (2006), 315-320,
simplifying and generalizing previous work of G. E. Andrews, A. V. Sills, R. P. Stanley,
and A. J. Yee.

(a) These are the famous Rogers-Ramanujan identities, first proved by L. J. Rogers,
Proc. London Math. Soc. 25 (1894), 318-343, and later rediscovered by I. Schur,
Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse (1917), 302-321, S. Ra-
manujan (sometime before 1913, without proof), and others. For a non-combina-
torial proof, see e.g. [1.2, §7.3]. For an exposition and discussion of bijective
proofs, see Pak [1.62, §7 and pp. 62-63]. For an interesting recent bijective proof,
see C. Boulet and 1. Pak, J. Combinatorial Theory, Ser. A 113 (2006), 1019
1030. None of the known bijective proofs of the Rogers-Ramanujan identities can
be considered “simple,” comparable to the proof we have given of the pentagonal
number formula (Proposition 1.8.7). An interesting reason for the impossibility of
a nice proof was given by I. Pak, The nature of partition bijections II. Asymptotic
stability, preprint.

(b) These combinatorial interpretations of the Rogers-Ramanujan identities are due
to P. A. MacMahon, [1.55, §§276-280]. They can be proved similarly to the proof
of Proposition 1.8.6, based on the observation that (A, A2, ..., Ax) is a partition
of n with at most k parts if and only if (A + 2k — 1, Ay +2k —3,..., A\p + 1) is
a partition of n + k% whose parts differ by at least two and with exactly &k parts,
and similarly for (A; + 2k, Ao + 2k — 2,..., A\ + 2).

This is Schur’s partition theorem. See G. E. Andrews, in ¢-Series: Their Development
and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer
Algebra, American Mathematical Society, Providence, RI, 1986, pp. 53-58. For a
bijective proof, see D. M. Bressoud, Proc. Amer. Math. Soc. 79 (1980), 338-340. It is
surprising that Schur’s partition theorem is easier to prove bijectively than the Rogers-
Ramanujan identities (Exercise 1.88).

Let u = (1, .- ., px) be a partition of n into k odd parts less than 2k. We begin with
the lecture hall partition \° = (0,...,0) of length k& and successively insert the parts
f1, flo, - - ., f to build up a sequence of lecture hall partitions A}, A2, ..., A\¥ = \. The
rule for inserting p; := 2v; — 1 into X! is the following. Add 1 to the parts of A1
(allowing 0 as a part), beginning with the largest, until either (i) we have added 1 to
i parts of \;_q, or (ii) we encounter a value A5.', for which

1—1 i—1
A2c—1 )‘20

n—2c+2:n—20+1‘

In this case we add v; — ¢+ 1 to Ay,'; and v; — ¢ to A5, '. Tt can then be checked that
the map p +— A gives the desired bijection.

Ezample. Let k = 5 and p = (7,5,5,3,1
A

). We have %? = /\ZS = 0. Hence \' =
(4,3,0,0,0). We now have 2 # 22 but 2 = 2 — 0. Hence X2 = (5,4,2,1,0).
Continuing in this way we get \* = (8,6,2,1,0), M = (9,7,3,1,0), and A\ = \5 =

(10,7,3,1,0).
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90.

91.

Lecture hall partitions were introduced by M. Bousquet-Mélou and K. Eriksson, Ra-
manujan J. 1 (1997), 101-111, 165-185. They proved the result of this exercise as
well as many generalizations and refinements. In our sketch above we have followed
A. J. Yee, Ramanugjan J. 5 (2001), 247-262. Her bijection is a simplified description
of the bijection of Bousquet-Mélou and Eriksson. Much further work has been done in
this area; see e.g. S. Corteel and C. D. Savage, J. Combinatorial Theory, Ser. A 108
(2004), 217-245, for further information and references.

This curious result is connected with the theory of lecture hall partitions (Exer-
cise 1.89). It was originally proved by M. Bousquet-Mélou and K. Eriksson, Ramanujan
J. 1 (1997), 165-185 (end of Section 4). For a nice bijective proof of this result and
related results, see C. D. Savage and A. J. Yee, J. Combinatorial Theory, Ser. A 115
(2008), 967-996.

(a) This famous result is the Jacobi triple product identity. It was first stated by C.
F. Gauss (unpublished). The first published proof is due to C. G. J. Jacobi, Fun-
damenta nova theoriae functionum ellipticarum, Regiomonti, fratrum Borntrager,
1829; reprinted in Gesammelte Werke, vol. 1, Reimer, Berlin, 1881, pp. 49-239.
For a summary of its bijective proofs, see Pak [1.62, §6 and pp. 60-62].

(b) Substitute ¢*? for ¢ and —¢'/? for z, and simplify.

(c) For the first, set x = —1 and use equation (1.81). For the second, substitute
q'/? for both z and ¢. The right-hand side then has a factor equal to 2. Divide
both sides by 2 and again use equation (1.81). These identities are due to Gauss,
Zur Theorie der neuen Transscendenten II, Werke, Band III, Gottingen, 1866,
pp. 436-445 (§4). For a cancellation proof, see Exercise 2.31. For another proof
of equation (1.132) based on counting partitions of n with empty 2-core, see
Exercise 7.59(g).

(d) After making the suggested substitution we obtain

> (-ang@ = [T =) (1 —ag" (1 — a7,

neZ k>1

Rewrite the left-hand side as

1+ Z(—l)”(x_” + x”)q(g)

n>1

Now divide both sides by 1 — x and let # — 1. The left-hand side becomes

Y onso(=1)"(2n + 1)q(3). The right-hand side has a factor equal to 1 — z, so
deleting this factor and then setting x = 1 gives

1—o’J[a=d"H =g =] -d",

and the proof follows. This identity is due to C. G. J. Jacobi, Fundamenta Nova
Theoriae Functionum FEllipticarum, Regiomonti, Sumtibus fratrum Borntraeger,
Konigsberg, Germany, 1829 (page 90).
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93.

94.

95.

96.

97.

This identity is due to G. E. Andrews, Amer. Math. Monthly 94 (1987), 437-439. A
simple proof based on the Jacobi triple product identity (Exercise 1.91) is due to F.
G. Garvan, in Number Theory for the Millenium, II (Urbana, IL, 2000), A K Peters,
Natick, MA, 2002, pp. 75-92 (§1). This paper contains many further similar identities.
For a continuation, see F. G. Garvan and H. Yesilyurt, Int. J. Number Theory 3 (2007),
1-42. No bijective proofs are known of any of these identities.

This identity is due to F. G. Garvan, op. cit. This paper and the continuation by
Garvan and Yesilyurt, op. cit., contain many similar identities. No bijective proofs are
known of any of them.

The sequence ay, as, ... (sometimes prepended with ag = 0) is called Stern’s diatomic
sequence, after the paper M. A. Stern, J. Reine angew. Math. 55 (1858), 193-220. For
a survey of its remarkable properties, see S. Northshield, Amer. Math. Monthly 117
(2010), 581-598.

This remarkable result is due to D. Applegate, O. E. Pol, and N. J. A. Sloane, Con-
gressus Numerantium 206 (2010), 157-191.

(a) The function 7(n) is Ramanujan’s tau function. The function

At) = (2m)2 ) 7(n)e™™

n>1

plays an important role in the theory of modular forms; see e.g. T. Apostol, Modu-
lar Forms and Dirichlet Series in Number Theory 2nd, ed., Springer-Verlag, New
York, 1997 (p. 20) or J.-P. Serre, A Course in Arithmetic, Springer-Verlag, New
York, 1973 (§VIL.4). The multiplicativity property of this exercise was conjec-
tured by S. Ramanujan, Trans. Cambridge Phil. Soc. 22 (1916), 159-184, and
proved by L. J. Mordell, Proc. Cambridge Phil. Soc. 19 (1917), 117-124.

(b) This result was also conjectured by Ramanujan, op. cit., and proved by Mordell,
op. cit.

(c) This inequality was conjectured by Ramanujan, op. cit., and proved by P. R.
Deligne, Inst. Hautes Etudes Sci. Publ. Math. 43 (1974), 273-307; 52 (1980),
137-252. Deligne deduced Ramanujan’s conjecture (in a nontrivial way) from his
proof of the Riemann hypothesis for varieties over finite fields (the most difficult
part of the “Weil conjectures”). Deligne in fact proved a conjecture of Petersson
generalizing Ramanujan’s conjecture.

(d) This inequality was conjectured by D. H. Lehmer, Duke Math. J. 14 (1947), 429—
492. Tt is known to be true for (at least) n < 2.2 x 1016,

This result follows from the case p = 2 and p = () of Exercise 7.59(e). Greta Panova
(October 2007) observed that it can also be deduced from Exercise 1.83. Namely, first
prove by induction that the Ferrers diagram of A can be covered by edges if and only
if the Young diagram of A has the same number of white squares as black squares in
the usual chessboard coloring. Thus f(n) is the coefficient of ¢" in the right-hand side
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98.

99.

100.

103.

104.

of equation (1.130) after substituting @ = d = ¢/y and b = ¢ = y. Apply the Jacobi
triple product identity (Exercise 1.91) to the numerator and then set y = 0 to get

ano f(n)g" =1/ Hj21(1 - qj)Q'

Substitute na for j, —z for z, and ¢ for ¢ in the g-binomial theorem (equation (1.87)).
The proof follows straightforwardly from the identity

na—1

[Ta-cm=a-amye

m=0
For a host of generalizations, see V. Reiner, D. Stanton, and D. White, J. Combinatorial
Theory, Ser. A 108 (2004), 17-50.

It is an immediate consequence of the identity f(q) = ¢*™ %) f(1/q) that
1 n
(1) = ghn = 07(1) = 300 0} )

The Chu-Vandermonde identity follows from (1 + x)*™® = (1 + z)%(1 + z)®. Write
fo() =0 +2)(1+qz)-- (1+¢" 'z). The g-analogue of (14 z)*° = (1 +x)*(1+x)°
is fors(7) = fo(x) fu(¢®z). By the g-binomial theorem (equation (1.87)) we get

Zj§q<z> (43 - (kz;q(s) (Z)x) (Z (%) ) |

Equating coefficients of x™ yields

(") - kg”;q(";wm(s) () ()
() = B 6L

See Lemma 3.1 of K. Liu, C. H. F. Yan, and J. Zhou, Sci. China, Ser. A 45 (2002), 420—
431, for a proof based on the Hilbert scheme of n points in the plane. A combinatorial
proof of a continuous family of results including this exercise appears in N. Loehr and
G. S. Warrington, J. Combinatorial Theory, Ser. A 116 (2009), 379-403.

Let f(z) =142+ ---+ 2 and 4> = 1. It is not hard to see that

fn) = U+ G+ F1" + F (i)
_ i(mu(uz)uu—z’)n)

(110" 4 (—=1)k2%7Y), n =4k
(10" + (=1)k2%-1) n=4k+1

210", n=4k+2

(10™ + (—1)*+122%) " n = 4k + 3.

1
\ 4
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105. (a) Let P(z) = (14 z)(1 +a%) - (1 4+2") = ¥ ,soarz™. Let ¢ = €™/ (or any

(c)

primitive nth root of unity). Since for any integer k,

zn:ij [ n, ifnlk
| 0, otherwise,

J=1

we have
n

1 )
- iy — o
S P(E) =D am = ).
J=1 J
Now if ¢7 is a primitive dth root of unity (so d = n/(j,n)), then
o1 = (= ) — (B) o (- (B,
so putting x = —1 yields

2, d odd
0, d even.

L+ ¢+ ¢l ) =

Hence
on/ 4 dodd
0, d even.

P ={

Since there are ¢(d) values of j € [n] for which ¢/ is a primitive dth root of unity,
we obtain

fy =S PE) = |Z o(d)2"".
7=1 d|n
dodd

This result appears in R. Stanley and M. F. Yoder, JPL Technical Report 32-1526,
Deep Space Network 14 (1972), 117-123.

Suppose that n is an odd prime. Identify the beads of a necklace with Z/nZ in an
obvious way. Let S C Z/nZ be the set of black beads. If S # () and S # Z/nZ,
then there is a unique a € Z/nZ for which

Z(x—i—a) = 0.

z€eS

The set {z +a : © € S} represents the same necklace (up to cyclic symmetry),
so we have associated with each non-monochromatic necklace a subset of Z/nZ
whose elements sum to 0. Associate with the necklaces of all black beads and
all white beads the subsets S = () and and S = Z/nZ, and we have the desired
bijection.

A proof for any odd n avoiding roots of unity and generating functions was given
by Anders Kaseorg (private communication) in 2004, though the proof is not a
direct bijection.

See A. M. Odlyzko and R. Stanley, J. Number Theory 10 (1978), 263-272.
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108.

109.

110.

111.

We claim that f(n, k) is just the Stirling number S(n, k) of the second kind. We need
to associate with a sequence a; - - - a, being counted a partition of [n] into & blocks.
Simply put ¢ and j in the same block when a; = a;. This yields the desired bijection.
The sequences ay - - - a,, are called restricted growth functions or restricted growth strings

(sometimes with 1 subtracted from each term). For further information, see S. Milne,
Advances in Math. 26 (1977), 290-305.

(a) Given a partition 7 of [n — 1], let i, + 1,...,j for j > 4, be a maximal sequence
of two or more consecutive integers contained in a block of w. Remove j — 1,
7—3,7—5,... from this sequence and put them in a block with n. Doing this for
every such sequence 7, i 4+ 1, ..., yields the desired bijection. See H. Prodinger,
Fibonacci Quart. 19 (1981), 463-465, W. Y. C. Chen, E. Y. P. Deng, and R. R.
X. Du, Europ. J. Combin. 26 (2005), 237-243, and W. Yang, Discrete Math. 156
(1996), 247-252.

Example. If 7 = 1456-2378, then the bijection gives 146-38-2579.

The above proof easily extends (as done in papers cited above) to show the fol-
lowing result: let 0 < k < n, and let Bi(n) be the number of partitions of [n] so
that if 4 and j are in a block then |i — j| > k. Then Bg(n) = B(n — k).

(a) Given a partition = € II,, list the blocks in decreasing order of their smallest
element. Then list the elements of each block with the least element first, followed
by the remaining elements in decreasing order, obtaining a permutation w € G,,.
The map 7 +— w is bijection from II,, to the permutations being enumerated. For
instance, if 7 = 13569 — 248 — 7, then w = 728419653. To obtain 7 from w, break
w before each left-to-right minimum. This result, as well as those in (b) and (c),
is due to A. Claesson, Furop. J. Combinatorics 22 (2001), 961-971.

(b) Now write the blocks in decreasing order of their smallest element, with the ele-
ments of each block written in increasing order.

(c¢) Let w be the permutation corresponding to 7 as defined in (a). Then w also
satisfies the condition of (b) if and only if each block of 7 has size one or two.

Answer: the coefficient of 2" is B(n — 1), n > 1. See Proposition 2.6 of M. Klazar, J.
Combinatorial Theory, Ser. A 102 (2003), 63-87.

The number of ways to partition a k-element subset of [n] into j intervals is (I;j) ("‘f“ ),
since we can choose the interval sizes from left-to-right in (I;j) ways (the number of
compositions of k into j parts), and then choose the intervals themselves in (”_f“)
ways. Hence by the Principle of Inclusion-Exclusion (Theorem 2.1.1),

f(n) = B(n) + i)ilg(n —B(=1) (k - 1) (n y H)'

k=1 j=1 J-1 J

Ben() (1) =)

Jj=1

Now
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116.
117.

118.

Hence

fn) = §B<n—k><—1>k(”‘,’j“)

_ é B(k)(—1)"* (s i ]16)

(Is there some way to see this directly from Inclusion-Exclusion?) Now multiply by z™
and sum on n > 0. Since by the binomial theorem

2 (ff: : ;16) o = (1 -2)"",

n>0

we get

F(z) = Z B(k)x*(1 — z)F!

k>0

= (1-2)G(z(1 —x)).

See D. Chebikin, R. Ehrenborg, P. Pylyavskyy, and M. A. Readdy, J. Combinatorial
Theory, Ser. A 116 (2009), 247-264. The polynomials @, () are introduced in this
paper and are shown to have many cyclotomic factors, but many additional such factors
are not yet understood.

(b) See L. A. Shepp and S. P. Lloyd, Trans. Amer. Math. Soc. 121 (1966), 340-357.

Answer. ppr = 1/nfor 1 < k < n. To see this, consider the permutations v = by - - - b, 11
of [n] U {x} beginning with 1. Put the elements to the left of * in a cycle in the order
they occur. Regard the elements to the right of * as a word which defines a permutation
of its elements (say with respect to the elements listed in increasing order). This defines
a bijection between the permutations v and the permutations w € &,,. The length of
the cycle containing 1 is k if by, = *. Since * is equally likely to be any of by, ... b,11,
the proof follows.

Example. Let v = 1652%4873. Then w has the cycle (1,6, 5, 2). The remaining elements
are permuted as 4873 with respect to the increasing order 3478, i.e., w(3) = 4, w(4) = 8,
w(7) =7, and w(8) = 3. In cycle form, we have w = (1,6,5,2)(3,4,8)(7).

(b) We compute equivalently the probability that n,n —1,...,n — Ay + 1 are in the
same cycle C7, and n—A\q, ..., n—A; —Ay+1 are in the same cycle C; different from
C1, etc. Apply the fundamental bijection of Proposition 1.3.1 to w, obtaining a
permutation v = by ---b,. It is easy to check that w has the desired properties
if and only if the restriction u of v ton —k+1,n—k+2,....nhasn —k+ X\
appearing first, then the elements n —k+1,n—k+2,...,n—k+ A, — 1 in some
order, then n—k-+X,_1+ ), then the elements n—k+X;+1,...,n—k+X 1+ +1
in some order, then n —k+ \;_s + A\s_1 + As, etc. Hence of the k! permutations of
n—k+1,...,n there are (A\; —1)!--- (A, —1)! choices for u, and the proof follows.
For a variant of this problem when the distribution isn’t uniform, see R. X. Du
and R. Stanley, in preparation.
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120.

124.

(c) Let v be as in (b), and let v' = byb1bgby - - - b,. Exactly one of v and v’ is even.
Moreover, the condition in (b) on the restriction w is unaffected unless b; =
n—k+ X and by =n —k + ¢ for some 1 <i < Ay — 1. In this case v has exactly
¢ records, so w has exactly ¢ cycles. Hence w is even if and only if n — £ is even.
Moreover, the number of choices for u is

(n—2)!
(k —2)!

M= D)l (A — 1)L,

and the proof follows easily.

If a permutation w € Gy, has a cycle C' of length k£ > n, then it has exactly one such
cycle. There are (2]?) ways to choose the elements of C, then (k — 1)! ways to choose
C, and finally (2n — k)! ways to choose the remainder of w. Hence

p = 1L s~ (% (k — 1)!(2n — k)!
no= (2n)! k R
k=n+1
o 2n 1
- k
k=n+1
2n 1 n 1
=12 gt
k=1 k=1
~ 1—log(2n) + log(n)
= 1—log2,

and the proof follows. For an amusing application of this result, see P. M. Winkler,
Mathematical Mind-Benders, A K Peters, Wellesley, MA, 2007 (pp. 12, 18-20).

First solution. There are (7)(k—1)! k-cycles, and each occurs in (n— k)! permutations

w € G,,. Hence

ol

Ei(n) = (Z) (k= 1)(n — k)l = %

Second solution. By Exercise 1.117 (for which we gave a simple bijective proof) the
probability that some element i € [n] is in a k-cycle is 1/n. Since there are n elements
and each k-cycle contains k of them, the expected number of k-cycles is (1/n)(n/k) =
1/k.

(a) Let w = ajag -+ -any1 € 6,41 have k inversions, where n > k. There are fi(n)
such w with a1 =n+1. If a; =n + 1 with ¢ <n + 1, then we can interchange
a; and a;;1 to form a permutation w’ € &,,,1 with k — 1 inversions. Since n > k,
every w' = biby -+ - b1 € 6,41 with k — 1 inversions satisfies b; # n+ 1 and thus
can be obtained from a w € &,,41 with k inversions as above.

(b) Use induction on k.
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(c) By Corollary 1.3.13 we have

d e = 0+ +q+a) - (1+q+-+¢"

1-ql—-¢*---(1—-q")

(1—q)
SRR e REETE) oY (MBS
k>0
Hence if [[,5,(1 - ¢') = > is0 big?, then
fk‘(n) = Z(—l)jbk_j, n > k.

Moreover, it follows from the Pentagonal Number Formula (1.88) that

b (CD = i(GiE1)/2
o 0, otherwise.

See pp. 15-16 of D. E. Knuth [1.48].

127, (a) We can reason analogously to the proofs of Proposition 1.3.12 and Corollary 1.3.13.
Given w = wyws - - -w, € G, and 1 < i < n, define

:#{j]<7,, wj>wi}

and code’(w) = (ry,...,r,). For instance, code/(3265174) = (0,1,0,1,4,0,3).
Note that code’(w) is just a variant of code(w) and gives a bijection from &,
to sequences (7q,...,7,) satisfying 0 < r; < i — 1. Moreover, inv(w) = >,
and w; is a left-to-right maximum if and only if ; = 0. From these observations
equation (1.135) is immediate.

(b) Let I(w) = (a1, ..,ay), the inversion table of w. Then inv(w) = > a; (as noted
in the proof of Corollary 1.3.13), and i is the value of a record if and only if a; = 0.
From these observations equation (1.136) is immediate.

128. (a) First establish the recurrence
Z f n - j !7 n 2> 17

where we set ¢g(0) = 1. Then multiply by 2" and sum on n > 0. This result
appears in L. Comtet, Comptes Rend. Acad. Sci. Paris A 275 (1972), 569-572,
and is also considered by Comtet in his book Advanced Combinatorics, Reidel,
Dordrecht/Boston, 1974 (Exercise VII.16). For an extension of this exercise and
further references, see Exercise 2.13.
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129.

(b)

(b)

(I. M. Gessel) Now we have

n

nl=gn)+Y g(i— -3, n>1,

j=1
where we set g(0) = 1.
See D. Callan, J. Integer Sequences 7 (2004), article 04.1.8.

See M. H. Albert, M. D. Atkinson, and M. Klazar, J. Integer Sequences 6 (2003),
article 02.4.4. For a survey of simple permutations, see R. Brignall, in Permutation
Patterns (2010) (S. Linton, N. Ruskuc and V. Vatter, eds.), London Mathematical
Society Lecture Note Series, vol. 376, Cambridge University Press, pp. 41-65. For

some analogous results for set partitions, see M. Klazar, J. Combinatorial Theory,
Ser. A 102 2003), 63-87.

It is easy to see that if w is an indecomposable permutation in &,, with & in-
versions, then n < k + 1. (Moreover, there are exactly 287! indecomposable
permutations in &1 with & inversions.) Hence g,,(¢) has smallest term of degree
n — 1, and the proof follows.

Answer: we have the continued fraction

where
a, = (qL(n+1)/2J + qL(nH)/?JH + 4 gz

See A. de Medicis and X. G. Viennot, Advances in Appl. Math. 15 (1994), 262-304
(equations (1.24) and (1.25), and Theorem 5.3).

130. This result, stated in a less elegant form, is due to M. Abramson and W. O. J. Moser,

Ann. Math. Statist. 38 (1967), 1245-1254. The solution in the form of equation (1.138)
is due to L. W. Shapiro and A. B. Stephens, SIAM J. Discrete Math. 4 (1991), 275-280.

133. (a) We have 14,(2) = 377 A(n, k + 1)2%, where A(n,k + 1) permutations of [n]

have k descents. Thus we need to associate an ordered partition 7 of [n] with a
pair (w, S), where w € &,, and S C D(w). Given w = ajas - - - a,, draw a vertical
bar between a; and a;; if a; < a;4q or if a; > a;1 and i € S. The sets contained
between bars (including the beginning and end) are read from left to right and
define 7.

Example. Let w = 724531968 and S = {1,5}. Write 7|2]4|53|1]|96|8, so 7 =
(7,2,4,35,1,69,8).

134. See D. Foata and M.-P. Schiitzenberger, [1.26, Thm. 5.6]. For a vast generalization

of this kind of formula, see E. Nevo and T. K. Petersen. Discrete Computational
Geometry 45 (2011), 503-521.
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135.

136.

137.

139.

140.

(a) Put z = —1 in equation (1.40) and compare with (1.54).

(b) Let n = 2m + 1. Since des(w) = m if w is alternating, it suffices to show
combinatorially that Y (—1)9®) = (, where w ranges over all non-alternating
permutations in &,,. For a non-alternating permutation w € &,, let T'= T'(w) be
the increasing binary tree corresponding to w, as defined in Section 1.5. Since w
is not alternating, it follows from the table preceding Proposition 1.5.3 that T" has
a vertex j with only one successor. For definiteness choose the least such vertex
j, and let T” be the flip of T" at j, as defined in Subsection 1.6.2. Define v’ € &,,
by T'(w') = T'. Clearly w” = w, so we have defined an involution w +— w’ on
all non-alternating permutations in &,,. Since n is odd, it again follows from the
table preceding Proposition 1.5.3 that des(w) is the number of vertices of T'(w)
with a left successor. Hence (—1)¢(®) 4 (—1)des() = 0 and the proof follows. For
further aspects of this line of reasoning, see D. Foata and M.-P. Schiitzenberger,
[1.26, Thm. 5.6].

Answer: ¢ = ¢,_1 = 1, all other ¢; = 0.

The number of w € &, of type ¢ is 7(c) = n!l/1%¢!---n¢,!. Let n = ag + a;/.
It is not hard to see that 7(¢) is prime to ¢ if and only if, setting k = ¢;,, we have
¢1 > (ny — k)¢ where (T;;) is prime to ¢ It follows from Exercise 1.14 that the number of
binomial coefficients (")) prime to ¢ is [];5,(a; +1). Since (¢1 — (ng — k), ¢a, ..., ¢co—1)

can be the type of an arbitrary partition of ag, the proof follows.

This result first appeared in I. G. Macdonald, Symmetric Functions and Hall Polyno-
mials, Oxford University Press, 1979; second ed., 1995 (Ex. 10 of Ch. 1.2). The proof
given here appears on pp. 260-261 of R. Stanley, Bull. Amer. Math. Soc. 4 (1981),
254-265.

Let z = 3 ,~;9(n)z"/nl. Then 2’ = 14 32> + §z* 4+ --- = cosh(z). The solution to
this differential equation satisfying z(0) = 0 is

z(x) = log(secx + tan x).

Since 2/(z) = sec z, it follows easily that g(2n + 1) = FEy,. For further information and
a bijective proof, see Section 3 of A. G. Kuznetsov, I. M. Pak, and A. E. Postnikov,
[1.51].

Hint. Let fx(n) be the number of simsun permutations in &, with k£ descents. By
inserting n + 1 into a simsun permutation in &,,, establish the recurrence

fe(n+1) = (n = 2k +2) fo—1 + (k + 1) fe(n),

with the initial conditions fo(1) = 1, fy(n) = 0 for k > |[n/2]. Further details may
be found in S. Sundaram, Advances in Math. 104 (1994), 225-296 (§3) in the context
of symmetric functions. We can also give a bijective proof, as follows. Let £ be a
flip equivalence class of binary trees on the vertex set [n + 1]. There are E, ; such
flip equivalence classes. (Proposition 1.6.2) . There is a unique tree 7" € £ such that
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141.

(i) the path from the root 1 to n + 1 moves to the right, (ii) for every vertex not on
this path with two children, the largest child is on the left, and (iii) any vertex with
just one child has this child on the right. Let v’ € &,,4, satisfy 7" = T'(w’) (as in
Section 1.5). Then w' ends in n + 1; let w € &,, be w’ with n + 1 removed. It is not
hard to check that the map £ — w gives a bijection between flip equivalence classes
and simsun permutations. This proof is due to Maria Monks (October 2007).

Simsun permutations are named after Rodica Simion and Sheila Sundaram. They first
appear in the paper S. Sundaram, ibid. (p. 267). They are variants of the André per-
mutations of Foata and Schiitzenberger [1.27]. The terminology “simsun permutation”
is due to S. Sundaram (after they were originally called “Sundaram permutations” by
R. Stanley) in J. Algebraic Combin. 4 (1995), 69-92 (p. 75). For some further work
on simsun permutations, see G. Hetyei, Discrete Comput. Geom. 16 (1996), 259-275.

(a) Hint. Show that E, 1 is the number of alternating permutations of [n 4 2] with
first term k£ + 1 and second term unequal to k, and that £, ,,_j is the number of
alternating permutations of [n + 2] with first term k& + 1 and second term k.

The numbers E, ;, are called Entringer numbers, after R. C. Entringer, Nieuw.
Arch. Wisk. 14 (1966), 241-246. The triangular array (1.140) is due to L. Seidel,
Sitzungsber. Miinch. Akad. 4 (1877), 157-187 (who used the word “boustrophe-
don” to describe the triangle). It was rediscovered by A. Kempner, Téhoku Math.
J. 37 (1933), 347-362; R. C. Entringer, op. cit.; and V. I. Arnold, Duke Math. J.
63 (1991), 537-555. For further information and references, see J. Millar, N. J.
A. Sloane, and N. E. Young, J. Combinatorial Theory, Ser. A 76 (1996), 44-54.
A more recent reference is R. Ehrenborg and S. Mahajan, Ann. Comb. 2 (1998),
111-129 (§2). The boustrephedon triangle was generalized to permutations with
an arbitrary descent set by Viennot [1.75].

(b) Rotate the triangle and change the sign of E,,, when m +n = 1,2 (mod4) to
obtain the array

1 0 -1 0 3 0
—1 -1 1 3 )
0 2 4 —10
2 2 —14
0 —16
—16

This array is just a difference table, as defined in Section 1.9. By (a) the exponen-
tial generating function for the first row is sec(ix) = sech(z). By Exercise 1.154(c)

we get
m ,n

Z Z(_l)\_(2m+2n+3)/4J Eern’[m’n]x_'y_ — ¢ %sech(z + 1),

m! n!
m>0 n>0

If we convert all the negative coefficients to positive, it’s not hard to see that the
generating function becomes the right-hand side of equation (1.141), as claimed.
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The transformation into a difference table that we have used here appears in
Seidel, op. cit., and is treated systematically by D. Dumont, Sém. Lotharingien
de Combinatoire 5 (1981), B0O5c (electronic). Equation (1.141) appears explicitly
in R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, second
ed., Addison-Wesley, Reading, MA, 1994 (Exercise 6.75).

142. Tt is easy to verify that
Z fa(a)z™ = (secz)(cos(a — 1)z + sin ax),
n>0

and the proof follows. The motivation for this problem comes from the fact that for
0 <a<1, fu(a) is the volume of the convex polytope in R" given by

;. >20(1<i<n), x17<a, xi+x41<1(1<i<n-1).
For further information on the case a = 1, see Exercise 4.56(c).

143. (a) Combinatorial proof. Let 1 < i < n. The number of permutations w € &,, fixing i
is (n—1)!. Hence the total number of fixed points of all w € &,, isn-(n—1)! = nl.

Generating function proof. We have

f(n):= Z fix(w) = n!ditlZn

’wEGn

where Z,, is defined by (1.25). Hence by Theorem 1.3.3 we get
S s d bt 4
n)— = —ex x — — 4+
nlodn P\ TRy

n>0
( 22 2 )
= rexpl|lr+—+—5+--

ti=1

2 3
T

Y

1—=x
whence f(n) = nl.
Algebraic proof. Let GG be a finite group acting a set Y. By Burnside’s lemma
(Lemma 7.24.5), also called the Cauchy-Frobenius lemma, the average number of

fixed points of w € G is the number of orbits of the action. Since the “defining
representation” of &,, on [n] has one orbit, the proof follows.

(b) This result is a straightforward consequence of Proposition 6.1 of R. Stanley, J.
Combinatorial Theory, Ser. A 114 (2007), 436-460. Is there a combinatorial
proof?

144. (a) It is in fact not hard to see that

Pl —=¢¥h) 202n— 1N
gzt ) 20 =Dl oy ey
[[5 (1+¢) 3

Jj=1

where (2n — 1)l =1-3-5---(2n —1).
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145.

146.

147.

148.

Qh4 Bg6 Pg5 Bf8

NN NN

Kh5 Pe3 Nxh6 Pc4 Pk

Figure 1.35: The solution poset for Exercise 1.145

(b) See page 450 of R. Stanley, J. Combinatorial Theory, Ser. A 114 (2007), 436-460.

One solution is 1.Kh5 2.Pe3 3.Nxh6 4.Pc4 5.Pb3 6.Qh4 7.Bg6 8.Rgb 9.Bf8, followed
by Nf6 mate. Label these nine Black moves as 1,3,5,7,9,2,4,6,8 in the order given. All
solutions are a permutation of the nine moves above. If aq, as, ..., aq is a permutation
w of the labels of the moves, then they correspond to a solution if and only w™!
is reverse alternating. (In other words, Qh4 must occur after both Kh5 and Pe3,
Bg6 must occur after both Pe3 and Nxh6, etc.). In the terminology of Chapter 3, the
solutions correspond to the linear extensions of the “zigzag poset” shown in Figure 1.35.
Hence the number of solutions is Fg = 7936. For some properties of zigzag posets, see
Exercise 3.66.

The proof is a straightforward generalization of the proof we indicated of equation (1.59).
For a g-analogue, see Proposition 3.3.19.4 and the discussion following it.

A binary tree is an unlabelled min-max tree if and only if every non-endpoint vertex
has a nonempty left subtree. Let f,, be the number of such trees on n vertices. Then

fos1 =Y fufoks n =1
k=1

Setting y = ), - fnz" We obtain

It follows that
1+2—+v1— 21— 322
Yy = .
2x
Comparing with the definition of M,, in Exercise 6.27 shows that f, = M,,_1, n > 1.

It is easy to see from equations (1.33) and (1.63) that

U, (a+0ba)= Z a(S)us.

SCln—1]
The proof follows from the formula ¥(a,b) = ®(a + b, ab + ba) (Theorem 1.6.3).
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149.

151.

152.

153.

Hint. First establish the recurrence

20, = ) (7;) Dic(® — 24 = > (7;) O(c? — 2d)

0<i<n 0<i<n
n—i=2j—1 n—i=2j

n 2(c? —2d)*, n=2k—1
0, n=2k.

The generating function follows easily from multiplying this recurrence by z™/n! and
summing on n > 1.

This result is due to R. Stanley, Math. Z. 216 (1994), 483-499 (Corollary 1.4).

This elegant result is due to R. Ehrenborg, private communication (2007), based on the
Pyr operator of R. Ehrenborg and M. Readdy, J. Algebraic Combin. 8 (1998), 273-299.
Using concepts from Chapter 3, the present exercise has the following interpretation.
Let P be the poset whose elements are all cd-monomials. Define a to cover ( in P if
3 is obtained from « by removing a ¢ or changing a d to ¢. Then [u|®,(c,d) is equal
to the number of maximal chains of the interval [1, u|. The problem of counting such
chains was considered by F. Bergeron, M. Bousquet-Mélou, and S. Dulucq, Ann. Sci.
Math. Québec 19 (1995), 139-151. They showed that the total number of saturated
chains from 1 to rank n is E,; (the sum of the coefficients of ®,,4), though they did
not interpret the number of maximal chains in each interval. Further properties of the
poset P (and some generalizations) were given by B. Sagan and V. Vatter, J. Algebraic
Combin. 24 (2006), 117-136.

An analogous result where simsum permutations are replaced by “André permutations”
was earlier proved by M. Purtill [1.65]. The result for simsun permutations was stated
without proof by R. Stanley, Math. Zeitschrift, 216 (1994), 483-499 (p. 498), saying
that it can be proved by “similar reasoning” to Purtill’s. This assertion was further
explicated by G. Hetyei, Discrete Comput. Geom. 16 (1996), 259-275 (Remark on
p. 270).

(a) First solution. Put ¢ = 0 and d = 1 in equation (1.142) (so a — b = /—2) and
simplify. We obtain

D f(n)% = V2tan(z/V2).

n>0
The proof follows from Proposition 1.6.1.

Second solution. By equations (1.62) and (1.64) we have that 2" f(n) is the number
of complete (i.e., every internal vertex has two children) min-max trees with n
internal vertices. A complete min-max tree with n+ 1 internal vertices is obtained
by placing either 1 or 2n+ 3 at the root, forming a left complete min-max subtree
whose vertices are 2k + 1 elements from {2,3,...,2n + 2} (0 < k£ < n), and
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154.

(a)
(b)

forming a right complete min-max subtree with the remaining elements. Hence
setting g(n) = 2" f(n) we obtain the recurrence

g(n + 1) —QZ @ZID R)g(n — k).

It is then straightforward to show that g(n) = Es,y1. The result of this exercise
was first proved by Foata and Schiitzenberger [1.27, Propriété 2.6] in the context
of André polynomials.

R. Ehrenborg (private communication, 2007) points out that there is a similar
formula for the coefficient of any monomial in ®,, not containing two consecutive
c’s.

See R. L. Graham and N. Zang, Enumerating split-pair arrangements, preprint
dated January 10, 2007. For some further combinatorial interpretations of F;,, see
C. Poupard, European J. Combinatorics 10 (1989), 369-374; A. G. Kuznetsov,
[. M. Pak and A. E. Postnikov, Uspekhi Mat. Nauk 49 (1994), 79-110; and M.
P. Develin and S. P. Sullivant, Ann. Combinatorics 7 (2003), 441-466 (Corol-
lary 5.7).

Use equation (1.98).

By (a), e *F'(z) = F(x), from which F(z) = e¢“ 71, so f(n) is the Bell number
B(n). The difference table in question looks like

1 2 D 15 52 203
1 3 10 37 151
2 7 27 114
) 20 87
15 67
02

Note that the first row is identical to the leftmost diagonal below the first row.
This “Bell number triangle” is due to C. S. Peirce, Amer. J. Math. 3 (1880), 15-57
(p. 48). Tt gained some popularity by appearing in the “Mathematical Games”
column of M. Gardner [1.33, Fig. 13]. D. E. Knuth uses it to develop properties of
Bell numbers in The Art of Computer Programming, vol. 4, Fascicle 3, Addison-
Wesley, Upper Saddle River, NJ, 2005 (Section 7.2.1.5) and gives some further
properties in Exercises 7.2.1.5-26 to 7.2.1.5-31.

By Taylor’s theorem and (a) we have

ZZAnf(k‘)Z—T% = 7 (F(m) +F,($)t—|—F”($)% +)

n>0 k>0
= e "Fx+1).

This result appears in D. Dumont and X. G. Viennot, Ann. Discrete Math. 6
(1980), 77-87, but is undoubtedly much older.
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155. (a) For further information related to this problem and Exercise 1.154(a), see D.
Dumont, in Séminaire Lotharingien de Combinatoire, 5éme Session, Institut de
Recherche Mathématique Avancée, Strasbourg, 1982, pp. 59-78.

(b) One computes f(0) = 1, f(1) = 2, f(2) = 6, f(3) = 20,.... Hence guess
f(n)=(*") and F(z) = f(n)z" = (1 —4z)~'/2. By (a) we then have G(z) :=
> g(n)a™ = Z=F (1) = (1—2z—32?)""/2. To verify the guess, one must check

1+x
that -G ( -) = F(2?), which is routine.

(c) (suggested by L. W. Shapiro) One computes f(0) = 1, f(1) = 1, f(2) =
f(3) =5 f(4) = 14,.... Hence guess f(n) = —==(*") (the Catalan number C )

n+1

and F(z) =Y f(n)a" = &=(1 — (1 — 42)"/?). Then
:Zf(n+1)x”: %(F(x) —1) = 212(1—2:15— (1 — 42)"?),
so by (a),

1 1
F 1—2—(1—2x—32%)71?).
Zg 1—|—x <1+$) 2x2( 7= v=30)77)

To verify this guess, one must check that ; G (

1+$) F(x?), which is routine.

156. Answer: ¢, = prL”/pJ, where p ranges over all primes. Thus ¢y =1, ¢; = 1, ¢ = 2,
c3 =6, ¢y =12, ¢5 = 60, cg = 360, and so on. See E. G. Strauss, Proc. Amer. Math.
Soc. 2 (1951), 24-27. The sequence ¢, can also be defined by the recurrence ¢y = 1
and ¢,41 = Sp11Cn, Where s, is the largest squarefree divisor of n + 1.

157. Let z = y*, and equate coefficients of 2"~* on both sides of (A + 1)y’z = (yz)’. This
result goes back to Euler and is discussed (with many similar methods for manipulating
power series) in D. E. Knuth, The Art of Computer Programming, vol. 2, third ed.,
Addison-Wesley, Upper Saddle River, NJ, 1997 (Section 4.7). It was rediscovered by
H. W. Gould, Amer. Math. Monthly 81 (1974), 3—14.

158. Let log F'(z) = > -, g»2". Then

Zgnx _ZzaxJ_Z Zdad

n>1 i>1 j>1 n>1

= Z dada
din

so by the Md&bius inversion formula of elementary number theory,

= % > dgap(n/d). (1.156)

din

Hence

We have 1 +z = (1 — 2)"!(1 — 2?) (no need to use (1.156)).

If F(x) = e*/U=%) then g, = 1 for all n, so by (1.156) we have a, = ¢(n)/n, where
¢(n) is Euler’s totient function.

203



159. Answer: A(x) = /F(z)F(—z), B(x) = /F(x)/F(—z). This result is due to Marcelo
Aguiar (private communication, 2006) as part of his theory of combinatorial Hopf
algebras and noncommutative diagonalization.

160. (a) This formula is a standard result of hoary provenance which follows readily from

(b) Let ¢ = e?>™/*. According to (a) and Proposition 1.4.6 we have

1 k-1

fn k. g) =+ DT .. (1.157)

r=0

If n > k then at least one factor 1+ ¢+ - - -4 ¢™ of (n)! will vanish at ¢ = ¢" for
1 <r < k—1. Thus the only surviving term of the sum is (n)![,_, = n!, and the
proof follows.

(c) When n =k —1, we have (n)!| _. =0 unless r = 0 or (" is a primitive kth root
of unity. In the former case we get the term (k — 1)!/k. In the latter case write

¢ = (", Then
1 — 1_21_ k—1
(k:—l)!]ngz( 3 (16—)6)’65 &) (1.158)
Now
k—1 k
-1

Letting ¢ — 1 gives Hf;ll(l — &) = k. Hence from equation (1.158) we have

k

and the proof follows from setting n = k — 1 and j = 0 in equation (1.157).

(k=) =

NoTE. Let ®,(z) denote the (monic) nth cyclotomic polynomial, i.e., its zeros
are the primitive nth roots of unity. It can be shown that if n > 2 then

-+ (=1)"(n — 1)[z" " log ®ull +7)

f(n—1,n,0) = - o.(1)

Let us also note that ®,,(1) = p if n is the power of a prime p; otherwise ®,(1) = 1.

161. (b) We have




Hence

H(—x) _ 2 )
H(z) G(z)
= log H(—xz) —log H(x) = log (%x) - 1) .

If we divide the left-hand side by —2 then we obtain the odd part of log H(x).
Hence

log H(z) = —%log (%x) - 1) + Ey(x),

where Ej(x) is any even power series in z with F,(0) = 0. Thus E(z) := 1@
is an arbitrary even power series with F(0) = 1. Therefore we get the general

solution , o
H(z) = <@ - 1) E(x).

162. Using the formulas
tan(z + o) tanz + tany
n(x =
Y=z (tanz)(tany)’

+v1+tan?x — 1

tan
we have tan(tan™! f(z) + tan™! f(—z)) = g(z)

tanx/2 =

= tan"' f(x) = %tan1 g(x) + k(z), k(zx)=—k(—x)

= f(z) = tan (% tan"' g(x) + k()

tan 1 tan~! g(z) + tan k(x)
1 — (tan 3 tan~! g(x)) tan k()
£/ 1+g(z)2—1
- oo M) h(z) = —h(—2)

/1+g(x)2-1 ’
1— 7;2@ h(x)

Choosing the correct sign gives

—v/1+g(x)? =1+ g(x)h(z)

g(z) = (/1 + g(2)? = Dh(z)’

where h(x) is any even power series.

fx) =

163. (a) We have F(z,y) = f(f9(z)+ fY(y)). The concept of a formal group law goes
back to S. Bocher, Ann. Math. 47 (1946), 192-201.
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(b) See for instance A. Frohlich, Lecture Notes in Math., no. 74, Springer-Verlag,
Berlin/New York, 1968. For a combinatorial approach to formal groups via Hopf
algebras, see C. Lenart, Ph.D. thesis, University of Manchester, 1996, and C.
Lenart and N. Ray, Some applications of incidence Hopf algebras to formal group
theory and algebraic topology, preprint, University of Manchester, 1995.

(¢) f(z) =z, e" — 1, tanz, sin x, respectively.
(d) Let R(z) = (ze~®)Y. Thus

F(z,y) = (R(z)+ R(y))e "W

The proof follows from equation (5.128), which asserts that
—R(x) _ 1 _ _ n—lx_n
e =1 Z(n 1) ok

n>1

(e) Euler, Institutiones Calculi integralis, Ac. Sc. Petropoli, 1761, showed that

/1 —y* 4+ yv/1 — ot
1+ x2y? '

F(z,y) =

164. Note that setting z = 0 is useless. Instead write

rF(2,0) —y
F(z,y) = m

The denominator factors as z(y — 01(x))(y — 02(x)), where

1F V1 — 422
01(x), 0 () = qET

Now y — 01(z) ~ y — x as x,y — 0, so the factor 1/(y — 6,(z)) has no power series
expansion about (0,0). Since F'(z,y) has such an expansion, the factor y — ; (z) must
appear in the numerator. Hence zF(x,0) = 6,(z), yielding

1 —+/1— 422 "
Pao) = 2V e
X n>0
2
F(z,y) =

1 —2zy + 1 — 422

The solution to this exercise is a simple example of a technique known as the kernel
method. This method originated in Exercise 2.2.1-.4 of Knuth’s book The Art of
Computer Programming, vol. 1, Addison-Wesley, 1973, third edition, 1997. The present
exercise is the same as Knuth’s (after omitting some preliminary steps). See Section
1 of H. Prodinger, Sém. Lotharingien de Combinatoire 50 (2004), article B50f, for
further information and examples. An interesting variant of the kernel method applied
to queuing theory appears in Chapter 14 of L. Flatto, Poncelet’s Theorem, American
Math. Society, Providence, RI, 2009.
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165. Answer: the coefficient f(n) of F'(z) is the number of 1’s in the binary expansion of n.
166. Answer: F(x) = (1+2")"" =37, (%")xk”
167. Equation (1.143) is just the Taylor series expansion of F'(z +t) at t = 0.

168. (a) It is not hard to check that for general A(z) = z + asx? + azx® + - - -, we have
A(=A(=2)) = & + por® + psz’ + - - -,

where pa,_1 and pay, are polynomials in ag, as, ..., as,—1. (It’s easy to see that in
fact po = 0.) Moreover, the only term of py, 1 involving ao,_1 is 2as, 1. Hence
if A(—A(—z)) = z then once as,as,...,as, o are specified, we have that ag, ;
is uniquely determined. Thus we need to show that if as, ay, ..., as,_o are speci-
fied, thereby determining as,as, ..., as,_1, then py, = 0. For instance, equating
coefficients of z® in A(—A(—x)) = x gives a3 = a3. Then

3 3 2
Py = a5 — agag = ay — as(az) = 0.

We can reformulate the result we need to prove more algebraically. Given A(z) =
T+ agx® + -+, let B(x) = A(—A(—x)) = x + ppa® + - - -. Then we need to show
that ps, € I := (pa,...,Pan_1), the ideal of the polynomial ring Klas,as, .. .]
generated by py,...,Don_1.

Let AV (2) = 2 + o2 + azz® + -+ . Then
A(=z) = B(=ATV(2)) = AV (@) + pp ATV (@) — - -
Taking the coefficient of 22" gives
agy = —Qap, + pon, (mod 7). (1.159)
But also

~A(=z) = AY(B(x))
= B(z) +aB(x)*+---.

Taking coefficients of 2?" yields

2n

—ag, = pon + [77"] Z i (z + popx®™)" (mod I)
i—2

= pon + Qo (mod ). (1.160)

Equations (1.159) and (1.160) imply po, € I, as desired. This proof was obtained
in collaboration with Whan Ghang.

NoTE. It was shown by Ghang that as, 1 is a polynomial in as, ay, ..., as, with
integer coefficients.
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NOTE. An equivalent reformulation of the result of this item is the following. For
any A(z) = x + apa® + - -+ € K|[z]], either A(—A(—z)) = x or A(—A(—z)) — =
has odd degree. This result can be considerably generalized. For instance, if
C(z) = —x+cer*+ -+ and C(C(x)) = z, then (writing composition of functions
as juxtaposition) either ACAC(z) = x or ACAC(x) — = has odd degree. More
generally, if ¢ is a primitive kth root of unity and C(x) = (x + co2® + - - -, where
C* = 1z, then either (AC)¥(z) = z or (AC)¥(x) — x has degree d = 1 (mod k).
The possibility of such a generalization was suggested by F. Bergeron (private
communication, 2007).

(d) Use induction on n.

(f) Marcelo Aguiar (private communication, 2006) first obtained this result as part of
his theory of combinatorial Hopf algebras and noncommutative diagonalization.

(8) Answer: A(zx) =2x/(2—x) and D(z) = log 2£. This example is due to Aguiar.
(i) First show the following.
r \" " . 2’ 2’
[ Zan (1_x) = Z[E € ZCL]_i_lF:ZbJ_’_lF
n>1 n>by, 7>0 >0

(See Exercises 154(a) and 155(a).)
o Forany F(z) =2+ ) 5,a,2" and H(x) =z + ), ., b,a", we have

FEY(=F (=) = HY(=H(—x))
if and only if F'(z)/H (x) is odd.
(j) Answer. by, = (=1)""1Ey, 1, where Fy, ; is an Euler number.

169. There are many possible methods. A uniform way to do all three parts is to note that
for any power series F'(z) =} - a,z", we have

xDF(z) = Znanx",
n>0
where D = %. Hence
(xD +2)*F(z) = Z(n +2)%a, 2"

n>0

Letting F'(z) = 1/(1 — x),e”, and 1/4/1 — 4z yields after some routine computation
the three answers

4 — 3z + 22
2. n
n>0
Z(n—l—Q)Q% = (2?4 5z +4)e"
n>0 ’
2n 4 — 220 + 3622
2)? "= :
S22 (e = L

n>0
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170.

(a) Answer: y = (a+(8—a)z)/(1 —x —2?). The general theory of linear recurrence
relations with constant coefficients is developed in Sections 4.1-4.4.

(b) The recurrence yields y' = (zy)’ — 32y, y(0) = 1, from which we obtain

2

exp (g + “%)
A
For the significance of this generating function, see Example 5.2.9.
(c) We obtain 2y’ = y?, y(0) = 1, whence y = 1/(1 — 3z). Thus a,, = 27"nl.
(d) (sketch) Let Fy(x) = 3,5 ar(n)a™/nl, so A(z,t) = >, Fi(z)t*. The recur-

rence for ag(n) gives

B = 3 (Bale) + Fyr () Ey(a). (1.161)
Let A.(z) = 3(A(z,t) + Az, —t)) and A,(xz,t) = 3(A(z,t) — Az, —t)). From
1

2
equation (1.161) and some manipulations we obtain the system of differential

equations
A
04, _ tAA, + A (1.162)
x
A
04, =1A2 + A A,
Ox
To solve this system, note that
0A./0x é
0A,/0x A,

Hence 2 (A? — A2) = 0, so A2 — A2 is independent of z. Some experimentation
suggests that A2 — A2 = 1, which together with (1.162) yields

A
88 = tAN A2 -1+ A% -1
X

This equation can be routinely solved by separation of variables (though some care
must be taken to choose the correct branch of the resulting integral, including the
correct sign of /A2 —1). A similar argument yields A,, and we finally obtain
the following expression for A = A, + A,:

1—-1 2
Az, t) = -1
(%) 1—|—t<1—¥€px )

where p = /1 — t2. It can then be checked that this formula does indeed give the
correct solution to the original differential equations, justifying the assumption
that A2 — A2 = 1. For further details and motivation, see Section 2 of R. Stanley,
Michigan Math. J., to appear; arXiv:math/0511419.
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171.

172.

173.

While this problem can be solved by the “brute force” method of computing the coeffi-
cients on the right-hand side of equation (1.144), it is better to note that B'(x)— B(z) =
A'(z) and then solve this differential equation for B(x) with the initial condition
B(0) = ag. Alternatively, one could start with A(x):

Bx)=Q+1+1+-)A(x)=(1—-1)""A(z).

Multiplying by 1 — I and differentiating both sides results in the same differential
equation B'(z) — B(z) = A'(x). (It isn’t difficult to justify these formal manipulations
of the operator I.)

One method of proof is to first establish the three term recurrence
(n+1)P,i1(x) = 2n+ 1)axP,(z) — nP,_1(z)
and then use induction.

(a)

= (I+2)(1—a?)71/?

C T (e

n>0

x
(b) 2n
2
2 2\ (42 2 2 NI
HE2 =12 =3 (= 2n— 1)) ———
(© T =1 =) = o= D)y
IZn
) D (= 2°)(¢* —4%) - (* = (2n - 2)7)
; (2n)!
4n+2
2; )2 an' Similar results hold for cos(z)cosh(z), cos(x)sinh(z),
and sin(z) cosh(z).
6n+3
) 6 Z ”26”73)'. Similar results hold when any subset of the three sin’s is
n>0 )

replaced by cos. There seems to be no analogous result for four factors.

(g) %(;), where 2 = —1

To do (c), for instance, first observe that the coefficient of x?"*1/(2n + 1)! in
sin(tsin™! ) is a polynomial P,(t) of degree 2n + 1 and leading coefficient (—1)".
If k € Z, then sin(2k + 1)@ is an odd polynomial in sin 6 of degree 2k + 1. Hence
P,(£(2k + 1)) = 0 for n > k. Moreover, sin0 = 0 so P,(0) = 0. We now
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174.
176.

182.

183.

185.

have sufficient information to determine P,(t) uniquely. To get (b), consider the
coefficient of #* in (d). For (g), note that

cos(log(1+z)) = R(1 + z)".
Hint: what is the number of elements of the set {0,1}?

Induction on n. We have E(0) = 0. For n > 1 choose the first vector v; at random. If
v; = 0, we expect E(n) further steps, and this occurs with probability 1/¢". Otherwise
v1 is not the zero vector. Consider the projection of our space to a subspace comple-
mentary to v;. The uniform distribution over Fy' projects to the uniform distribution
over this copy of Fg_l, and our sequence of vectors will span [ precisely when the set
of their projections spans F;‘_l. It follows that we expect E(n — 1) further steps, and
SO

Em)+(¢"—1)EMn—1)
q '
Solving this equation gives F(n) = E(n — 1) +¢"/(¢" — 1), and so

En)=1+

E(n) = Zqi/(qi —1).

This argument was suggested by J. Lewis (October 2009).

Suppose that A € GL(n,q) has no 0 entries. There are exactly (¢ — 1)?*"~! matrices

of the form DAD’, where D, D" are diagonal matrices in GL(n,q). Exactly one of
the matrices C = DAD’ has the first entry in every row and column equal to —1.
Subtract the first column of C' from every other column, obtaining a matrix D. Let
B be obtained from D by removing the first row and column. Then B is a matrix in
GL(n — 1, ¢) with no entry equal to 1, and every such matrix is obtained exactly once
by this procedure.

First solution (sketch). The identity asserts that each of the ¢™ monic polynomials of
degree n can be written uniquely as a product of monic irreducible polynomials.
Second solution (sketch). Take logarithms of both sides and simplify the right-hand

side.

(b) Note that ¢" — D(n,0) is the number of monic polynomials of degree n over F,
with nonzero discriminant. In the same way that we obtained the first solution
to Exercise 1.183, we get

Z(q” — D(n,0))z" = H(l + 24)f@),

Hence

> (¢ = D(n,0))a" = (11__9;2)ﬁ<d>

n>0

1 — qa?

1—qx’
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186. (a)

(c)

the last step by Exercise 1.183. The proof follows easily. This result appears in D.
E. Knuth, The Art of Computer Programming, vol. 2, third ed., Addison-Wesley,
Reading, MA, 1997 (Exercise 4.6.2-2(b)) and is attributed to E. R. Berlekamp.
Greta Panova (November 2007) showed that this problem can also be solved by
establishing the recurrence

D(n,0) =Y ¢"(¢""* — D(n - 2k,0)).

k>1

We have

> = (5

BENk d>1 \a€eX

— H H (1 — god)efd),

d>1  qeNk
a#(070 7777 O)

The proof follows from Exercise 1.183.
Let k=1and X ={0,1,...,7 — 1} in Exercise 1.185(c). We get

1_ T
an:1+x+...+xr_1:7x'
11—z

Hence

1 _ T
Z Nr(n)xn - 4 )

1—qx
yielding equation (1.147). This result is stated in D. E. Knuth, The Art of Com-
puter Programming, vol. 2, third ed., Addison-Wesley, Reading, MA, 1997 (solu-

tion to Exercise 4.6.2-2(b)).
Set k =2and X = {(m,0) : me N}U{(0,n) : n € P} to get

mon 1 —quy
2 Nlmma™y" = sy

m,n>0

from which equation (1.148) follows.
Take k =1 and X = N — {1}. We get

ZP(N)Q:”: ( L— g’

e 1—qz?)(1 — qa?)’

via the identity
" 2 1—1°
1—t  (1—82)(1—1)
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187.

(a)

Using the partial fraction expansion

1 — qz® r (1+¢)(1+x) 1+ qz+qa?

1-g22)(1—q2®) ¢ ql—g2?)  q(1—qa®) "’

it is routine to obtain equation (1.149). This result can also be obtained by noting
that every monic powerful polynomial can be written uniquely in the form f2g3,
where f and g are monic and g is squarefree. Hence P(n) = 35 5, ¢'(¢ —
D(3,0)), where D(7,0) is defined in Exercise 1.185(b), etc. This result is due to
R. Stanley (proposer), Problem 11348, Amer. Math. Monthly 115 (2008), 262; R.
Stong (solution), 117 (2010), 87-88.

NOTE. The term “powerful polynomial” is borrowed from the corresponding
notion for integers. See for instance the Wikipedia entry “Powerful number” at

(http://en.wikipedia.org/wiki/Powerful_number).

The resultant res(f, g) of two polynomials f(z) = [[(x—6;) and g(x) = [[(z—1;)
over a field K is defined by

res(f,g) = H(@Z — ;).

i3

It is a standard fact (a consequence of the fact that res(f,¢g) is invariant under
any permutation of the 6;’s and of the 7;’s) that res(f,¢g) € K. Suppose that
f(z) = fi(x)--- fr(z) where each f;(x) is irreducible. Clearly

disc(f) = Hdisc(fi) . H res(fi, fi)?. (1.163)

1<i<j<k

A standard result from Galois theory states that the discriminant of an irreducible
polynomial g(x) of degree n over a field K is a square in K if and only if the
Galois group of g(x) (regarded as a group of permutations of the zeros of g(x))
is contained in the alternating group 2,. Now the Galois group of an irreducible
polynomial of degree n over F, is generated by an n-cycle and hence is contained
in A, if and only if n is odd. It follows from equation (1.163) that if disc(f) # 0,
then disc(f) is a square in I, if and only if n — k is even. This result goes
back to L. Stickelberger, Verh. Ersten Internationaler Mathematiker-Kongresses
(Ziirich, 1897), reprinted by Kraus Reprint Limited, Nendeln /Liechtenstein, 1967,
pp. 182-193. A simplification of Stickelberger’s argument was given by K. Dalen,
Math. Scand. 3 (1955), 124-126. See also L. E. Dickson, Bull. Amer. Math.
Soc. 13 (1906/07), 1-8, and R. G. Swan, Pacific J. Math. 12 (1962), 1099-1106
(Corollary 1). The above proof is possibly new. NOTE: Swan, ibid. (§3), uses
this result to give a simple proof of the law of quadratic reciprocity.

Now let N.(n) (respectively, N,(n)) denote the number of monic polynomials
of degree n which are a product of an even number (respectively, odd number)
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of distinct irreducible factors. It is easy to see (analogous to the solution to
Exercise 1.183) that

Z(Ne(n) — No(n))z" = H(l - $d)ﬁ(d)'

n>0 d>1

But

H(l — 2P D =1 — gz

d>1
by Exercise 1.183. Hence N.(n) = N,(n) for n > 1, and the proof follows.

(b) Let f(z) = [[L,(x —6;) be a monic polynomial of degree n over F,. For a € F; =

F, — {0}, write f,(z) = a"f(z/a), so fo(z) = [[=,(x — ab;). It follows that

disc(fa(z)) = a"™ Vdisc(f(z)).

If (n(n —1),q — 1) = 1 then the map a — a™"~Y is a bijection on F;. Hence if
disc(f) # 0, then we have {disc(f,) : a € F;} = F;. It follows that D(n,a) =
D(n,b) for all a,b € F}. Since D(n,0) = ¢"~' we have D(n,a) = ¢"' for all
ac I,

Now assume that (n(n —1),q — 1) = 2. Thus as a ranges over F, a"("~!) ranges
over all squares in F; twice each. Some care must be taken since we can have
fa(x) = fu(z) for a # b. (This issue did not arise in the case (n(n—1),¢g—1) =1
since the f,(x)’s had distinct discriminants.) Thus for each f let Py be the multiset
of all f,, a € F;. The multiset union U s Pr contains each monic polynomial of
degree n over F, exactly ¢—1 times. For each a,b € F} such that either both a, b or
neither a,b are squares, the same number of polynomials (counting multiplicity)
g € U; Py satisfy disc(g) = a as satisfy disc(g) = b. Finally, by (a) it follows that
the number of g € | s Pr with square discriminants is the same as the number
with nonsquare discriminants. Hence D(n,a) = D(n,b) for all a,b € F;, and thus
as above for all a,b € F,.

188. First solution. Let V be an n-dimensional vector space over a field K, and fix an
ordered basis v = (v1,...,v,) of V. Let N, denote the set of all nilpotent linear
transformations A : V' — V. We will construct a bijection ¢ : N,, — V"L Letting
V =T, it follows that #N,, = #(F,)""! = ¢"(»~1.

The bijection is based on a standard construction in linear algebra known as adapt-

ing an ordered basis w = (wi,...,w,) of a vector space V to an m-dimensional
subspace U of V. It constructs from w in a canonical way a new ordered basis
Wiyy oo oy Wy UL, ..., Uy Of Vosuch that the first n — m elements form a subsequence

of w and the last m form an ordered basis of u. See e.g. M. C. Crabb, Finite Fields
and Their Applications 12 (2006), 151-154 (page 153) for further details.

Now let A € N, and write V; = A (V), i > 0. Let r be the least integer for which
V. =0, so we have a strictly decreasing sequence

V=VW%o>ViD>---DV,=0.
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Set n; = dim V; and m; = n;,_1 —n;. Adapt the ordered basis v of V' to V4. Then adapt
this new ordered basis to V5, etc. After r — 1 steps we have constructed in a canonical
way an ordered basis y = (y1,...,yn) such that y, n.11,...,y, is a basis for V;, 1 <
i <r—1. We associate with A the (n —1)-tuple p(A) = (A(y1),. .., Aly,_1)) € V"L
(Note that A(y,) = 0.) It is straightforward to check that this construction gives a
bijection ¢ : N, — V"1 as desired.

This argument is due to M. C. Crabb, ibid., and we have closely followed his presenta-
tion (though with fewer details). As Crabb points out, this bijection can be regarded
as a generalization of the Priifer bijection (first proof of Proposition 5.3.2, specialized
to rooted trees) for counting rooted trees on an n-element set. Further connections
between the enumeration of trees and linear transformations were obtained by J.-B.
Yin, Ph.D. thesis, M.I.T., 2009. For a further result of this nature, see Exercise 1.189.

Second solution (sketch), due to Hansheng Diao, November 2007. Induction on n, the
base case n = 1 being trivial. The statement is true for £ < n. Let () be the matrix
in Mat(n, ¢) with 1’s on the diagonal above the main diagonal and 0’s elsewhere, i.e.,
a Jordan block of size n with eigenvalue 0. Let

A ={(M,N) € Mat(n,q) x Mat(n,q) : N is nilpotent, QM = M N}.

We compute #.A in two ways. Let f(n) be the number of nilpotent matrices in
Mat(n, ¢). We can choose N in f(n) ways. Choose v € F in ¢" ways. Then there is a
unique matrix M € Mat(n, ¢) with first row v such that QM = M N. Hence

#A=q"f(n). (1.164)
On the other hand, one can show that if M has rank r, then the number of choices for
N so that QM = MN is f(n —r)g"™ 7). Using Exercise 1.192(b) and induction we
get
#A _ + Z q o 1 q o q )q(nfr)(nfrfl) . qr(nfr)

= f(N)Jrq - V(g™ —1).

Comparing with equation (1.164) completes the proof.

Third solution (sketch), due to Greta Panova and Yi Sun (independently), November,
2007. Count in two ways the number of (n + 1)-tuples (N,vy,vq,...,v,) with N
nilpotent in Mat(n, ¢), and v; € I such that N(v;) = v (1 <i<n—1) and v; # 0.
On the one hand there are f(n)(¢" —1) such (n+1)-tuples since they are determined by
N and v;. On the other hand, one can show that the number of such (n+1)-tuples such
that vy # 0 and v = 0 (with v, = 0 always) is f(n—k)¢*" " (¢"—1) - - - (¢"—¢*1),
yielding the recurrence

f(n)(¢" —1) Zf F)¢ (gt = 1) (g = ¢" 7).
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The proof follows straightforwardly by induction on n.

For some additional work on counting nilpotent matrices, see G. Lusztig, Bull. London
Math. Soc. 8 (1976), 77-80.

189. See Proposition 4.27 of J. Yin, A g-analogue of Spanning Trees: Nilpotent Transfor-
mations over Finite Fields, Ph.D. thesis, M.I.T., 2009. This result may be regarded as
a g-analogue of the fact that the number of spanning trees of the complete bipartite
graph K, is m"~'n™"1 (see Exercise 5.30).

190. (a) We can imitate the proof of Proposition 1.10.2, using Z* := Z — {x} instead of Z
and 3* (defined by equation (1.112)) instead of 3. We therefore get

Zw*(n, q)z" = HH — g

n>0 n>1j>1
1 — 9
= [[——. (1.165)
L1 —qw
Jj=1

from which the proof is immediate.

(b) This result follows easily from the Pentagonal Number Formula (1.88) and Exer-
cise 1.74. A more careful analysis shows that if m = |(n — 1)/2], then

w*(ﬂ) q) _ qn . qm . qul . qm72 L q2L(n+5)/6J + O(qL(n+5)/6J71)'

(c) It follows from the Pentagonal Number Formula and equation (1.165) that

. [ (=DF ifn=kBk+1)/2
wi(n, 0) = { 0, otherwise,

We also have
. B 2(—1)’“, if n = k2
wi(n, =1) = { 0, otherwise,

a consequence of the identity (1.131) due to Gauss.

By differentiating (1.165) with respect to ¢ and setting ¢ = 0, it is not hard to
see that w*(n, q) is divisible by ¢* if and only if

k(3k —1 kE(3k+1
Bk =1) MOk

for some k > 1.

191. First solution (in collaboration with G. Lusztig). Let F' be an algebraic closure of IF,,.
We claim that the set Q of orbits of the adjoint representation of GL(n, F') has the

structure
Q= Prw. (1.166)

AFn
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Let A = (A, Aa,..., ) F n, where A\, > 0. Given a = (ay,...,a;) € FF, let
M = M(\, &) € Mat(n, F') be defined as follows: M is a direct sum of k£ Jordan blocks
J1, ..., Jg, with J; containing \; main diagonal elements equal to «;. We do yet have
a set of orbit representatives, since if we have j blocks of the same size, then they can
appear in any order. Hence the different conjugacy classes formed by j blocks of size
m has the structure F7/G;, where &, acts on FV by permuting coordinates. But it
is well-known that F7/&; = FJ, viz., the elements of FV/&; correspond to k-element
multisets {ay, ..., a,} of elements of F' which we associate with (3y,...,5) € F* by

k

k
H(x — o) = 2"+ Zﬁjxk_j.
1

i=1 j=

Hence (1.166) follows. It is now a consequence of standard properties of the Frobenius
map « — «a? that the space €2, of orbits of the adjoint representation of GL(n, ¢) has

an analogous decomposition
Qq = @ 4 ),

AFn

and the proof follows.

Second solution. Let f(z) € F,[z] be a monic polynomial of degree k. Let f(z) =
[1/i(2)™ be its factorization into irreducible factors (over F,). Let M; € Mat(n,q)
be a matrix whose adjoint orbit is indexed by ® : Z(q) — Par satisfying ®(f;) = (r;)
(the partition with one part equal to r;). A specific example of such a matrix is the
companion matrix

(00 - 0 —B |

10 -+ 0 =5
My=|01 - 0 =B |,

(00 -+ 1 |

where f(z) = Bo+B1z+ -+ Br_128"1+ 2%, For fixed k, the space of all such M} is just
an affine space IF’; (since it is isomorphic to the space of all monic polynomials of degree
k). Now given a partition A - n with conjugate X = (A}, A}, ...), choose polynomials
fi(2) € F,|z] such that deg f; = X} and fi1|fi forall¢ > 1. Let M = My &My, &--- €
Mat(n, q). For fixed A, the space of all such M has the structure IF;VI = Fg(’\) (since
once f;11 is chosen, there are ¢+~ choices for fi)- Tt is easy to check that the M’s
form a cross-section of the orbits as A ranges over all partitions of n, so the number

of orbits is >, ¢"™ . This argument appears in J. Hua, J. Combinatorial Theory,
Ser. A79 (1997), 105117 (Theorem 11).

Third solution, due to Gabriel Tavares Bujokas and Yufei Zhao (independently), Novem-
ber 2007. We want the number of functions ® : 7(q) — Par satisfying > 7, [Pam(f)]-
deg(f) = n. For each i > 1, let

pi= [ feo,

f€Z(q)
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193.

194.

195.

196.

where m;(®(f)) denotes the number of parts of ®(f) equal to i. Thus the p;’s are arbi-
trary monic polynomials satisfying > i deg(p;) = n. First choose A - (14,2% )| n
and then each p; so that degp; = d;. There are thus ¢=% = ¢‘™ choices for the p;’s,

SO
= Z '™ = ij(n)qj
AFn j

A matrix P is a projection if and only if ®p(2) = (1*) for some k, ®p(z — 1) =
(1"7%)and otherwise ®p(f) = 0. The proof now follows from Theorem 1.10.4 and
Lemma 1.10.5 exactly as does Corollary 1.10.6.

A matrix M is regular if and only if for all f € Z(q) there is an integer & > 0 such that
Oy (f) = (k). Write (k) for ¢f(A) when A = (k). From Theorem 1.10.7 we have

Cf(k) _ qkd . q(kfl)d7 k 2 17

where d = deg(f). Substitute t;y = 1 if A = (k) and ¢;, = 0 otherwise in Theo-
rem 1.10.4 to get

n kdeg(f)
Zrnx_ = H<1+Z Redeg(f) — (k= 1)deg(f)>

n>0 In fezr k>1

= H<1+Z kd1—q >ﬁ(d)

_ (z/q)" o
-1 (=t )

e B(d)
-1l (1 - <az/q>d>) |

We can write this identity in the alternative form

>on = H(”q%ﬁd >)M

ns0 Im 1_xd21 ¢ =1

by using equation (1.145) with z/q substituted for x.

A matrix M is semisimple if and only if for all f € Z(q) there is an integer k > 0 such
that ®,(f) = (1*). The proof now follows from Theorem 1.10.4 and Lemma 1.10.5
exactly as does Corollary 1.10.6.

(a) The proof parallels that of Proposition 1.10.15. We partition &,, into two classes
A and B, where

A
B = {we6, :w=12---ku for some u € Spq1,n}-

{fwe &, : w#12---ku for some u € Spp1,n)}
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Let
G(n.k,q) ={A€GL(n,q) : A+ + Ay =0},

For w € A we have .

For w € B we have

#(CuNGnk,q) = v (g 1ynkg,
= q(g)-I—inv(w)(q _ 1)n—k;((q _ 1)k + (_1)1€(q —1)).

Hence

> #(TwNGn,k,q) =

weB

uEG[kJrl’n]

= - <Z(#Fw) +(=1)*(q - 1)q%k(2nk1)7nk(Q)> ,
weB

and the proof follows.

(b) The hyperplane H can be defined by H = {M € Mat(n,q) : M - N = 0}, where
N is a fixed nonzero matrix in Mat(n,q) and M - N = tr(MN"), the standard dot
product in the vector space Mat(n, q). If P,Q € GL(n,q), then M - N = 0 if and
only if (PH)7'M(Q")™') - (PNQ) = 0. Since two matrices N, N’ € Mat(n, q) are
related by N’ = PNQ for some P, Q € GL(n, q) if and only if they have the same
rank, it follows that #(GL(n,q) N H) depends only on rank(N). If rank(N) = k,
then we may take

(1, 1<i=j<k
Nij = { 0, otherwise.

Hence #(GL(n,q) N H) is given by the right-hand side of equation (1.150).

197. Hint. Let f(n, k) be the number of k x n matrices over I, of rank k with zero diagonal,
where 1 < k < n. Show that

fnk+1) =" q—1(f(n, k) - (n— k) = f(n—1,k)),
with the initial condition f(n,1) = ¢"~! — 1. The solution to this recurrence is
k—1 i [k — 2!
Fln.k) = ) (g — 1 (Z(—W(J%) .
=0

Now set k = n.
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This result is due to J. B. Lewis, R. I. Liu, A. H. Morales, G. Panova, S. V. Sam, and Y.
Zhang, Matrices with restricted entries and g-analogues of permutations, arXiv:1011.4539.
(Proposition 2.2). This paper contains a host of other results about counting matrices
over F,. A further result in this paper is given by Exercise 1.199.

198. (a) An (n+1) x (n+ 1) symmetric matrix may be written as
o[ 3]

where M is an n x n symmetric matrix, 8 € Fy, and y € Fy. Elementary linear
algebra arguments show that from a particular matrix M of rank r we obtain:

o ¢""1 — ¢""! matrices N of rank r + 2,
e (¢ —1)¢" matrices N of rank r + 1,
e ¢" matrices N of rank r,

e 1o matrices of other ranks.

The recurrence (1.151) follows. This recurrence (with more details of the proof)
was given by J. MacWilliams, Amer. Math. Monthly 76 (1969), 152-164, and was
used to prove (b). A simpler recurrence for h(n,n) alone was given by G. Lusztig,
Transformation Groups 10 (2005), 449-487 (end of §3.14).

(b) We can simply verify that the stated formula for h(n,r) satisfies the recurrence
(1.151), together with the initial conditions. For some generalizations and further
information, see R. Stanley, Ann. Comb. 2 (1998), 351-363; J. R. Stembridge,
Ann. Comb. 2 (1998), 365-385; F. Chung and C. Yang, Ann. Comb. 4 (2000),
13-25; and P. Belkale and P. Brosnan, Duke Math. J. 116 (2003), 147-188.

NOTE. There is less ad hoc way to compute the quantity h(n,n). Namely,
GL(n, q) acts on nxn invertible symmetric matrices M over F, by A-M = A*MA.
This action has two orbits whose stabilizers are the two forms of the orthogonal
group O(n, q). The orbit sizes can be easily computed from standard facts about
O(n,q). For further details, see R. Stanley, op. cit. (§4).

199. (a) The equality of the first two items when ¢ is even is due to J. MacWilliams,
Amer. Math. Monthly 76 (1969), 152-164 (Theorems 2, 3). The equality of the
second two items appears in O. Jones, Pacific J. Math. 180 (1997), 89-100. For
the remainder of the exercise, see Section 3 of the paper of Lewis-Liu-Morales-
Panova-Sam-Zhang cited in the solution to Exercise 1.197.

200. This result was conjectured by A. A. Kirillov and A. Melnikov, in Algebre non com-
mutative, groupes quantiques et invariants (Reims, 1995), Sémin. Congr. 2, Soc. Math.
France, Paris, 1997, pp. 3542, and proved by S. B. Ekhad and D. Zeilberger, FElec-
tronic J. Combinatorics 3(1) (1996), R2. No conceptual reason is known for such a
simple formula.

201. (a) The result follows from the theory of Gauss sums as developed e.g. in K. Ire-
land and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed.,
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202.

203.

Springer-Verlag, New York, 1990, and may have been known to Gauss or Eisen-
stein. This information was provided by N. Elkies (private communication, 1
August 2006).

(b) The argument is analogous to the proof of Proposition 1.10.15. Let
G={AeGL(3,q) : tr(A) =0, det(A) = 1}.

If 123 # w € &3, then #(I':NG) = (I(q—l_l)#Fw. On the other hand, #(T'123NG) =
¢ f(q). Hence we get

#G = ﬁ(v(?),Q)—#Fug)Jrq?’f(q)

= lg—1*(+2¢+2)+f(q).

This result is an instance of the Shimura-Taniyama-Weil conjecture, viz., every elliptic
curve is modular. An important special case of the conjecture (sufficient to imply
Fermat’s Last Theorem) was proved by A. Wiles in 1993, with a gap fixed by Wiles
and R. Taylor in 1994. The full conjecture was proved by Breuil, Conrad, Diamond,
and Taylor in 1999. Our example follows H. Darmon, Notices Amer. Math. Soc. 46
(1999), 1397-1401, which has much additional information.

The statement about 103,049 was resolved in January, 1994, when David Hough, then
a graduate student at George Washington University, noticed that 103,049 is the total
number of bracketings of a string of 10 letters. The problem of finding the number of
bracketing of a string of n letters is known as Schroder’s second problem and is discussed
in Section 6.2. See also the Notes to Chapter 6, where also a possible interpretation
of 310,952 is discussed. Hough’s discovery was first published by R. Stanley, Amer.
Math. Monthly 104 (1997), 344-350. A more scholarly account was given by F. Acerbi,
Archive History Ezact Sci. 57 (2003), 465-502.
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Chapter 2

Sieve Methods

2.1 Inclusion-Exclusion

Roughly speaking, a “sieve method” in enumerative combinatorics is a method for deter-
mining the cardinality of a set S that begins with a larger set and somehow subtracts off or
cancels out unwanted elements. Sieve methods have two basic variations: (1) We can first
approximate our answer with an overcount, then subtract off an overcounted approxima-
tion of our original error, and so on, until after finitely many steps we have “converged” to
the correct answer. This method is the combinatorial essence of the Principle of Inclusion-
Exclusion, to which this section and the next four are devoted. (2) The elements of the
larger set can be weighted in a natural combinatorial way so that the unwanted elements
cancel out, leaving only the original set S. We discuss this technique in Sections 2.6-2.7.

The Principle of Inclusion-Exclusion is one of the fundamental tools of enumerative com-
binatorics. Abstractly, the Principle of Inclusion-Exclusion amounts to nothing more than
computing the inverse of a certain matrix. As such it is simply a minor result in linear
algebra. The beauty of the principle lies not in the result itself, but rather in its wide appli-
cability. We will give several example of problems that can be solved by Inclusion-Exclusion,
some in a rather subtle way. First we state the principle in its purest form.

2.1.1 Theorem. Let S be an n-set. Let V' be the 2"-dimensional vector space (over some
field K ) of all functions f : 2% — K. Let ¢ : V — V be the linear transformation defined by

Sf(T)=>_ f(Y), forallTCS. (2.1)

YT

Then ¢~ exists and is given by

o f(T) =D (-1)#If(Y), forallTCS. (2.2)

yor
Proof. Define ¢ : V. — V by ¢ f(T) = Yy (—1)# "D f(Y). Then (composing functions
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right to left)

SUf(T) = > (=) Dgf(Y)

= YR Y g)
-2 (X o) e

Setting m = #(Z — T') we have

> =3 (1) <

ZDYDT i=0
(Z,T fixed)

the latter equality by putting 2 = —1 in equation (1.18) or by Exercise 1.3(f), so ¢ f(T) =
f(T). Hence ¢ppf = f,s0 ) = ¢~ L. O

The following is the usual combinatorial situation involving Theorem 2.1.1. We think of S
as being a set of properties that the elements of some given set A of objects may or may
not have. For any subset T" of S, let f_(T') be the number of objects in A that have exactly
the properties in T (so they fail to have the properties in T = S — T'). More generally, if
w: A — K is any weight function on A with values in a field (or abelian group) K, then
one could set f_(T') = > w(x), where z ranges over all objects in A having exactly the
properties in 7. Let f~(T') be the number of objects in A that have at least the properties
in T'. Clearly then

f(T) =) f-(Y). (2.3)

YoT
Hence by Theorem 2.1.1,
f(T) =) (F)* DY) (2.4)

YoT
In particular, the number of objects having none of the properties in .S is given by

f=(0) = (—1)# (V) (2.5)

YT

where Y ranges over all subsets S. In typical applications of the Principle of Inclusion-
Exclusion it will be relatively easy to compute f>(Y') for Y C S, so equation (2.4) will yield
a formula for f_(T).

In equation (2.4) one thinks of f(7') (the term indexed by Y = T') as being a first approxi-
mation to f—(7"). We then subtract

> YY),

YOT
#(Y "T)=1
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to get a better approximation. Next we add back in

> YY),

YOT
#(Y-T)=2

and so on, until finally reaching the explicit formula (2.4). This reasoning explains the

terminology “Inclusion-Exclusion.”

Perhaps the most standard formulation of the Principle of Inclusion-Exclusion is one that
dispenses with the set S of properties per se, and just considers subsets of A. Thus let
Ay, ..., A, be subsets of a finite set A. For each subset T of [n], let

Ar =) A

i€T

(with Ag = A), and for 0 < k < n set
Sp=Y_ #Ar, (2.6)
#T=k
the sum of the cardinalities, or more generally the weighted cardinalities
w(Ar) = > w(),
TEAT

of all k-tuple intersections of the A;’s. Think of A; as defining a property P; by the condition
that © € A satisfies P; if and only if x € A;. Then A is just the set of objects in A that
have at least the properties in T, so by (2.5) the number #(A; N---N'A,) of elements of A
lying in none of the A;’s is given by

#(A N NA) =8y — S+ Sy — -+ (=1)"S,, (2.7)
where Sy = Ay = #A.
The Principle of Inclusion-Exclusion and its various reformulations can be dualized by inter-

changing N and U, C and O, and so on, throughout. The dual form of Theorem 2.1.1 states
that if

of(T) =Y f(Y), forall T CS§,

YCT

then ¢! exists and is given by

6H(T) = Y (~)FTVf(Y), forall T C S.

YCT

Similarly, if we let f<(7') be the (weighted) number of objects of A having at most the
properties in 7', then

f<(T) = Y f=(Y)

YCT

(1) = > ()T (). (2.8)

YCT
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A common special case of the Principle of Inclusion-Exclusion occurs when the function f—
satisfies f_(T") = f—(T") whenever #T = #T'. Thus also f>(T') depends only on #7', and
we set a(n—1i) = f_(T) and b(n —i) = f>(T) whenever #T = i. (Caveat. In many problems
the set A of objects and S of properties will depend on a parameter p, and the functions
a(i) and b(7) may depend on p. Thus, for example, a(0) and b(0) are the number of objects
having all the properties, and this number may certainly depend on p. Proposition 2.2.2
is devoted to the situation when a(i) and b(i) are independent of p.) We thus obtain from
equations (2.3) and (2.4) the equivalence of the formulas

b(m) = Z (m) a(i), 0<m<n (2.9)
i=0
a(m) = zm: " (=)™ (i), 0<m<n. (2.10)
o\ -
In other words, the inverse of the (n 4 1) x (n + 1) matrix whose (4, j)-entry (0 < i,j < n)

is (Z) has (i, j)-entry (—1)7~ (Z) For instance,

-1

1111 1 -1 1 -1
0123 o 1 -2 3
0013 ~|0o 0 1 -3
0001 0 0 0 1

Of course we may let n approach oo so that (2.9) and (2.10) are equivalent for n = occ.

Note that in language of the calculus of finite differences (see Chapter 1, equation (1.98)),
(2.10) can be rewritten as
a(m) =A"b(0), 0<m<n.
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2.2 Examples and Special Cases

The canonical example of the use of the Principle of Inclusion-Exclusion is the following.

2.2.1 Example. (The “derangement problem” or “probléme des rencontres”) How many
permutations w € &, have no fixed points, that is, w(i) # i for all i € [n]? Such a
permutation is called a derangement. Call this number D(n). Thus D(0) = 1, D(1) = 0,
D(2) =1, D(3) = 2. Think of the condition w(i) = i as the ith property of w. Now the
number of permutations with at least the set T' C [n] of points fixed is f>(T) = b(n — i) =
(n —4)!, where #T = i (since we fix the elements of 7" and permute the remaining n — ¢
elements arbitrarily). Hence by (2.10) the number f_(0)) = a(n) = D(n) of permutations

with no fixed points is
n n .
=3 (7)o (211)

11 1 1
Since 0.36787944--- = e = .. ((—1)//j!, it is clear from (2.12) that n!/e is a good

approximation to D(n), and indeed it is not difficult to show that D(n) is the nearest
integer to n!/e. It also follows immediately from (2.12) that for n > 1,

D(n) = nD(n—1)+(-1)" (2.13)
D(n) = (n—1)(D(n—1)+ D(n—2)). (2.14)

While it is easy to give a direct combinatorial proof of equation (2.14), considerably more
work is necessary to prove (2.13) combinatorially. (See Exercise 2.8.) In terms of generating

functions we have that
T e~
D(n)— = )
Z (n) n! 11—z

n>0

The function b(i) = i! has a very special property—it depends only on i, not on n. Equiv-
alently, the number of permutations w € &,, that have at most the set T" C [n] of points
unfized depends only on #7T, not on n. This means that equation (2.11) can be rewritten in
the language of the calculus of finite differences (see Chapter 1, equation (1.98) as

D(n) = A"z!|,_,,

which is abbreviated A™0!. Since the number b(i) of permutations in &,, that have at most
some specified i-set of points unfixed depends only on i, the same is true of the number a(7)
of permutations in G,, that have exactly some specified ¢ set of points unfixed. It is clear
combinatorially that a(i) = D(i), and this fact is also evident from equations (2.10) and
(2.11).

Let us state formally the general result that follows from the above considerations.
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2.2.2 Proposition. For each n € N, let B, be a (finite) set, and let S, be a set of n
properties that elements of B,, may or may not have. Suppose that for every T' C S, the
number of x € B, that lack at most the properties in T (i.e., that have at least the properties
in S —T) depends only on #T', not on n. Let b(n) = #B,, and let a(n) be the number of
objects x € B,, that have none of the properties in S,. Then a(n) = A™b(0).

2.2.3 Example. Let us consider an example to which the previous proposition does not
apply. Let h(n) be the number of permutations of the multiset M,, = {12,22,... n?} with
no two consecutive terms equal. Thus 2(0) = 1, (1) = 0, and h(2) = 2 (corresponding to the
permutations 1212 and 2121). Let P;, for 1 <1i < n, be the property that the permutation
w of M, has two consecutive i’s. Hence we seek f_(0)) = h(n). It is clear by symmetry that
for fixed n, f>(T) depends only on i = #7T', so write g(i) = f>(T). Clearly g(7) is equal to

the number of permutations w of the multiset {1,2,...,4, (i +1)2,...,n?} (replace any j > i
appearing in w by two consecutive j’s), so

9(i) = (2n — )12~

a special case of equation (1.23). Note that b(i) := g(n — i) = (n +14)!27" is not a function
of 7 alone, so that Proposition 2.2.2 is indeed inapplicable. However, we do get from (2.10)
that

h(n) = Z (7;) ()" (n+i)127" = A"(n+4)127"| _, .

Here the function (n +4)!27" to which A™ is applied depends on n.

We turn next to an example for which the final answer can be represented by a determinant.

2.2.4 Example. Recall that in Chapter 1 (Section 1.4) we defined the descent set D(w) of
a permutation w = ajas - - - a, of [n| by D(w) = {i : a; > a;4+1}. Our object here is to obtain
an expression for the quantity 3,(S), the number of permutations w € &,, with descent set
S. Let a,(S) be the number of permutations whose descent set is contained in S, as in
equation (1.31). Thus (as pointed out in equation (1.31))

an(S) = Ba(T).
TCS
It was stated in equation (1.34) and follows from (2.8) that
Ba(S) =D (=1)*E e, (T).
TCS

Recall also that if the elements of S are given by 1 < 51 < §9 < --- < s < n — 1, then by
Proposition 1.4.1 we have

n
ozn(S):( )
51,82 — 81,83 — 82,...,1 — Sk

ORI I o (R n_) (2.15)

. . — Siyy -
1<i1 <io << <k

Therefore
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We can write (2.15) in an alternative form as follows. Let f be any function defined on
[0, k4 1] x [0, k + 1] satisfying f(i,4) = 1 and f(i,7) = 0if ¢ > j. Then the terms in the sum

Ac= >0 (DRI [l i) - fli k1)
1< <ia << <k

are just the nonzero terms in the expansion of the (k + 1) x (k + 1) determinant with (4, j)-
entry f(i,7 4+ 1), (4,7) € [0,k] x [0, k]. Hence if we set f(i,5) = 1/(s; — s;)! (with so = 0,
Sk+1 = M), we obtain from (2.15) that

6n(S) =n! det[l/(sj+1 - Si)!], (216)
(i,7) € [0, k] x [0, k]. For instance, if n = 8 and S = {1,5}, then

1 1 1

1 5 8l

1 1

p— ' JR— —_ pu—
Gu(S) =811 o = |=2T.
0 1 !
3!

By an elementary manipulation (whose details are left to the reader), equation (2.16) can

also be written in the form
B3a(S) = det K e )} , (2.17)

Sj+1 = Si
where (7, j) € [0, k] x [0, k] as before.

2.2.5 Example. We can obtain a ¢g-analogue of the previous example with very little extra
work. We seek some statistic s(w) of permutations w € &,, such that

n
Z ™ = ( ), (2.18)
81982 — S19eeeyT — Si

weSy

D(w)CS
where the elements of S are 1 < 51 < 85 < -+ < 5, < n — 1 as above. We will then
automatically obtain g-analogues of equations (2.15), (2.16), and (2.17). We claim that
(2.18) holds when s(w) = inv(w), the number of inversions of w. To see this, set t; = s,
to =89 —81,..., tkr1 =n— 8. Let M = {1, ... (k+1)%+1}. Recall from Proposition 1.7.1

that
n
> gmt = ( ) (2.19)
ti,lay .o oyt

ueS(M)

Now given u € (M), let v € &,, be the standardization of u as defined after the second proof
of Proposition 1.7.1, so inv(u) = inv(v). We call v a shuffle of the sets [1, s1], [s1+ 1, s2], ...,
(s +1,n]. Now set w = v~ !, It is easy to see that v is a shuffle of [1,s], [s; + 1, 89],...,
[si.+1,n] if and only if D(w) C {s1, S2,..., Sg}. Since inv(v) = inv(w) by Proposition 1.3.14,

we obtain
. n
> e = ) (2.20)
81982 — S19eeeqeM — S

wEGn
D(w)CS
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as desired.

Thus set

Bu(Siq) = Y ¢™™.
’LUGGn
D(w)=S

By simply mimicking the reasoning of Example 2.2.4 we obtain

Ba(S.q) = (m)!det[1/(sj41 — 85)]g

() o

1 1 1

@ G @)
GuSq) = @) 1 —

= det

For instance, if n = 8 and S = {1,5}, then

@ (!
0 1

(3)!

= ¢*+3¢° +6¢* +9¢° +13¢° + 17¢" + 21¢® + 23¢°
+24q10+23q11 +21q12 + 18q13 + 14q14+ 10q15
+7¢"% + 4¢"" 4 2¢"% + ¢".

If we analyze the reason why we obtained a determinant in the previous two examples, then
we get the following result.

2.2.6 Proposition. Let S = {Py,..., P,} be a set of properties, and letT = {Ps,,..., P, } C
S, where 1 < s1 < -+ < s < n. Suppose that f<(T) has the form

fﬁ (T) = h(n)e(s(b 81)6(31, 82) e 6(8k7 SkJrl)
for certain functions h on N and e on N x N, where we set so =0, sg11 =n, e(i,i) =1, and
e(i,j) =0if j <i. Then
F=(T) = h(n) det [e(s;, 5741)]t .
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2.3 Permutations with Restricted Position

The derangement problem asks for the number of permutations w € &,, where for each i,
certain values of w(7) are disallowed (namely, we disallow w(i) = ). We now consider a
general theory of such permutations. It is traditionally described using terminology from
the game of chess. Let B C [n] x [n], called a board. If w € &, then define the graph G(w)

of w by
G(w) ={(i,w(7)) : i € [n]}.
Now define

N, = #Hwe6, : j=#(BNG(w)}
r, = number of k-subsets of B such that no two
elements have a common coordinate

= number of ways to place k nonattacking rooks on B.

Also define the rook polynomial rg(x) of the board B by
rp(z) = Zrkxk.
k

We may identify w € &, with the placement of n nonattacking rooks on the squares
(i,w(i)) of [n] x [n]. Thus N; is the number of ways to place n nonatttacking rooks
on [n] x [n] such that exactly j of these rooks lie in B. For instance, if n = 4 and
B = {(1,1),(2,2),(3,3),(3,4),(4,4)}, then Ny =6, Ny =9, Ny =7, N3 =1, Ny = 1,
ro =1, r =05, 1 =28, 13 =5, ry, = 1. Our object is to describe the numbers NN;, and
especially Ny, in terms of the numbers r;. To this end, define the polynomial

Ny(z) = Z Nja?.
J
2.3.1 Theorem. We have

No(z) =) ri(n—k)!(z — 1) (2.22)

In particular,
n

No = No(0) = (=1 ri(n — k)L (2.23)
k=0

First proof. Let Cy be the number of pairs (w,C), where w € &,, and C is a k-element
subset of B N G(w). For each j, choose w in N; ways so that j = #(B N G(w)), and then
choose C' is (i) ways. Hence Cy =3 (i) N;. On the other hand, we first could choose C' in
r,, ways and then “extend” to w in (n — k)! ways. Hence Cy = ri(n — k)!. Therefore

> (é) N; = rx(n — k),
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or equivalently (multiplying by y* and summing on k),
Z(y +1)/N; = Zrk(n — k)l
J k
Putting y = x — 1 yields the desired formula.

Second proof. 1t suffices to assume x € P. The left-hand side of equation (2.22) counts the
number of ways to place n nonattacking rooks on [n] x [n] and labeling each rook on B with
an element of [z]. On the other hand, such a configuration can be obtained by placing k

nonattacking rooks on B, labeling each of them with an element of {2, ..., x}, placing n — k
additional nonattacking rooks on [n] x [n] in (n — k)! ways, and labeling the new rooks on
B with 1. This argument establishes the desired bijection. O

The two proofs of Theorem 2.3.1 provide another illustration of the principle enunciated
in Chapter 1 (third proof of Proposition 1.3.7) about the two combinatorial methods for
showing that two polynomials are identical. It is certainly also possible to prove (2.23) by
a direct application of Inclusion-Exclusion, generalizing Example 2.2.1. Such a proof would
not be considered combinatorial since we have not explicitly constructed a bijection between
two sets (but see Section 2.6 for a method of making such a proof combinatorial). The two
proofs we have given may be regarded as “semi-combinatorial,” since they yield by direct
bijections formulas involving parameters y and z, respectively; and we then obtain (2.23) by
setting y = —1 and x = 0, respectively. In general, a semi-combinatorial proof of (2.5) can
easily be given by first showing combinatorially that

> (Xt Zf> (x —1)* (2.24)

or

Z (X + )P =) (), (2.25)

Y
and then setting x = 0 and y = —1, respectively.

As a example of Theorem 2.3.1, take B = {(1,1),(2,2),(3,3),(3,4), (4,4)} as above. Then

Nyz) = 4+5-3(z—-1)+8-2(z—1)*+5-1(z—1)*+ (z — 1)*
= 2'+2° +72° + 92 + 6.

2.3.2 Example. (Derangements revisted) Take B = {(1,1),(2,2),...,(n,n)}. We want to
compute Ng = D(n). Clearly rj, = (}), so

No(z) = Z(Z)(n—k)!(a:—l)k

k=0
" nl
k=0
=N, = —1kE=
0 ;( )



2.3.3 Example (Probléme des ménages). This famous problem is equivalent to asking for
the number M (n) of permutations w € &,, such that w(i) # 7,7 + 1 (modn) for all i € [n].
In other words, we seek Ny for the board

B={(1,1),(22),....(n.n),(1,2),(23),....(n—1,n), (n,1)}.

By looking at a picture of B, we see that r; is equal to the number of ways to choose k
points, no two consecutive, from a collection of 2n points arranged in a circle.

2.3.4 Lemma. The number of ways to choose k points, no two consecutive, from a collection
of m points arranged in a circle is "¢ (mk_k)

First proof. Let f(m,k) be the desired number; and let g(m, k) be the number of ways to
choose k nonconsecutive points from m points arranged in a circle, next coloring the £ points
red, and then coloring one of the non-red points blue. Clearly g(m, k) = (m — k)f(m, k).
But we can also compute g(m, k) as follows. First color a point blue in m ways. We now
need to color k points red, no two consecutive, from a linear array of m — 1 points. One way
to proceed is as follows. (See also Exercise 1.34.) Place m — 1 — k uncolored points on a line,
and insert k£ red points into the m — k spaces between the uncolored points (counting the

beginning and end) in (mgk) ways. Hence g(m, k) = m(mk_k), so f(m, k) = ﬁ(mk_k) O

The above proof is based on a general principle of passing from “circular” to “linear” arrays.
We will discuss this principle further in Chapter 4 (see Proposition 4.7.13).

Second proof. Label the points 1,2,...,m in clockwise order. We wish to color k of them
red, no two consecutive. First we count the number of ways when 1 isn’t colored red. Place
m — k uncolored points on a circle, label one of these 1, and insert k red points into the m —k
spaces between the uncolored points in (m]; k) ways. On the other hand, if 1 is to be colored
red, then place m — k — 1 points on the circle, color one of these points red and label it 1,

and then insert in (m];f; 1) ways k — 1 red points into the m — k& — 1 allowed spaces. Hence

st = (") (M) = )
C

2.3.5 Corollary. The polynomial N, (z) for the board B = {(i,1), (i,i + 1) (modn) : 1 <
i < n} is given by

n

N,(z) = Z 2712%1{; (271]{;— k) (n—k)!(z — D

k=0
In particular, the number Ny of permutations w € &,, such that w(i) # i,i + 1 (modn) for
1 <1< n s given by

n

No=3" Qﬁ - (Q”k_ k) (n — k)I(—1)F.

k=0

233



Corollary 2.3.5 suggest the following question. Let 1 < k <n, and let B, ; denote the board
B ={(,1),(@,i+1),...,(i,i+k—1)(modn) : 1 <i<n}.

Find the rook polynomial R, (z) = >, 7i(n,k)z* of B,j. Thus by equation (2.23) the
number f(n, k) of permutations w € S,, satisfying w(i) Z i,i+ 1,...,i + k — 1 (modn) is
given by

i=0
Such permutations are called k-discordant. For instance, 1-discordant permutations are
just derangements. When k > 2 there is no simple explicit expression for r;(n, k) as there
was for £k = 1,2. However, we shall see in Example 4.7.19 that there exists a polynomial
Qr(z,y) € Z[z,y] such that

0
—y=—Qx(z,v)

n_ Oy
;ank(x)y T Qu(

)

z,y)
provided that R, x(z) is suitably interpreted when n < k. For instance,

Qi(z,y) = 1—(1+2)y
Qz(z,y) = (1—(1+22)y+ 2%y (1 — ay)
Qs(z,y) = (1— (14 22)y—ay* +2°y*)(1 — 2y).
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3,4
3,3
2,2 3,2
1,112,1 3,1

m

Figure 2.1: The Ferrers board of shape (1,2,4) with a rectangle C' underneath

2.4 Ferrers Boards

Given a particular board or class of boards B, we can ask whether the rook numbers r; have
any special properties of interest. Here we will discuss a class of boards called Ferrers boards.
Given integers 0 < by < -+ < by,, the Ferrers board of shape (by,...,b,,) is defined by

B={(i,j) : 1<i<m, 1<j<b},

where we are using ordinary cartesian coordinates so the (1,1) square is at the bottom left.
The board B depends (up to translation) only on the positive b;’s. However, it will prove to
be a technical convenience to allow b; = 0. Note that B is just a reflection and rotation of
the Young diagram of the partition A = (by,, ..., b1).

2.4.1 Theorem. Let Y rpz® be the rook polynomial of the Ferrers board B of shape (b, . .., by,).
Set s; =b; —i+ 1. Then

> vk (@)mer = H(x + 50).

Proof. Let x € N, and let B’ be the Ferrers board of shape (by + z,...,b, + ). Regard
B’ = BUC(C, where C' is an z x m rectangle placed below B. See Figure 2.1 for the case
(by,ba,b3) = (1,2,4). We count r,,(B’) in two ways.

1. Place k rooks on B in r ways, then m — k rooks on C' in (z),,_x ways, to get

rm(B') = ri - (@)t
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2. Place a rook in the first column of B’ in z+b; = x — s; ways, then a rook in the second
column in = + by — 1 = = + s, ways, and so on, to get

m

fm(B") = H(x + s4).

i=1

This completes the proof. O

2.4.2 Corollary. Let B be the triangular board (or staircase) of shape (0,1,2,...,m — 1).
Then r, = S(m,m — k).

Proof. We have that each s; = 0. Hence by Theorem 2.4.1,

™ = Zrk () k-
It follows from equation (1.94d) in Chapter 1 that r, = S(m,m — k). O

A combinatorial proof of Corollary 2.4.2 is clearly desirable. We wish to associate a partition
of [m] into m — k blocks with a placement of k nonattacking rooks on B = {(7,7) : 1 <i <
m, 1 < j <i}. If arook occupies (7,j), then define i and j to be in the same block of the
partition. It is easy to check that this procedure yields the desired correspondence. O

2.4.3 Corollary. Two Ferrers boards, each with m columns (allowing empty columns), have
the same rook polynomaual if and only if their multisets of the numbers s; are the same.

Corollary 2.4.3 suggests asking for the number of Ferrers boards with a rook polynomial
equal to that of a given board B.

2.4.4 Theorem. Let 0 < ¢; < -+ < ¢, and let f(c1,...,¢n) be the number of Fer-
rers boards with no empty columns and having the same rook polynomial as the Ferrers
board of shape (c1,...,cp). Add enough intial 0’s to cq, ..., ¢y to get a shape (by, ... b)) =
(0,0,...,0,¢1,...,¢n) such that if s; = b; —i+ 1 then s; = 0 and s; < 0 for 2 < i < t.
Suppose that a; of the s;’s are equal to —i, so Y .., a;, =t —1. Then

CL1+CL2—1 CL2+CL3—1 CL3+CL4—1
fler, oo em) =
a2 as Qy

Proof (sketch). By Corollary 2.4.3, we seek the number of permutations dyds - - - d;—1 of the
multiset {1%1,2% ...} suchthat 0 > d;—1>dy—2 > --- > d;_y —t+1. Equivalently, d; =1
and d; must be followed by a number d;,; < d;+1. Place the a; 1’s down in a line. The ay 2’s

az az

may be placed arbitrarily in the a; spaces following each 1 in << . )) = <a1+a271) ways. Now

az+as— 1)
as

the a3’s may be placed arbitrarily in the ay spaces following each 2 in << Zz )) = (
ways, and so on, completing the proof.

For instance, there are no other Ferrers boards with the same rook polynomial as the triangu-
lar board (0,1, ...,n—1), while there are 3"~! Ferrers boards with the same rook polynomial
as the n x n chessboard [n] x [n].
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If in the proof of Theorem 2.4.4 we want all the columns of our Ferrers board to have distinct
lengths, then we must arrange the multiset {1%1,2%% ...} to first strictly increase from 1 to

its maximum in unit steps and then to be non-increasing. Hence we obtain the following
result.

2.4.5 Corollary. Let B be a Ferrers board. Then there is a unique Ferrers board whose
columns have distinct (nonzero) lengths and that has the same rook polynomial as B.

For instance, the unique “increasing” Ferrers board with the same rook polynomial as [n] x [n]
has shape (1,3,5,...,2n —1).
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2.5 V-partitions and Unimodal Sequences

We now give an example of a sieve process that cannot be derived (except in a very contrived
way) using the Principle of Inclusion-Exclusion. By a unimodal sequence of weight n (also
called an n-stack), we mean a P-sequence dids - - - d,, such that

a. ZdZ:n

b. For some j, we have di < dy <--- < d; > djp1 > -+ > dp,.

Many interesting combinatorial sequences turn out to be unimodal. (See Exercise 1.50 for
some examples.) In this section we shall be concerned not with any particular sequence,
but rather with counting the total number u(n) of unimodal sequences of weight n. By
convention we set u(0) = 0. For instance, u(5) = 15, since all 16 compositions of 5 are
unimodal except 212. Now set

Ul = > uln)g"

n>0

= q+2¢°+4¢° + 8¢" + 15¢° + 27¢° + 47¢" + 79¢° + - - - .

Our object is to find a nice expression for U(g). Write [j]'! = (1 —q¢)(1 —¢?)--- (1 — ¢). It
is easy to see that the number of unimodal sequences of weight n with largest term £ is the
coefficient of ¢" in ¢*/[k — 1]![k]!. Hence

_ q
U(q) = Zi[k_ NI (2.26)
k>1
This is analogous to the formula
Ve
ZP(”)C]” = Z Wa
n>0 k>0

where p(n) is the number of partitions of n. (Put = 1 in equation (1.82).) What we want,
however, is an analogue of equation (1.77), which states that

>_prme =0 -a)"

It turns out to be easier to work with objects slightly different from unimodal sequences,
and then relate them to unimodal sequences at the end. We define a V -partition of n to be

an N-array
afl a2 o s .
c 2.27
R 221
such that c+> a;+> . b; =n,c>a; > ag > --- and ¢ > by > by > ---. Hence a V-partition

may be regarded as a unimodal sequence “rooted” at one of its largest parts. Let v(n) be
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the number of V-partitions of n, with v(0) = 1. Thus for instance v(4) = 12, since there is
one way of rooting 4, one way for 13, one for 31, two for 22, one for 211, one for 112, and
four for 1111. Set

Vi) = > vn)g"

n>0

= 14 q+3¢*+6¢> +12¢* + 21¢° + 38¢° + 63¢" + 106¢° + - - - .

Analogously to (2.26) we have
k

V(g) = Z[ZT

k>0
but as before we want a product formula for V(g).

Let V,, be the set of all V-partitions of n, and let D,, be the set of all double partitions of n,

that is, N-arrays
al a2 o s .
o0 .
such that Y a; + > b;=n,a; > ay > -+ and by > by > ---. If d(n)#D,, then clearly

S =T[0 - d)> (2.29)

n>0 i>1
Now define I'y: D, — V,, by
{Ch dz s ]7 if a; > by
a; as bl b2
Iy =
1 .
1 by by R 1> a1

Clearly T’y is surjective, but it is not injective. Every V-partition in the set

VJZ{{C Zl Z2 M}EVn:C>a1}
L oby -

appears twice as a value of I'y, so

#V = #D, — #V,.
Next define I'y: D,,_; — V. by

Gz as

{a1+1 S ifa 1> 0
T a; as o bl 62
L by by e ar+1 ay --- )
by R 1fb1>(11—|—1.
by by -
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Again I's is surjective, but every V-partition in the set

sz{[c Zl ZQ ...}GVn:c>a1>a2}
L by -

appears twice as a value of T'y. Hence #V,! = #D,, ;| — #V? so
#Vn - #Dn - #Dn—l + #VnQ
Next define I'3: D,,_3 — V2 by

ars+1 a3 aq4 ---
|:a1+2 2 3 4 :|, ifa1+22b1

ap das bl 62 63
Ls by b - a1 +2 ay+1 a
1 2 e 1 2 3 .
b f b > 2.
{ 1 by by by . ] , 1L 01> a1+
We obtain
#V, = #Dy, — #Dy 1 + #D, 3 — #V2,
where

3 al a2 o« ..
V) = Cb b eV, :c>a1>ay>a3;p.
L oby e

Continuing this process, we obtain maps I';: Dn_(i) — V=1 The process stops when
2
(;) > n, so we obtain the sieve-theoretic formula

v(n)=d(n)—dn—-1)+dn—3)—dn—=6)+---,
where we set d(m) = 0 for m < 0. Thus using equation (2.29) we obtain the following result.

2.5.1 Proposition. We have

n+1 S
V(g) = <Z(—1)”q( : )> [Ja-q¢)
n>0 i>1
We can now obtain an expression for U(q) using the following result.
2.5.2 Proposition. We have

Ulg) +Vig) =1 —¢")"

i>1

Proof. Let U, be the set of all unimodal sequences of weight n. We need to find a bijection
D,, — U, UV,. Such a bijection is given by

as as --- )
{Zl 22 }r—> {al by by }’ if a1 2 b
1 2 ...a2a1b1b2---, ifb1>a1
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2.5.3 Corollary. We have
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2.6 Involutions

Recall now the viewpoint of Section 1.1 that the best way to determine that two finite sets
have the same cardinality is to exhibit a bijection between them. We will show how to apply
this principle to the identity (2.5). (The seemingly more general (2.4) is done exactly the
same way.) As it stands this identity does not assert that two sets have the same cardinality.
Therefore we rearrange terms so that all signs are positive. Thus we wish to prove the
identity

0+ Y )= D> (), (230)

#Y odd #Y even

where f_(Y) (respectively, f>(Y)) denotes the number of objects in a set A having exactly
(respectively, at least) the properties in 7" C S. The left-hand side of (2.30) is the cardinality
of the set M U N, where M is the set of objects x having none of the properties in S, and
N is the set of ordered triples (x,Y, Z), where = € A has exactly the properties Z O Y with
#Y odd. The right-hand side of (2.30) is the cardinality of the set N’ of ordered triples
(', Y', Z"), where 2’ € A has exactly the properties Z' O Y’ with #Y” even. Totally order
the set S of properties, and define o: M UN — N’ as follows:

o(z) = (2,0,0), ifxeM

(,Y —i,2), if (z,Y,Z) €N
and minY =minZ =1
o(x,Y,Z) =
(x,YUi,Z), if (z,Y,Z) €N
and min Z =7 < minY.

It is easily seen that o is a bijection with inverse
( reM, fY=27=1(

(z,Y =i, Z)EN, iffY #0

o N2, Y, 7) = and minY =min Z =1

(x,Y Ui, Z)e N, if Z+# ) and
min Z =4 <minY
\ (where we set minY = oo if Y = 0)).

This construction yields the desired bijective proof of (2.30).

Note that if in the definition of o' we identify x € M with (z,0,0) € N’ (so o~ (z,0,0) =
(z,0,0)), then 0 Uo ™! is a function 7: N U N’ — N U N’ satisfying: (a) 7 is an involution;
that is, 72 = id; (b) the fixed points of 7 are the triples (z,0,0), so are in one-to-one
correspondence with M; and (c) if (z,Y, Z) is not a fixed point of 7 and we set 7(z,Y, Z) =
(x,Y', Z"), then

()" + (-1 =0.
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Thus the involution 7 selects terms from the right-hand side of (2.5) (or rather, terms from
the right-hand side of (2.5) after each f>(Y') is written as a sum (2.3)) that add up to the
left-hand side, and then 7 cancels out the remaining terms.

We can put the preceding discussion in the following general context. Suppose that the finite
set X is written as a disjoint union X" UX ™ of two subsets Xt and X ~, called the “positive”
and “negative” parts of X, respectively. Let 7 be an involution on X that satisfies:

a. If 7(z) = y and x # y, then exactly one of z,y belongs to X (so the other belongs to
X).

b. If 7(x) = x then x € X™.

If we define a weight function w on X by

1, e X*
w(z) = -1, re X~

then clearly

#Fix(T) = > w(x), (2.31)
reX
where Fix(7) denotes the fixed point set of 7. Just as in the previous paragraph, the invo-
lution 7 has selected terms from the right-hand side of (2.31) which add up to the left-hand
side, and has cancelled the remaining terms.

We now consider a more complicated situation. Suppose that we have another set X that
is also expressed as a disjoint union X = X+ U X~, and an involution 7 on X satisfying
(a) and (b) above. Suppose that we also are given a sign-preserving bijection f: X — X,
that is, f(XT) = Xt and f(X~) = X~. Clearly then #Fix(r) = #Fix(7) since #Fix(r) =
#XT — #X and #Fix(7) = #X*+ — #X~. We wish to construct in a canonical way a
bijection g between Fix(7) and Fix(7). This construction is known as the involution principle
and is a powerful technique for converting non-combinatorial proofs into combinatorial ones.

The bijection g¢: Fix(7) — Fix(7) is defined as follows. Let z € Fix(7). It is easily seen,
since X is finite, that there is a nonnegative integer n for which

f(rf 17 f)"(z) € Fix(F). (2.32)

Define g(z) to be f(rf~'7f)"(x) where n is the least nonnegative integer for which (2.32)
holds.

We leave it to the reader to verify rigorously that g is a bijection from Fix(7) to Fix(7).
There is, however, a nice geometric way to visualize the situation. Represent the elements
of X and X as vertices of a graph I'. Draw an undirected edge between two distinct vertices
zand yif (1) z,y € X and 7(z) = y; or (2) z,y € X and 7(z) =y; or 3) z € X, y € X,
and f(x) = y. Every component of I' will then be either a cycle disjoint from Fix(7) and
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Figure 2.2: An illustration of the involution principle

Fix(7), or a path with one endpoint z in Fix(7) and the other endpoint Z in Fix(7). Then g
is defined by g(z) = Z. See Figure 2.2.

There is a variation of the involution principle that is concerned with “sieve-equivalence.”
We will mention only the simplest case here; see Exercise 2.36 for further development.
Suppose that X and X are (dlSJOlIlt) finite sets. Let Y C X and Y C X and suppose that
we are given bijections f: X — X and g: Y — Y. Hence #(X -Y) = #(X —Y), and we
wish to construct an explicit bijection h between X — Y and X-Y.PickzeX—Y. As
in equation (2.32) there will be a nonnegative integer n for which

flg H)"(z)e X —Y. (2.33)

In this case n is unique since if 2 € X — Y then g~ (y) is undefined. Define h(z) to be
f(g7 f)"(x) where n satisfies (2.33). One easily checks that h: X — Y — X —Y is a
bijection.

Let us consider a simple example of the bijection h: X — Y — X-Y.

2.6.1 Example. Let Y be the set of all permutations w € &,, that fix 1, that is, w(1) = 1.
Let Y be the set of all permutations w € &,, with exactly one cycle. Thus #Y = #Y =
(n—1)!, so

#(6, —Y)=#(6,-Y)=nl— (n—1)!.

It may not be readily apparent, however, how to construct a bijection i between &, —Y
and G,, — Y. On the other hand, it is easy to construct a bijection g between Y and Y
namely, if w = lag---a, € Y (Where w is written as a word, i.e., w(i) = a;), then set
g(w) = (1,as,...,a,) (written as a cycle). Of course we choose the bijection f: &, — &,
to be the identity. Then equation (2.33) defines the bijection h: &, — Y — &, — Y. For
example, when n = 3 we depict f by solid lines and g by broken lines in Figure 2.3. Hence
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123 = D))

132 < (1)(23)
213 — > (12)(3)
231 )
312 s (132)
321 (13)(2)

Figure 2.3: The bijection h: &, - Y — G,, — Y

(writing permutations in the domain as words and in the range as products of cycles),

h(213) = (12)(3)
h(231) = (1)(2)(3)
h(312) = (1)(23)
h(321) = (13)(2).

It is natural to ask here (and in other uses of the involution and related principles) whether
there is a more direct description of h. In this example there is little difficulty because Y’
and Y are disjoint subsets (when n > 2) of the same set &,,. This special situation yields

w, ifw¢§7

hlw) = { g (w), fweY. (2.34)
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X

Figure 2.4: A lattice path in N2
2.7 Determinants

In Proposition 2.2.6 we saw that a determinant det|a;;]j, with a;; = 0if j < ¢ — 1, can
be interpreted combinatorially using the Principle of Inclusion-Exclusion. In this section
we will consider the combinatorial significance of arbitrary determinants, by setting up a
combinatorial problem in which the right-hand side of equation (2.31) is the expansion of a
determinant.

We will consider lattice paths L = (vg, vy, ..., v;) in N2, as defined in Section 1.2, with steps
v;—v;—1 = (1,0) or (0, —1). We picture L by drawing an edge between v;_; and v;, 1 <i < k.
For instance, the lattice path ((1,4),(2,4),(2,3),(2,2),(3,2),(3,1)) is drawn in Figure 2.4.
An n-path is an n-tuple L = (L4, ..., L,) of lattice paths. Let «, 3,7, € N". Then L is of
type («, 3,7,9) if L; goes from (5;, ;) to (au,d;). (Clearly then a; > (; and v; > §;.) The
n-path L is intersecting if for some 7 # j L, and L; have a point in common; otherwise L
is nonintersecting. Define the weight of a horizontal step from (i, ;) to (i + 1, j) to be the
indeterminate z;, and the weight A(L) of L to be the product of the weights of its horizontal
steps. For instance, the path in Figure 2.4 has weight xox,.

If o« = (v,...,00) € N* and w € &, then let w(a) = (@), ., Qm)). Let A =
A(a, 3,7,6) be the set of all n-paths of type (a,3,7,0), and let A = A(a, 3,7,0) be the
sum of their weights. Consider a path from (3;,7v;) to (a4, 9;). Let m = «; — ;. For each
J satisfying 1 < j < m there is exactly one horizontal step of the form (j — 1 + 5, k;) —
(7 + Bi, k;). The numbers ky, ..., k,, can be chosen arbitrarily provided

%ZklszZ“'kazfsi- (2-35)
Hence if we define

h(m7 Yis 52) - Z ‘Tklxkg T kaa
summed over all integer sequences (2.35), then

n

Ala, 8,7,6) = [ [ e = Bis i, 64)- (2.36)
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1l L. L.

Figure 2.5: Three nonintersecting 2-paths

(In the terminology of Section 7.4, h(m;~;, d;) is the complete homogeneous symmetric func-
tion A, (Ts;, Toi41, - - - s Ty-)

Now let B = B(a, 3,7,0) be the set of all nonintersecting n-paths of type («, 3,,9), and
let B = B(a,[3,7,0) be the sum of their weights. For instance, let a = (2,3), 8 = (1,1),
v = (2,3), 6 = (1,0). Then B(a,f,7,0) = x223 + 2123 + 17273, corresponding to the
nonintersecting 2-paths shown in Figure 2.5.

2.7.1 Theorem. Let o, 3,7,6 € N such that for w € S,, B(w(«a),3,v,w(d)) is empty
unless w 1is the identity permutation. (For example, this condition occurs if o; < i,
Bi < Biv1, Vi < Vir1, and §; < 0 for 1 <i<n—1.) Then

where we set h(a; — B;;7i,0;) = 0 whenever there are no sequences (2.35).

Proof. When we expand the right-hand side of equation (2.37) we obtain

3 (sgnw)A(w(a), B, 7, w(3)). (2.38)

wEGn
Let A, = A(w(e), 3,7, w(d)). We will construct a bijection L — L* from (e, Aw) — B
to itself satisfying:
a. L™ = L; that is, * is an involution
b. A(L*) = A(L), that is, * is weight-preserving

c. f Le A, and L* € A, then sgnu = —sgnv.

Then by grouping together terms of (2.38) corresponding to pairs (L, L*) of intersecting n-
paths, we see that all terms cancel except for those producing the desired result B(a, 3,7, 9).

To construct the involution *, let L be an intersecting n-path. We need to single out some
canonically defined pair (L;, L;) of paths from L that intersect, and then some canonically
defined intersection point (z,y) of these paths. One of many ways to do this is the following.
Let ¢ be the least integer for which L; and Ly intersect for some k # ¢, and let = be the least
integer such that L; intersects some Lj with k > i at a point (z,y), and then of all such k
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let j be the minimum. Construct L} by following L; to its first intersection point v = (x,y)
with L;, and then following L; to the end. Construct L} similarly by following L; to v and
then L, to the end. For k # i, j let L} = L.

Property (a) follows since the triple (i, j,v) can be obtained from L* by the same rule that
L* is obtained from L. Property (b) is immediate since the totality of single steps in L and
L is identical. Finally, v is obtained from u by multiplication by the transposition (i, j), so
(c) follows. O

Theorem 2.7.1 has important applications in the theory of symmetric functions (see the first
proof of Theorem 7.16.1), but let us be content here with a simple example of its use.

2.7.2 Example. Let r, s € N and let S be a subset of [0, 7] x [0, s]. How many lattice paths
are there between (0,7) and (s,0) that don’t intersect S7 Call this number f(r,s,S). Let
S = {(ala b1)7 R (ak7 bk)}7 and set

a=(s,a,...,ar), B=1(0,a1,...,ax)
”y:(r,bl,...,bk), 5:(0761,...,bk).
Then f(r,s,S) = B(«a, 3,7,9), where we set each weight x,, = 1. Now

Oéj+%‘—ﬁi—5j)

h(e = Bis%is 6j) 4, -1 = < a; — B
¥l 3

Hence by Theorem 2.7.1,
r+s r+a; — b r+ ay — by
r aq ag

(3—a1+b1) 1 (ak—bk—&1+bl)
f(r,s,8) = T e

S—CLk+bk &1—b1—ak+bk 1
S — Qg a1 — ag

where we set (;) =0if j <0ori—j < 0. When we expand this determinant we obtain

a formula for f(r,s,S) that can also be deduced directly from the Principle of Inclusion-
Exclusion. Indeed, by a suitable permutation of rows and columns the above expression
for f(r,s,S) becomes a special case of Proposition 2.2.6. (In its full generality, however,
Theorem 2.7.1 cannot be deduced from Proposition 2.2.6; indeed, the determinant (2.37)
will in general have no zero entries.)
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NOTES

(13

As P. Stein says in his valuable monograph [1.71], the Principle of Inclusion-Exclusion “is
doubtless very old; its origin is probably untraceable.” An extensive list of references is
given by Takdcs [2.22], and exact citations for results listed below without reference may be
found there. In probabilistic form, the Principle of Inclusion-Exclusion can be traced back
to A. de Moivre and less clearly to J. Bernoulli, and is sometimes referred to as “Poincaré’s
theorem.” The first statement in combinatorial terms may be due to C. P. da Silva and is
sometimes attributed to Sylvester.

Example 2.2.1 (the derangement problem) was first solved by P. R. de Montmort (in prob-
abilistic terms) and later independently investigated by Euler.

Example 2.2.4 (enumeration of permutations by descent set) was first obtained by MacMahon
[1.55, vol. 1, p. 190] and has been rediscovered several times since. Example 2.2.5 first
appears in Stanley [2.21]. The probleme des ménages (or menage problem) (Example 2.3.3)
was suggested by Tait to Cayley and Muir, but they did not reach a definitive answer. The
problem was independently considered by Lucas and solved by him in a rather unsatisfactory
form. The elegant formula given in Corollary 2.3.5 is due to Touchard. For references to
more recent work see Comtet [2.3, p. 185] and Dutka [2.4]. The theory of rook polynomials
in general is due to Kaplansky and Riordan [2.13]; see Riordan [2.17, Chs. 7-8]. Ferrers
boards were first considered by D. Foata and M.-P. Schiitzenberger [2.5] and developed
further by Goldman, Joichi, and White [2.8]-[2.11]. The proof given here of Theorem 2.4.4
was suggested by P. Leroux. There have been many further developments in the area of
rook theory; see for instance Sjostrand [2.18] and the references given there. The results of
Section 2.5 first appeared in Stanley [2.19, Ch. IV.3] and were restated in [2.20, §23].

The involution principle was first stated by Garsia and Milne [2.6], where it was used to give
a long-sought-for combinatorial proof of the Rogers-Ramanujan identities. (See Pak [1.62,
§7] for more information.) For further discussion of the involution principle, sieve equiva-
lence, and related results, see Cohen [2.2], Gordon [2.12], and Wilf [2.23]. The combinatorial
proof of the Principle of Inclusion-Exclusion given in Section 2.6 appears implicitly in Rem-
mel [2.16] and is made more explicit in Zeilberger [2.24]. Theorem 2.7.1 and its proof are
anticipated by Chaundy [2.1], Karlin and McGregor [2.14], and Lindstrom [2.15], though the
first explicit statement appears in a paper of Gessel and Viennot [2.7]. It was independently
rediscovered several times since the paper of Gessel and Viennot. Our presentation closely
follows that of Gessel and Viennot.
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EXERCISES FOR CHAPTER 2

1. [3] Explain why the Principle of Inclusion-Exclusion has the numerical value

8.53973422267356706546 - - - .

2. [2-]* Give a bijective proof of equation (2.24) or (2.25), i.e

> (X)a* Zf> )z — 1)

or

2+ )P =3 L0

Y

3. [2] Let S = {Py,...,P,} be a set of properties, and let f; (respectively, f>j) denote
the number of objects in a finite set A that have exactly k (respectively, at least k of
the properties. Show that

n

fro=> (-1 (;) 9is (2.39)

i=k
and . .
P =30, (2.40)
i=k

where

= > f(T)

TCS
AT=i
4. (a) [2] Let Ay, ..., A, be subsets of a finite set A, and define Sg, 0 < k < n, by (2.6).
Show that
Sk — Spp1 -+ (=D)"FS, >0, 0<k<n. (2.41)

(b) [2+] Find necessary and sufficient conditions on a vector (Sp, Si,...,S,) € N1
so that there exist subsets Ay, ..., A, of a finite set A satisfying (2.6).

5. (a) [2] Let
I On—1 o 8o
0—-V,=3V, 41— --=>V,=W=0 (2.42)

be an exact sequence of finite-dimensional vector spaces over some field; that is,
the 0;’s are linear transformations satisfying im d;;; = ker 0; (with 0,, injective
and 0y surjective). Show that

dim W = Z )* dim V. (2.43)
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(b) [2] Show that for 0 < j <mn,
rankd; = Y (—1)"7 dim V;, (2.44)
i=j
so in particular the quantity on the right-hand side is nonnegative.

(c) [2] Suppose that we are given only that equation (2.42) is a complex; that is,
0;0;41 = 0 for 0 < j < n — 1, or equivalently imd;; C ker 9;. Show that if
equation (2.44) holds for 0 < j < n, then (2.42) is exact.

(d) [2+] Let Ay, ..., A, be subsets of a finite set A, and for T' C [n] set Ap = (,cp A
In particular, Ay = A. Let Vi be the vector space (over some field) with a basis

consisting of all symbols [a, T] where a € Ar. Set V; = P, Vr, and define for
1 <7 < n linear transformations 9;: V; — V;_; by

05la, T = (=1)'[a, T — 1], (2.45)

i=1

where the elements of T" are {1 < --- <t;. Also, define W to be the vector space
with basis {[a] : a € AyN---NA,}, and define dy: Vy — W by

[ a], ifa€eAn---NA,
dola, 0] = { 0, otherwise.

(Here A; = A — A;.) Show that (2.42) is an exact sequence.
(e) [14] Deduce equation (2.7) from (a) and (d).
(f) [1+] Deduce Exercise 2,4(a) from (b) and (d).

6. In this exercise we consider a multiset generalization of the Principle of Inclusion-
Exclusion.

(a) [2] Let N be a finite multiset, say N = {x{*,...,2%*}. For each 1 <r < k and
1 <1< a,, let P, be some property that each of the elements of a set A may
or may not have, with the condition that if 1 <14 < j < a, then any object with
property Pj,. also has P,,. (For instance, if A is a set of integers, then P, could be
the property of being divisible by r%.) For every submultiset M C N, let f_(M)
be the number of objects in A with exactly the properties in M; in other words,
if M = {a%, ... 2%}, then f_(M) counts those objects in A which have property
P, but fail to have P, 11, for 1 <r < k. Similarly define f~ (M), so

fo(M) = f-(Y). (2.46)

YOM

Show that
fo(M)=" > ()M p(Y). (2.47)

YDOM
Y—M is a set
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Dually, if
fo(M) =" =), (2.48)

then
fo(M)= > (—)FM (v, (2.49)

YCM
M-Y is a set

(b) [2] Suppose that we encode the multiset N = {z{*,...,2%*} by the integer
n = pi'---pi¥, where pi,...,p; are distinct primes. Thus submultisets M of
N correspond to (positive) divisors d of n. What do equations (2.48) and (2.49)
become in this setting?

7. [2] Fix a prime power ¢q. Prove equation (1.103), namely, the number (n) of monic
irreducible polynomials of degree n over the field I, is given by

By = 3 uld)g"

din
(Use Exercise 2.6(b).)

8. (a) [3-] Give a direct combinatorial proof of equation (2.13); that is,
D(n) =nD(n —1)+ (—1)".

(b) [2] Let £(n) denote the set of permutations w € &,, whose first ascent is in an
even position (where we always count n as an ascent). For instance, £(3) =
{213,312}, and £(4) = {2134, 2143, 3124, 3142, 3241, 4123, 4132, 4231, 4321}. Set
E(n) = #&(n). Show that E(n) = nE(n — 1) 4+ (—1)". Hence (since E(1) =
D(1) = 0) we have E(n) = D(n).

(c) [2+] Give a bijection between the permutations being counted by E(n) and the
derangements of [n].

9. [2-] Prove the formula A¥0? = k!S(d, k) of Proposition 1.9.2(c) (equivalent to equa-
tion (1.94a)) using the Principle of Inclusion-Exclusion.

10. (a) [14]* How many functions f: [n] — [n] have no fixed points?

(b) [2] Let E(n) be the number obtained in (a). Show that lim, .., E(n)/n! = 1/e,
the same as lim,_,. D(n)/n! (Example 2.2.1). Which of D(n)/n! and E(n)/n!
gives the better approximation to 1/e?

11. [3-] Let ay, ..., ax be positive integers with > a; = n. Let S = {aj,a; + aq,...,a1 +
as + -+ + ag_1}. Show that the number of derangements in &,, with descent set S is
the coefficient of x{* - - - 2}* in the expansion of

1
(I4+x) - (1+z)(l—2y — - — )
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12.

13.

[2+] Let @ = (ay,...,a;) € N* and let M, be the multiset {1°1,... k*}. A de-
rangement of M, is a permutation ajas - - - a, (where n = > «;) of M, that disagrees
in every position with the permutation we get by listing the elements of M in weakly
increasing order. For instance, the multiset {1,272 3} has the two derangements 2132
and 2312. Let D(«) denote the number of derangments of M,. Show that

1

ZD(a)xa —

aENF (1+x1)-..(1+xk)<1—1_f:131_..._li_ik)
1

1- ZS(#S —1) HieS r;’

where S ranges over all nonempty subsets of [n].

Let w = ajay - - - a, € &,. The connectivity set C(w) of w is defined by
Cw)={i : aj <apforall j <i<k}Cn-—1].

In other words, i € C(w) if {a1,...,a;} = [i]. For instance, C'(2314675) = {3,4}.
(Exercise 1.128(a) deals with the enumeration of permutations w € &,, satisfying

C(w)=10.)
(a) [2] If S = {i1,...,ix}< C [n — 1], then let
n(S) = iy!(ig —iy)! -+ (i, — ig—1)!(n —ig)L.

Hence by Proposition 1.4.1 we have «a(S) = n!/n(S), the number of permutations
w € 6,, with descent set D(w) C S. Show that

#{w € &, : SC C(w)}=n(S).
(b) [2+] Given S, T C [n—1],let S = [n — 1] — S, and define
Xor = #{we 6, : C(w)=S, D(w)=T}

Zer = #{we 6, : §C Cw), T C Dw)}

For instance, for n = 4 we have the following table of Xgr.

S\T|0 1 2 3 12 13 23 123
0 |1

1
2
3
12
13
23
123

O OO OO oo
—_ o O~ OO
N = O = O
—_—_-0 O =
N OO =

(@)

—
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14.

Show that -
_ [ n(S)/n(T), i S2T,
Ast = { 0, otherwise. (2.50)

[2-] Let M = (Mgr) be the matrix whose rows and columns are indexed by
subsets S, T C [n — 1] (taken in some order), with

1, ifSDT,
Msr = { 0, otherwise.

Let D = (Dgr) be the diagonal matrix with Dgg = n(S5). Let Z = (Zgr), i.e.,
the matrix whose (S, T)-entry is Zsr. Show that equation (2.50) can be restated
as follows:

Z =DMD™".

Similarly show that if X = (Xgr), then

MXM = Z.

[1+] For an invertible matrix A = (Agr), write Agy. for the (S, T)-entry of the in-
verse matrix A~'. Show that the Principle of Inclusion-Exclusion (Theorem 2.1.1)
is equivalent to

Mgk = (~1y#S#T 0y,
[2-] Define the matrix Y = (Ygr) by
Ysr=#{w e &, : SCC(w), T=D(w)}.

Show that Y = MX = ZM~!.
[2+] Show that the matrices Z,Y, X have the following inverses:

Zgh = (=1 Zgp
Yo = ()" T4{we s, : S=Cw), TC Dw)}
Xgp = (=1)#5 T X g,

[2+]* Let Ag(n) denote the number of k-element antichains in the boolean algebra
B, i.e., the number of subsets S of 2" such that no element of S is a subset of
another. Show that

Al(n) = 2"
1 n n n

Ayln) = (4" —2-3"42")
1

Ay(n) = (8" —6-6"+6-5"+3-4"~6-3"+2-2")
1

Ay(n) = 5 (16" —12-12" 424 10" +4-9" ~ 188"

+6-7"—36-6"+11-4"—22-3"+6-2").
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(b) [2+]* Show that for fixed k € P there exist integers a2, ax 3, . . ., aj o1 such that

2k

1 0

Ak(n) = o Zakﬂ :
T i=2

Show in particular that aj o = 1, ap; = 0if 3252 < i < 2% and ayzo0—2 =
k(k—1).

15. (a) [2-] Given a permutation w € &3, let P, denote the corresponding permutation
matrix; that is, the (¢, j)-entry of P, is equal to du(z);. Let a,, where w € &g,
be integers satisfying > ., P, = 0. Show that

(193 = (931 = (312 = —(132 = —0213 = —(/32].

(b) [2] Let H,(r) denote the number of n x n N-matrices A for which every row and
column sums to r. Assume known the theorem that A is a sum of permutation
matrices. Deduce from this result (for the case n = 3) and (a) that

Hy(r) = (Tg‘:’) - (T;Q). (2.51)

(c) [3-] Give a direct combinatorial proof that

Hy(r) = <rjl-4) N (rl—i’)) N (TZQ)

16. [2] Fix k& > 1. How many permutations of [n] have no cycle of length k? If fi(n)
denotes this number, then compute lim,, ., fr(n)/n!.

17. (a) [2] Let fa(n) be the number of permutations of the integers modulo n that consist
of a single cycle (ay, as, ..., a,) and for which a; +1 # a;41 (modn) for all ¢ (with
an+1 = ap). For example, for n = 4 there is one such permutation; namely,
(1,4,3,2). Set f2(0) =1 and f2(1) = 0. Use the Principle of Inclusion-Exclusion
to find a formula for fo(n).

(b) [14] Write the answer to (a) in the form A"g(0) for some function g.
(¢) [2-] Find the generating function -, fo(n)2"/nl.
(d) [2-] Express the derangment number D(n) in terms of the numbers fy(k).
(e) [2-] Show that
lim f2(n) = l
n—o0 (n — 1)! e

(f) [3-] Generalize (e) to show that fy(n) has the asymptotic expansion

fa(n) 1( 1 1 1 2 9 L w )

(2.52)



where ). a;2'/i! = exp(1 — ¢%). By definition, equation (2.52) means that for
any k € N,
k

. fa(n) 1 a; |
Jim n* [(n e ; E] =0

18. [3] Let k > 2. Let fi(n) be the number of cycles as in Exercise 2.17 such that for no ¢
do we have

w(i+j) =w(i)+j(modn), foral j=1,2,.... k—1,

where the argument ¢ + j is taken modulo n. Use the Principle of Inclusion-Exclusion
to show that

fan) 1 31 141 »
e T T R
fi(n) 1 5 291
R T
fl) 1 (k=2(k+1) 1
(n—1)! nk=2 2 nk-1
k(k 4+ 1)(3k% — 5k — 10 1 e
N 24 o o),

for fixed k > 5.
In particular, for fixed & > 3 we have lim,,_, fr(n)/(n — 1)! = 1.

19. [2] Suppose that 2n persons are sitting in a circle. In how many ways can they form n
pairs if no two adjacent persons can form a pair? Express your answer as a finite sum.

20. [2] Call two permutations of the 2n-element set S = {a1,a9,...,an,b1,ba,...,b,}
equivalent if one can be obtained from the other by interchanges of consecutive el-
ements of the form a;b; or b;a;. For example, asbzasbsaib; is equivalent to itself and to
asa3b3baayby, asbzaszbobiay, and asasbsbabia;. How many equivalence classes are there?

21. (a) [2+]* Given numbers (or elements of a commutative ring with 1) a; for i € Z,
with a; = 0 for i < 0 and ag = 1, let f(k) = det[a;_;11]}. In particular, f(0) = 1.
Show that

1
k)t = .
D L e .

k>0

(b) [2] Suppose that in (a) we drop the condition ay = 1, say ap = . Deduce from
(a) that

1
> S0 = oy
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(c) [2+] Suppose that in (b) we let the first row of the matrix be arbitrary, i.e, let
My, = (my;)¥ be the k x k matrix defined by

my; = b
mg;; = Gj—i+1, 1> 2,
where ag = o and a; = 0 for i < 0. Let g(k) = det M. Show that

S glk)at = Sy (—1) it

g
k>1 1+ Zz>1( )ZO‘Z Laat

(d) [2] Fix 0 < a < d. Let f(k) = Batra(a,a+ d,a+ 2d,...,a + (k — 1)d). Deduce
from equation (2.16) that

2V

Zﬂ a . JZO ‘
= +kd P
= ;(_1) (id)!

Give a g-analogue based on Example 2.2.5.
(e) [2*] Suppose that in Proposition 2.2.6 the function e(4, j) has the form
6(2., j) - aj—i

for certain numbers ay, with ap = 1 and ay = 0 for k£ < 0. Show that f_(5) is
equal to the coefficient of "' in the power series

h(n)(l — o+ Oég[BQ — 043;53 + .. )—1'

22. (a) [2+] Let Es, denote the number of alternating permutations w € Sy,. Thus by
Proposition 1.6.1 we have

" 22 ot
(Zng)(-55-)
n>0

Equating coefficients of 22" /(2n)! on both sides gives

n n n
Eoy = (2) Eoy o — (4) Eopy+ (6) Eop6— -+ (2.53)

Give a sieve-theoretic proof of equation (2.53).

(b) [2+] State and prove a similar result for Fy, .

23. (a) [2+] Give a sieve-theoretic proof of Exercise 1.61(c), i.e., if f(n) is the number of
permutations w € &,, with no proper double descents, then

Z f(”)ii_:Z = 257 1 23\
= 2 ((3J)! BT 1)!)

J=0
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(b) [24+]* Generalize (a) as follows. Let f.(n) be the number of permutations w € S,,
with no r consecutive descents (where n is not considered a descent). Give a

sieve-theoretic proof that

" Z r+ D) ((r+1)j+1)!

720

xn
Z fr(n)m = ( 21 2 (r )i+l )
(( )

24. [24]* Fix j,k > 1. For n > 0 let f(n) be the number of integer sequences aq, as, . . ., a,
such that 1 < a; < kfor1 < ¢ < n,and a; > a;,_1 —j for 2 <1 < n. Give a

sieve-theoretic proof that

Fla) 1= 3 )" = SE 1]-(;; ")

1>0

(Note that the denominator is actually a finite sum.)

25. (a) [2]* Let fi(m,n) be the number of m x n matrices of 0’s and 1’s with at least
one 1 in every row and column, and with a total of ¢ 1’s. Use the Principle of

Inclusion-Exclusion to show that

Z fi(m,n)t" = Z(—1)k (Z) (L+)"F—1)™, (2.54)

k=0

(b) [2]* Show that

Z Z Z fi(m, n)yixmyn =e Y Z Z(l + t)”xzj—f']

min!
mn>0 i>0 >0 i>0 j>0

Note that this formula, unlike equation (2.54), exhibits the symmetry between m
and n.

26. [2+]* Let 7 € I1,,, the set of partitions of [n]. Let S(m,r) denote the number of o € II,,
such that |o] = r and #(AN B) <1 for all A € 7 and B € o. (This last condition

bN

is equivalent to m A ¢ = 0 in the lattice structure on II,, defined in Example 3.10.4.)

Show that

S(m,r) = %gc)(—l)“iﬂ(i)#

Aem



27. (a)

(c)

[3-] Let F' be a forest, with ¢ = ¢(F') components, on the vertex set [n]. We say
that F' is rooted if we specify a root vertex for each connected component of F'.
Thus if ¢q, . . ., ¢, are the number of vertices of the components of F' (so " ¢; = n),
then the number p(F') of ways to root F' is ¢jcs---¢,. Show that the number of
k-component rooted forests on [n] that contain F is equal to

p(F) (ﬁ B D n'k,

[2+] Given any graph G on [n] with no multiple edges, define the polynomial

P(G,z) =) " (2.55)
F

summed over all rooted forests F' on [n] contained in G. Let G denote the com-
plement of G; that is, {i,j} € ([g]) is an edge of G if and only if {7, j} is not

an edge of G. Use (a) and the Principle of Inclusion-Exclusion to show that
P(G,z) = (-1)""'P(G, —x —n). (2.56)

In particular, the number ¢(G) of spanning trees of G (i.e., subgraphs of G that
are trees and that use all the vertices of () is given by

c(G) = (=1)"'P(G, —n)/n. (2.57)

[2] The complete graph K, has vertex set [n] and an edge between any two distinct
vertices (so (g) edges in all). The complete bipartite graph K, s has vertex set
AU B, where A and B are disjoint with #A = r and #B = s, and with one edge
between each vertex of A and each vertex of B (so rs edges in all). Use (b) to

find the number of spanning trees of K, and K, ;.

28. [3] Let r > 1. An r-stemmed V -partition of n is an array

by by b3
afl &2 PR af’l"
C1 Cy C3
of nonnegative integers satisfying a; > ay > --- > a, > by > by >b3 > -+, a, > ¢y >

cg>cy>---,and Y a; + Y b+ > ¢; =n. Hence a 1-stemmed V-partition is just a
V-partition. Let v,(n) denote the number of r-stemmed V-partitions of n. Show that

Zvr(n)x" = pr(2)T () — ¢r()

where

>0 (I-2)1—=a2?)--- (1 -2 Hi21(1 —at)?’
p(z) = 1, pa(x) = 2, ¢1(z) = 0, gz 1
pr(x) = 2pr—1($) + (I'T_Q — 1)pr_2(x), r>2
a(@) = 2q(x) + (@7 = 1gra(), 7 >2
T() = > (~1)als)
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29. (a) [2]* A concave composition of n is a nonnegative integer sequence a; > as >
<o >a, =b, < b._1 < -+ < by such that > (a; + b;) = n. For instance, the eight
concave compositions of 6 are 33, 5001, 4002, 3003, 2112, 2004, 1005, and 210012.
Let f(n) denote the number of concave partitions of n. Give a combinatorial
proof that f(n) is even for n > 1.

(b) [5-] Set
Fq) =) f(n)q" =1+2¢"+2¢*+4¢" + 4" + 8¢° + - - .
n>0

Give an Inclusion-Exclusion proof, analogous to the proof of Proposition 2.5.1,

that 1)/
1- Zn>1 qn( =1/ (1- qn)

Fo=rm—ga—pa-o

30. [3] Give a sieve-theoretic proof of the Pentagonal Number Formula (Proposition 1.8.7),
viz.,

14+ Zn>1(_1)n[xn(3n—1)/2 +xn(3n+1)/2]
Hi21(1 — ')

Your sieve should start with all partitions of n > 0 and sieve out all but the empty
partition of 0.

= 1.

31. [3-] Give cancellation proofs, similar to our proof of the Pentagonal Number Formula
(Proposition 1.8.7), of the two identities of Exercise 1.91(c), viz.,

s = e
- = _
k>1 1+ q nez
1— q2k ntl
Hl_q%—l - Zq(2)‘
k>1 n>0

32. [3-] Give a cancellation proof of the identity
n 1—¢)(1—=¢*)---(1=qg"1), neven
prd k 0, n odd.

33. [2-] Deduce from equation (2.21) that

det K? i z_l 1)] Z_l = ¢(®), (2.58)

34. A tournament T on the vertex set [n] is a directed graph on [n] with no loops such
that each pair of distinct vertices is joined by exactly one directed edge. The weight
w(e) of a directed edge e from i to j (denoted i — j) is defined to be z; if i < j and
—x; if i > j. The weight of T" is defined to be w(T') = [[, w(e), where e ranges over
all edges of T.
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35.

(a) [2-] Show that
Sow@= ] (-, (2.59)
T 1<i<j<n
where the sum is over all 2(3) tournaments on [n].

(b) [2-] The tournament T is transitive if there is a permutation z € &,, for which
z(i) < z(y) if and only if ¢ — j. Show that a non-transitive tournament contains
a 3-cycle, i.e., a triple (¢, u,v) of vertices for which ¢t — u — v — .

(¢) [1+] If T and T" are tournaments on [n| then write 7" < 7" if 7" can be obtained
from T by reversing a 3-cycle; that is, replacing the edges t — u, u — v, v — ¢
with u — t, v — u, t — v, and leaving all other edges unchanged. Show that
w(T") = —w(T).

(d) [2] Show that if T" <> T" then T and 7" have the same number of 3-cycles.
(e) [2+] Deduce from (a)—(d) that
det [a:f_lyll = H (x; — x;),

1<i<j<n

by cancelling out all terms in the left-hand side of (2.59) except those correspond-
ing to transitive 7'

(a) [2] Let f(x1,...,2,) be a homogeneous polynomial of degree n over a field K.
Show that

1wy wa) fwn, o m) = Y (=D T e ). (2.60)
(61 ..... en)e{O,l}”
(Regard each ¢; in the exponent of —1 as an integer, and in the argument of f as
an element of K.)
(b) [2] Let A = (a;;) be an n x n matrix. The permanent of A is defined by
per(A) = > a1u(1)2u(2) * ** Gnwn)-

’wEGn

In other words, the formula for per(A) is the same as the expansion of det(A) but
with all signs positive. Show that

per(A) = > ()" ] ay. (2.61)

SC[n] i=1 jes

36. [3-] Let Ay, ..., A, be subsets of a finite set A, and By, ..., B, subsets of a finite set

B. For each subset S of [n], let Ag = (,cg A and Bg = (),cg Bi. Given bijections
fs: Ag — Bg for each S C [n], construct an explicit bijection h: A —J;_; 4; — B —
U, Bi. Your definition of h should depend only on the fg’s, and not on some ordering
of the elements of A or on the labeling of the subsets A;,..., A, and By, ..., B,.
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37. [3-]* Given a,b € P with a < b, let C(b — a) denote the number of lattice paths in Z?
from (2a,0) to (2b,0) with steps (1,1) or (1, —1) that never pass below the z-axis. (It
follows from Corollary 6.2.3(iv) that C'(b—a) is the Catalan number —— (*")  but
this fact is irrelevant here.) Now given {aq,as,...,a2,}« C Z, let C(ay,as,...,as,)
denote the number of ways to connect the points (2a1,0), (2as,0),..., (2a2,,0) with
n pairwise disjoint lattice paths Ly, ..., L, of the type just described. (Thus each L;
connects some (2a;,0) to some (2a,0), j # k. If i # j then L; and L; do not intersect,

including endpoints, so each (2a;,0) is an endpoint of exactly one L;.)

Now given a triangular array A = (a;;) with 1 <14 < j < 2n, define the pfaffian of A
by

Pf(A) == Zg(ilajla .. 'ainajn)ailjl C Qg

where the summation is over all partitions {{i1,j1}<,...,{in,Jn}<} of [2n] into 2-
element blocks, and where (i1, j1, . . . , in, jn) denotes the sign of the permutation (writ-

ten in two-line form)
1 2 -« 2n—1 2n

(It is easy to see that e(iy, j1,. - -, in, Jn) does not depend on the order of the n blocks.)
Give a proof analogous to that of Theorem 2.7.1 of the formula

C’(al, ag, ..., agn) = Pf(C(CLJ - CLZ))

For instance,

C(3) C(5) C(6)
C(0,3,5,6) = Pf C(2) Cc(3)
C(1)

5 42 132

= Pf 2 5

1

= 5-1+132-2-42.5
59.
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1. We have

Principle of Inclusion-Exclusion

3. We have

SOLUTIONS TO EXERCISES

If #R = r then the inner sum is equal to

T

S -1

=0

()=

= PIE

e
(3.141592653 - - - )(2.718281828 - - - )
8.53973422267356706546 - - -

)

(TR
— r—j ’

J

and the proof of equation (2.39) follows. The sum (2.40) is evaluated similarly. An
extensive bibliography appears in Takdcs [2.22].

4. (a) If we regard A; as the set of elements having property P;, then

Hence

Sk_skfl‘f‘"‘

Ar = f=(T

266

=) (Y

YOT

=Y (TR
#T>k
- Y T
#T>k Y DT
S A RIS
#Y >k TCY
HT>k
4y
= > o)
4Y >k i=k



(b)
5. (a)

(b)

(c)

(d)

It is easy to see that >_7", (—1)*(") = (7=]) > 0. Since f_(Y) > 0, equa-
tion (2.41) follows.
Setting

the inequality (2.41) can be rewritten

S >0

S < S

S > Sy—5;

S < Sp—851+ 5

In other words, the partial sums Sy — S; + - - - + (—=1)*S, successively overcount
and undercount the value of S. In this form, equation (2.41) is due to Carlo
Bonferroni (1892-1960), Pubblic. Ist. Sup. Sc. Ec. Comm. Firenze 8 (1936), 1-
62. These inequalities sometimes make it possible to estimate S accurately when
not all the S;’s can be computed explicitly.

Answer: Zle(—l)"*k (;) S; >0, 0<Ek<n.

The most straightforward proof is by induction on n, the case n = 0 being trivial
(since when n = 0 exactness implies that W = 1{)). The details are omitted.

The sequence

O Ot Bis1 . i .
O—>Vn—>Vn_1_>..._>] Vj_7>1maj_>0

is exact. But dim(im 0;) = rank d;, so the proof follows from (a).

By equation (2.44) we have dimV; = rankd; + rank d;;;. On the other hand,
rank 0; 11 = dim(im 0;41) and rank 0; = dim V; — dim(ker 0;), so dim(imd;1,) =
dim(ker 0;). Since im 0,41 C ker 0;, the proof follows.

For fixed a € A let V}# be the span of the symbols [a,T] if a € Ar; otherwise
Vi =0. Let V' = P 4r—; V1, and let W* be the span of the single element
[a] if a € Ay M-+ N Ay; otherwise W* = 0. Then §;: V* — Ve, j > 1, and
Op: Vit — W, (Thus the sequence (2.42) is the direct sum of such sequences for
fixed a.) From this discussion it follows that we may assume A = {a}.

Clearly 0y is surjective, so exactness holds at W. It is straightforward to check
that 0;0;11 = 0, so (2.42) is a complex. Since A = {a} we have dimV; = (’;) and
> (1) dimV; = (?:i) There are several ways to show that rank 9; = (7;:11),
so the proof follows from (c).

There are many other proofs, whose accessibility depends on background. For
instance, the complex (2.42) in the case at hand (with A = {a}) is the tensor
product of the complexes C;: 0 — U L 7N 0, where U; is spanned by [a, {t;}].
Clearly each C; is exact; hence so is (2.42). (The definition (2.45) was not plucked
out of the air; it is a Koszul relation, and (2.42) (with A = {a}) is a Koszul com-
plex. See almost any textbook on homological algebra for further information.).
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6.

(e,f)

(a)
(b)

Follows from dim Vy = # A, whence dimV; = 5.

Straightforward generalization of Theorem 2.1.1.

We obtain the classical Mobius inversion formula (see Example 3.8.4). More
specifically, let D,, denote the set of all divisors of n, and let f,g: D,, — K. Equa-
tions (2.48) and (2.49) then assert that the following two formulas are equivalent:

g(m) = Zf(d), for all m|n
dlm

f(m) = Zu(m/d)g(d), for all m|n. (2.62)
dl

7. Each element o € Fn generates a subfield F,(«) of order ¢¢ for some d|n. Thus « is a
zero of a unique monic irreducible polynomial f,(z) of degree d over F,. Every such
polynomial has d distinct zeros, all belonging to F,». Hence

8.

¢ = dp(d).

din

Mébius inversion (see equation (2.62)) gives

(a)
(b)

nB(n) = pn/d)q" =Y u(d)g"*.

din dln

See J. B. Remmel, Furopean J. Combinatorics 4 (1983), 371-374, and H. S. Wilf,
Mathematics Magazine 57 (1984), 37-40.

Note that the last entry a, of a permutation w = a;---a, € &, has no ef-
fect on the location of the first ascent unless w = n,n — 1,...,1, in which case
the contribution to E(n) is (—1)". See J. Désarménien, Sem. Lotharingien de
Combinatoire (electronic) 8 (1983), BO8b; formerly Publ. I.R.M.A. Strasboury,
229/S-08, 1984, pp. 11-16. For a generalization, see J. Désarménien and M. L.
Wachs, Sem. Lotharingien de Combinatoire (electronic) 19 (1988), B19a; formerly
Publ. .R.M.A. Strasbourg, 361/S-19, 1988, pp. 13-21. See also Exercise 7.65 for
a related result dealing with symmetric functions.

NoTE. We can also see that E(n) = D(n) by noting that the number of permu-
tations w € &,, whose first ascent is in position k is n! % — m> for0<k<n
and is 1/n! for k = n, and then comparing with equation (2.12). Moreover, in an
unpublished paper at

(http://people.brandeis.edu/~gessel/homepage/papers/color.pdf),

Gessel gives an elegant bijective proof in terms of “hook factorizations” of per-
mutations that
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(c) Write a derangement w as a product of cycles. Arrange these cycles in decreasing
order of their smallest element. Within each cycle, put the smallest element in
the second position. Then erase the parentheses, obtaining another permutation
w'. For instance, let w = 974382651 = (85)(43)(627)(91); then w’ = 854362791.
It is not hard to check that the map w +— w’ is a bijection from derangements in
S, to £(n). This bijection is due to J. Désarménien, ibid.

I am grateful to Ira Gessel for providing most of the information for this exercise.

9. We interpret klS(d, k) as the number of surjective functions f: [d] — [k]. Let A be the
set of all functions f: [d] — [k], and for i € [k] let P; be the property that ¢ ¢ im f.
A function f € A lacks at most the properties T C S C {P,..., P} if and only if
im f C {i : B € T}; hence the number of such f is i%, where #T = i. The proof
follows from Proposition 2.2.2.

10. (b) We have

D) L (1t card)

n! e

n!
11 1 1
—(1-=+=- —1)"= 1)t
( TR TR St R Sl A rroy T s )

while

IR U S R
n e e

Hence D(n)/n!is a much better approximation to 1/e than E(n)/n!.

11. This result was proved by G.-N. Han and G. Xin, J. Combinatorial Theory Ser. A
116 (2009), 449-459 (Theorems 1 and 9), using the theory of symmetric functions.
A bijective proof was given by N. FEriksen, R. Freij, and J. Wastlund, Electronic J.
Combinatorics 16(1) (2009), #R32 (Theorem 2.1).

12. The Inclusion-Exclusion formula (2.11) for D(n) generalizes straightforwardly to

Z Z(ﬁ) (ﬂk)(_”mmwk(al —Zﬂjl(fif;)—ﬂk)'
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Let v; = a; — (3;. We get

S Dyt = Y (ﬂl + %) (ﬂk + %) (71 +e +%) LS Bit)
N By ﬂk Y1, Yk
=Y (% Tt Vk) Y <5l +71) <ﬁ’€ +7’€) (—1)ZPig TP
S Y15 Yk 3 B B
= Z (’Yl‘i‘ +Vk)x2% 1+.T1 71*1...(1+xk)*’7k*1
y Y155 Yk

1 X1 Tk "
e +...+
1

This result appears as Exercise 4.5.5 in Goulden and Jackson [3.32], as a special case
of the more general Exercise 4.5.4.

13. These results appear in R. Stanley, J. Integer Sequences 8 (2005), article 05.3.8. This
paper also gives an extension to multisets and a g-analogue. For a generalization to
arbitrary Coxeter groups, see N. Bergeron, C. Hohlweg, and M. Zabrocki, J. Algebra
303 (2006), 831-846, and M. Marietti, European J. Combinatorics 29 (2008), 1555—
1562.

15.  (a) The result follows easily after checking that any five of the matrices P, are linearly
independent.

(b) Let A be a 3 x 3 N-matrix for which every row and column sums to r. It is given
that we can write

A=>" a,P,, (2.63)

where «,, € N and ) «, = r. By Section 1.2, the number of ways to choose
a, € N such that > o, = ris ("{°). By (a), the representation (2.63) is
unique provided at least one of w3, 139, 301 is 0. The number of ways to
choose a3, g1, 12 € N and g3, ase, aigo; € P such that Y a,, = r is equal
to the number of weak compositions of » — 3 into six parts; that is, (Hf). Hence
Hy(r) = ("5") = ('5°)-

Equation (2.51) appears in §407 of MacMahon [1.55], essentially with the above
proof. To evaluate Hy(r) by a similar technique would be completely impractical,
though it can be shown using the Hilbert syzygy theorem that such a computation
could be done in principle. See R. Stanley, Duke Math. J. 40 (1973), 607-632. For
a different approach toward evaluating H, (r) for any n, see Proposition 4.6.2. The
theorem mentioned in the statement of (b) is called the Birkhoff-von Neumann
theorem and is proved for general n in Lemma 4.6.1.
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(c) One can check that every matrix being counted can be represented in exactly one
way in one of the forms

at+e b+d c a b+d c+e+1
c+d a b+e |, c+d a+e+1 b ,
b ct+e atd b+e+1 c a+d
a+d—+1 b ct+e+1

c at+e+1 b+d+1 |,
b+e+1 c+d+1 a

where a,b,c,d,e € N, from which the proof is immediate. The idea behind this
proof is to associate an indeterminate x,, to each w € &3, and then to use the
identity

1 — 213202137321 = (1 - 575321) + 175321(1 - 575132) + 5532155132(1 - 175213)-

Details are left to the reader. For yet another way to obtain Hj(r), see M. Béna,
Math. Mag. 70 (1997), 201-203.

16. Answer:

LY
= —1)
fr(n) ;( )
. fk(n) o (_1)i __—1/k
LT D

]

17. (a) (—1)%’(”) (n — i — 1)1, provided we define (—1)! = 1.
(b) g(n) = (n—1)!, with g(0) = 1.
(c) e7*(1 —log(1 —x))
(d) D(n) = fo(n) + fa(n+1).
This problem goes back to W. A. Whitworth, Choice and Chance, 5th ed. (and presum-
ably earlier editions), Stechert, New York, 1934 (Prop. 34 and Ex. 217). For further
information and references, including solutions to (e) and (f), see R. Stanley, JPL Space

Programs Summary 37-40, vol. 4 (1966), 208-214, and S. M. Tanny, J. Combinatorial
Theory 21 (1976), 196-202.

18. See R. Stanley, ibid.

19. Answer: S o(=1)F(** %) (2n — 2k — 1)!I, where (2m — 1)l =1-3-5---(2m — 1).

20. Call a permutation standard if b; is not immediately followed by a; for 1 < ¢ < n.
Clearly each equivalence class contains exactly one standard permutation. A straight-
forward use of Inclusion-Exclusion shows that the number of standard permutations is

equal to
n

2 @(—n"un — = AN i

- 2
=0
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21.

23.

(b)
(c)

Let Ay = [aj_i11]}. Let D be the diagonal matrix diag(a,a?,...,a"). Then
D 'AD = [’ a;_;41]. Since det A = det D"*AD, the proof follows from (a).

If we remove the first row and ith column from M, then we obtain a matrix

B C

a’s on the diagonal. Hence when we expand det M along the first row, we get

det M = by(det Ay_1) — aby(det Ap_5) + -+ -+ (—=1)* 1" by(det Ap).

} , where B is an upper triangular (i — 1) x (i — 1) matrix with

The proof follows.

For some alternative approaches and results related to this item, see Proposi-
tion 1.6.1, equation (1.59), Exercise 2.22, and equation (3.98).

Let Si be the set of permutations w = ajas - - - as, € G,, satisfying
ap > Gz < az > a4 < -+ > Aan—2k, A2n—2k+1 > A2pn—2k+2 > *** > QA2n,

and let T}, be those permutations in Sy that also satisfy as, or > a9, _oxr+1. Hence
S1 —T consists of all alternating permutations in &,,. Moreover, T; = S;1 —T;41.
Hence

E,=#(S1 —T) =#S1 —#(S2 —Tz) = - - = #S51 — #So + #S53 — - - .
A permutation in Sy is obtained by choosing as, oki1, Gon_2k12,- .-, A2, iN (3’,;‘)
ways and then ay,as, ..., am—ok in Eop,_p) ways. Hence #S;, = @Z)Eg(n,k), and

the proof follows.

The recurrence is

proved similarly to (a) but with the additional complication of accounting for the
term (—1)".

The argument is analogous to that of the previous exercise. Let Si be the set of
those permutations aqas - - - a,, € G,, such that aias - - - a,_; has no proper double
descents and a,,_g11 > ap_gr1 > -+ > a,. Let T consist of those permutations in
Sk that also satisfy a,,_x_1 > @, > a,_x+1. Let Uy consist of those permutations
in Sk that also satisfy Qp—f > Qp_f+1- Then T, = Sk+2 — Uk+2, U, = Sk—I—I — Tk;-{—la
and So = 5] — 1. Hence

f(n) = #So = #(S1 —T1) = #S1 —#(S3—Us)
#S1 — #53+ #(Ss —Ty) = #S1 — #S5+ #54 — #(S6 — Us),

etc. Since #Sy = (})f(n — k), the proof follows. This result (with a different
proof) appears in F. N. David and D. E. Barton, Combinatorial Chance, Hafner,
New York, 1962 (pp. 156-157). See also I. M. Gessel, Ph.D. thesis, M.I.T. (Ex-
ample 3, page 51), and I. P. Goulden and D. M. Jackson, Combinatorial Enumer-
ation, John Wiley & Sons, New York, 1983; reprinted by Dover, Mineola, NY,

2004 (Exercise 5.2.17).
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27. (a) Follows easily from Proposition 5.3.2.

(b) Let fr(G) denote the coefficient of 2*~' in P(G,x); that is, f.(G) is equal to the
number of k-component rooted forests F' of G. By the Principle of Inclusion-
Exclusion,

(@) =D (=) Fgu(F),
F
where F' ranges over all spanning forests of G, and where gi(F') denotes the
number of k-component rooted forests on [n] that contain F'. (Note that n—¢(F')
is equal to the number of edges of F.) By (a), gr(F) = p(F) (e L)ntF, where
¢ ={(F). Hence

_ (-1
G)=) (-1)"'p(F o, 2.64
@ =2t (e (2:64)
On the other hand, from equation (2.56) the coefficient of z*~! in (—=1)""' P(G, —z—
n) is equal to

(1 ) ) (T e, (2.69

again summed over all spanning forests F' of G, with ¢ = ¢(F). Since equa-
tions (2.64) and (2.65) agree, the result follows.

Equation (2.57) (essentially the case z = 0 of (2.56)) is implicit in H. N. V.
Temperley, Proc. Phys. Soc. 83 (1984), 3-16. See also Theorem 6.2 of J. W.
Moon, Counting Labelled Trees, Canadian Mathematical Monographs, no. 1, 1970.
The general case (2.56) is due to S. D. Bedrosian, J. Franklin Inst. 227 (1964),
313-326. A subsequent proof of (2.56) using matrix techniques is due to A.
K. Kelmans. See equation (2.19) in D. M. Cvetkovi¢, M. Doob, and H. Sachs,
Spectra of Graphs, second ed., Johann Ambrosius Barth Verlag, Heidelberg, 1995.
A simple proof of (2.56) and additional references appear in J. W. Moon and S.
D. Bedrosian, J. Franklin Inst. 316 (1983), 187-190.

Equation (2.56) may be regarded as a “reciprocity theorem” for rooted trees. It
can be used, in conjunction with the obvious fact P(G+ H,z) = 2P(G,z)P(H, x)
(where G + H denotes the disjoint union of G and H) to unify and simplify many
known results involving the enumeration of spanning trees and forests. Part (c)
below illustrates this technique.

(c) We have
P(Ky,z)=1 = PnK;,z)=2""
= P(K,,z)=(z+n)""! (soc¢(K,)=n""?)
= P(K, 4+ K, 2)=az(@+7r)"" (z+s)"
= P( r,sy L )Z(ZL’ T+S>($+8)r71(x—}-r)5*1
= C(KT,S) =s" 1’/‘ 1.

28. This result appeared in R. Stanley [2.19, Ch. 5.3] and was stated without proof in
[2.20, Prop. 23.8].
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29.

30.

31.

32.

33.

34.

35.

(b) A generating function proof was given by G. E. Andrews, Electronic J. Combina-
torics 18(2) (2011), P6.

See G. W. E. Andrews, in The Theory of Arithmetic Functions (A. A. Gioia and D.
L. Goldsmith, eds.), Lecture Notes in Math., no. 251, Springer, Berlin, 1972, pp. 1-20.
See also Chapter 9 of reference [1.2].

These identities are due to Gauss. See I. Pak [1.62, §5.5].

This identity is due to Gauss. A cancellation proof was given by W. Y. C. Chen, Q.-H.
Hou and A. Lascoux, J. Combinatorial Theory, Ser. A 102 (2003), 309-320, where
several other proofs are also cited.

Let S ={1,2,...,n—1} in (2.21). There is a unique w € &,, with D(w) = S, namely,
w =mn,n—1,...,1, and then inv(w) = (}). Hence §,(5,q) = q(g) On the other
hand, the right-hand side of (2.21) becomes the left-hand side of (2.58), and the proof
follows.

This exercise is due to I. M. Gessel, J. Graph Theory 3 (1979), 305-307. Part (d) was
first shown by M. G. Kendall and B. Babington Smith, Biometrika 33 (1940), 239-251.
The crucial point in (e) is the following. Let G be the graph whose vertices are the
tournaments 7" on [n| and whose edges consist of pairs T, 7" with T' <> T". Then from
(c) and (d) we deduce that G is bipartite and that every connected component of G
is regular, so the connected component containing the vertex 7' consists of a certain
number of tournaments of weight w(7) and an equal number of weight —w(T).

Some far-reaching generalizations appear in D. Zeilberger and D. M. Bressoud, Discrete
Math. 54 (1985), 201-224 (reprinted in Discrete Math. 306 (2006), 1039-1059); D. M.
Bressoud, Furop. J. Combinatorics 8 (1987), 245-255; and R. M. Calderbank and P.
J. Hanlon, J. Combinatorial Theory, Ser. A 41 (1986), 228-245. The first of these
references gives a solution to Exercise 1.19(c).

(a) By linearity it suffices to assume that f is a monomial of degree n. If the support
of f (set of variables occurring in f) is .S, then

F(e e) = 1, ¢g=1forall z; €S
L™/ 700, otherwise.

Hence

Y (D) E (e, e) = -1

(€1,..6n)€{0,1}™ T ¢S
- 1, f=x129-- 2,
N 0, otherwise,

and the proof follows.

274



(b) Note that

n
per(A) = [x1zg - - - 2] H(aﬂxl + apry + -+ Ainy),
i=1

and use (a). Equation (2.61) is due to H. J. Ryser, Combinatorial Mathematics,
Math. Assoc. of America, 1963 (Chap. 2, Cor. 4.2). For further information
on permanents, see H. Minc, Permanents, Encyclopedia of Mathematics and Its
Applications, Vol. 6, Addison-Wesley, Reading, Massachusetts, 1978; reprinted by
Cambridge University Press, 1984.

36. See B. Gordon [2.12].
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Chapter 3

Partially Ordered Sets

3.1 Basic Concepts

The theory of partially ordered sets (or posets) plays an important unifying role in enumer-
ative combinatorics. In particular, the theory of Mdébius inversion on a partially ordered
set is a far-reaching generalization of the Principle of Inclusion-Exclusion, and the theory of
binomial posets provides a unified setting for various classes of generating functions. These
two topics will be among the highlights of this chapter, though many other interesting uses
of partially ordered sets will also be given.

To get a glimpse of the potential scope of the theory of partially ordered sets as it relates to
the Principle of Inclusion-Exclusion, consider the following example. Suppose we have four
finite sets A, B, C, D such that

D=ANB=ANnC=BnNnC=AnBnC.

It follows from the Principle of Inclusion-Exclusion that

|JAUBUC| = |A|+|B|+|C|-]ANB|-]|ANC|—|BNC]
+ANnBNC|
= |Al+|B|+|C|-2|D|. (3.1)

The relations AN B = ANC = BNC = AN BN C collapsed the general seven-term
expression for |A U B U C| into a four-term expression, since the collection of intersections
of A, B, C has only four distinct members. What is the significance of the coefficient —2 in
equation (3.1)? Can we compute such coefficients efficiently for more complicated sets of
equalities among intersections of sets Ay, ..., A,?7 It is clear that the coefficient —2 depends
only on the partial order relation among the distinct intersections A, B, C, D of the sets
A, B, C—that is, on the fact that D C A, D C B, D C C (where we continue to assume
that D=ANB=ANC=BNC=ANBNC). In fact, we shall see that —2 is a certain
value of the M6bius function of this partial order (with an additional element corresponding
to the empty intersection adjoined). Hence Mobius inversion results in a simplification
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of Inclusion-Exclusion under appropriate circumstances. However, we shall also see that
the applications of Mobius inversion are much further-reaching than as a generalization of
Inclusion-Exclusion.

Before plunging headlong into the theory of incidence algebras and Mobius functions, it is
worthwhile to develop some feeling for the structure of finite partially ordered sets. Hence
in the first five sections of this chapter we collect together some of the basic definitions and
results on the subject, though strictly speaking most of them are not needed in order to
understand the theory of Mobius inversion.

A partially ordered set P (or poset, for short) is a set (which by abuse of notation we also
call P), together with a binary relation denoted < (or <p when there is a possibility of
confusion), satisfying the following three axioms:

1. For all t € P, t <t (reflexivity).
2. If s<tandt<s, then s =t (antisymmetry).
3. If s <t andt <w, then s < wu (transitivity).

We use the obvious notation ¢ > s to mean s <t, s <ttomean s <tand s#t, andt > s
to mean s < t. We say that two elements s and t of P are comparable if s <t ort < s;
otherwise s and t are incomparable*, denoted s||t.

Before giving a rather lengthy list of definitions associated with posets, let us first look at
some examples of posets of combinatorial interest that will later be considered in more detail.

3.1.1 Example. a. Let n € P. The set [n] with its usual order forms an n-element poset
with the special property that any two elements are comparable. This poset is denoted n.
Of course n and [n] coincide as sets, but we use the notation n to emphasize the order
structure.

b. Let n € N. We can make the set 2" of all subsets of [n] into a poset B, by defining
S <Tin B, if S C T as sets. One says that B,, consists of the subsets of [n] “ordered by
inclusion.”

c. Let n € P. The set of all positive integer divisors of n can be made into a poset D,, in a
“natural” way by defining i < j in D, if j is divisible by i (denoted 7).

d. Let n € P. We can make the set II,, of all partitions of [n] into a poset (also denoted
I1,,) by defining = < ¢ in II,, if every block of 7 is contained in a block of ¢. For instance, if
n = 9 and if 7 has blocks 137, 2, 46, 58, 9, and o has blocks 13467, 2589, then 7 < 0. We
then say that 7 is a refinement of o and that II,, consists of the partitions of [n] “ordered
by refinement.”

e. In general, any collection of sets can be ordered by inclusion to form a poset. Some cases
will be of special combinatorial interest. For instance, let B,(q) consist of all subspaces
of the n-dimensional vector space Fy, ordered by inclusion. We will see that B,(q) is a
nicely-behaved g-analogue of the poset B, defined in (b).

*“Comparable” and “incomparable” are accented on the syllable “com.”
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Figure 3.1: The posets with at most four elements

We now list a number of basic definitions and results connected with partially ordered sets.
Some readers may wish to skip directly to Section 3.6, and to consult the intervening material
only when necessary.

Two posets P and () are isomorphic, denoted P =2 (), if there exists an order-preserving
bijection ¢: P — () whose inverse is order-preserving; that is,

s<tin P < ¢(s) < ¢(t) in Q.

For example, if Bg denotes the poset of all subsets of the set S ordered by inclusion, then
Bg = By whenever #5 = #T'.

Some care has to be taken in defining the notion of “subposet.” By a weak subposet of P,
we mean a subset () of the elements of P and a partial ordering of () such that if s < ¢
in @, then s < tin P. If () is a weak subposet of P with P = () as sets, then we call P
a refinement of (). By an induced subposet of P, we mean a subset () of P and a partial
ordering of () such that for s,¢, € ) we have s < tin @ if and only if s < ¢ in P. We then say
the subset @ of P has the induced order. Thus the finite poset P has exactly 2#F induced
subposets. By a subposet of P, we will always mean an induced subposet. A special type
of subposet of P is the (closed) interval [s,t] = {u € P : s < u < t}, defined whenever
s < t. (Thus the empty set is not regarded as a closed interval.) The interval [s, s] consists
of the single point s. We similarly define the open interval (s,t) = {u € P : s < u < t},
so (s,s) = 0. If every interval of P is finite, then P is called a locally finite poset. We also
define a subposet @) of P to be convex if t € () whenever s <t < u in P and s,u € ). Thus
an interval is convex.

If s,t € P, then we say that t covers s or s is covered by t, denoted s <t or t > s, if s < t and
no element u € P satisfies s < u < t. Thus ¢ covers s if and only if s < ¢ and [s,t] = {s,t}.
A locally finite poset P is completely determined by its cover relations. The Hasse diagram
of a finite poset P is the graph whose vertices are the elements of P, whose edges are the
cover relations, and such that if s < ¢ then ¢ is drawn “above” s (i.e., with a higher vertical
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Figure 3.2: Some examples of posets

i

= P

Figure 3.3: Adjoining a 0 and 1

coordinate). Figure 3.1 shows the Hasse diagrams of all posets (up to isomorphism) with
at most four elements. Some care must be taken in “recognizing” posets from their Hasse

diagrams. For instance, the graph A is a perfectly valid Hasse diagram, yet appears to
be missing from Figure 3.1. We trust the reader will resolve this anomaly. Similarly, why

does the graph I not appear above? Figure 3.2 illustrates the Hasse diagrams of some
of the posets considered in Example 3.1.1.

We say that P has a 0 if there exists an element 0 € P such that ¢t > 0 for all ¢t € P.
Similarly, P has a 1 if there exists 1 € P such that ¢t < 1 for all t € P. We denote by P
the poset obtained from P by adjoining a 0 and 1 (in spite of a 0 or 1 that P may already
possess). See Figure 3.3 for an example.

A chain (or totally ordered set or linearly ordered set) is a poset in which any two elements
are comparable. Thus the poset n of Example 3.1.1(a) is a chain. A subset C' of a poset P is
called a chain if C' is a chain when regarded as a subposet of P. The chain C' of P is called
maximal if it is not contained in a larger chain of P. The chain C' of P is called saturated
(or unrefinable) if there does not exist v € P — C such that s < u < ¢ for some s,t € C
and such that C'U {u} is a chain. Thus maximal chains are saturated, but not conversely.
In a locally finite poset, a chain ¢ < t; < --- < t,, is saturated if and only if ¢;_; < ¢; for
1 <i < n. The length £(C) of a finite chain is defined by ¢(C') = #C — 1. The length (or
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rank) of a finite poset P is
((P) :=max{((C) : C is a chain of P}.

The length of an interval [s,¢] is denoted ¢(s,t). If every maximal chain of P has the same
length n, then we say that P is graded of rank n. In this case there is a unique rank function
p: P —{0,1,...,n} such that p(s) =0 if s is a minimal element of P, and p(t) = p(s) + 1
if t >sin P. If s <t then we also write p(s,t) = p(t) — p(s) = €(s,t). If p(s) = i, then
we say that s has rank 7. If P is graded of rank n and has p; elements of rank ¢, then the
polynomial

=0

is called the rank-generating function of P. For instance, all the posets n, B,, D,, I1,, and
B,(q) are graded. The reader can check the entries of the following table (some of which
will be discussed in more detail later).

Poset P Rank of t € P Rank of P
n t—1 n—1
B, cardt n
D, number of prime divisors of ¢ number of prime divisors of n
(counting multiplicity) (counting multiplicity)
11, n— |t n—1
B,(q) dim¢ n

The rank-generating functions of these posets are as follows. For D,, let n = pi* - - p;* be
the prime power factorization of n. We write, e.g., (n), for the g-analogue (n) of n in the

variable z, so
n

l1—2z
1—=x

=l4z+a’4---+a""

(n), =

F(n> $) = (n)x
F(Bp,xz) = (14+x)"
F(Dy,z) = (a1 +1),---(ar+1),

n

F(II,,z) = Z S(n,n — i)’

F(By(q),z) = ino (’:)x

We can extend the definition of a graded poset in an obvious way to certain infinite posets.
Namely, we say that P is graded if it can be written P = PylJUPJ - - - such that every maximal
chain has the form ¢y <t; <---, where t; € P;. We then have a rank function p: P — N just
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as in the finite case. If each P, is finite then we also have a rank-generating function F'(P, q)
as before, though now it may be a power series rather than a polynomial.

A multichain of the poset P is a chain with repeated elements; that is, a multiset whose
underlying set is a chain of P. A multichain of length n may be regarded as a sequence
to <t; <-.-.<t, of elements of P.

An antichain (or Sperner family or clutter) is a subset A of a poset P such that any two
distinct elements of A are incomparable. An order ideal (or semi-ideal or down-set or
decreasing subset) of P is a subset I of P such that if ¢t € I and s < ¢, then s € I. Similarly
a dual order ideal (or up-set or increasing subset or filter) is a subset I of P such that if
tel and s > t, then s € I. When P is finite, there is a one-to-one correspondence between
antichains A of P and order ideals I. Namely, A is the set of maximal elements of I, while

I={se P :s<tforsomete A} (3.2)

The set of all order ideals of P, ordered by inclusion, forms a poset denoted J(P). In Sec-
tion 3.4 we shall investigate J(P) in greater detail. If I and A are related as in equation (3.2),
then we say that A generates I. If A = {t1,...,t;}, then we write I = (t1,...,tx) for the
order ideal generated by A. The order ideal (t) is the principal order ideal generated by
t, denoted A;. Similarly V; denotes the principal dual order ideal generated by ¢, that is,
Vi={seP:s>t}
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Figure 3.4: Drawing a direct product of posets

3.2 New Posets from Old

Various operations can be performed on one or more posets. If P and () are posets on disjoint
sets, then the disjoint union (or direct sum) of P and @ is the poset P + ) on the union
PUQ such that s <t in P+ (Q if either (a) s,t € Pand s <tin P,or (b) s,t € Q and s <t
in (). A poset that is not a disjoint union of two nonempty posets is said to be connected.
The disjoint union of P with itself n times is denoted nP; hence an n-element antichain is
isomorphic to nl. If P and @) are on disjoint sets as above, then the ordinal sum of P and
@ is the poset P @ @ on the union P U@ such that s <t in P® Q if (a) s,t € Pand s <t
in P,or (b) s,t€@ands<tin@, or(c)se€ P andtec Q. Hence an n-element chain is
givenby n=1®1&--- &1 (n times). Of the 16 four-element posets, exactly one of them
cannot be built up from the poset 1 using the operations of disjoint union and ordinal sum.
Posets that can be built up in this way are called series-parallel posets. (See Exercises 3.14,
3.15(c), and 5.39 for further information on such posets.)

If P and @ are posets, then the direct (or cartesian) product of P and (@ is the poset P X @
on the set {(s,t) : s € P and t € @} such that (s,t) < (¢/,¢') in P x Q if s < & in P and
t <t in ). The direct product of P with itself n times is denoted P". To draw the Hasse
diagram of P x @ (when P and () are finite), draw the Hasse diagram of P, replace each
element ¢t of P by a copy @, of @, and connect corresponding elements of Qs and @; (with
respect to some isomorphism Qs = ;) if s and ¢ are connected in the Hasse diagram of P.

o X
For instance, the Hasse diagram of the direct product /\ N is drawn as indicated
in Figure 3.4.

It is clear from the definition of the direct product that P x ) and ) x P are isomorphic.
However, the Hasse diagrams obtained by interchanging P and () in the above procedure in
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general look completely different, although they are of course isomorphic. If P and () are
graded with rank-generating functions F'(P, z) and F(Q, ), then it is easily seen that P x @
is graded and

F(PxQ,r)=F(P,z)F(Q,x). (3.3)

A further operation on posets is the ordinal product P ® (). This is the partial ordering
on {(s,t) : s € P and t € Q} obtained by setting (s,t) < (s',t') if (a) s = s’ and t </,
or (b) s < s'. To draw the Hasse diagram of P ® ) (when P and @ are finite), draw the
Hasse diagram of P, replace each element ¢ of P by a copy @); of ), and then connect every
maximal element of (), with every minimal element of ); whenever t covers s in P. If P
and @ are graded and @ has rank r, then the analogue of equation (3.3) for ordinal products
becomes
F(P®Q,r)=F(P,z"™)F(Q,x).

Note that in general P ® ) and () ® P do not have the same rank-generating function, so in
particular they are not isomorphic.

A further operation that we wish to consider is the dual of a poset P. This is the poset P*
on the same set as P, but such that s <t in P* if and only if t < s in P. If P and P* are
isomorphic, then P is called self-dual. Of the 16 four-element posets, 8 are self-dual.

If P and Q are posets, then QF denotes the set of all order-preserving maps f: P — Q; that
is, s <t in P implies f(s) < f(t) in Q. We give Q* the structure of a poset by defining
f<gif f(t) <g(t) for all t € P. It is an elementary exercise to check the validity of the
following rules of cardinal arithmetic (for posets).

a. + and X are associative and commutative
b. Px(Q+ R)=(PxQ)+ (P xR)
c. RPHQ = RP x R@

d. (RF)Q = RPxQ
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Figure 3.5: The lattices with at most six elements
3.3 Lattices

We now turn to a brief survey of an important class of posets known as lattices. If s and ¢
belong to a poset P, then an upper bound of s and t is an element u € P satisfying u > s
and u > t. A least upper bound (or join or supremum) of s and ¢ is an upper bound u of s
and ¢ such that every upper bound v of s and t satisfies v > u. If a least upper bound of
s and t exists, then it is clearly unique and is denoted s V ¢ (read “s join t” or “s sup t”).
Dually one can define the greatest lower bound (or meet or infimum) s At (read “s meet t”
or “sinf ¢”), when it exists. A lattice is a poset L for which every pair of elements has a
least upper bound and greatest lower bound. One can also define a lattice axiomatically in
terms of the operations V and A, but for combinatorial purposes this is not necessary. The
reader should check, however, that in a lattice L:

a. the operations V and A are associative, commutative, and idempotent (i.e., t At =
tVt=t);

b. sA(sVt)=s=sV(sAt) (absorption laws);

C. sNt=s&sVit=t& s <t

Clearly all finite lattices have a 0 and 1. If L and M are lattices, then so are L*, L x M,
and L & M. However, L + M will never be a lattice unless one of L or M is empty, but

L+ M (ie., L+ M with an 0 and 1 adjoined) is always a lattice. Figure 3.5 shows the Hasse
diagrams of all lattices with at most six elements.
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In checking whether a (finite) poset is a lattice, it is sometimes easy to see that meets, say,
exist, but the existence of joins is not so clear. Thus the criterion of the next proposition
can be useful. If every pair of elements of a poset P has a meet (respectively, join), then we
say that P is a meet-semilattice (respectively, join-semilattice).

3.3.1 Proposition. Let P be a finite meet-semilattice with 1. Then P is a lattice. (Of
course, dually a finite join-semilattice with 0 is a lattice.)

Proof. 1f s,t € P, then the set S = {u € P : v > s and u > t} is finite (since P is finite)
and nonempty (since 1 € P). Clearly by induction the meet of finitely many elements of a
meet-semilattice exists. Hence we have s Vit = A g u. O

Proposition 3.3.1 fails for infinite lattices because an arbitrary subset of L need not have a
meet or join. (See Exercise 3.26.) If in fact every subset of L does have a meet and join,
then L is called a complete lattice. Clearly a complete lattice has a 0 and 1.

We now consider one of the types of lattices of most interest to combinatorics.

3.3.2 Proposition. Let L be a finite lattice. The following two condtions are equivalent.

t. L is graded, and the rank function p of L satisfies
p(s) +p(t) = p(s At) +p(s Vi)
for all s, t € L.
2t. If s and t both cover s A't, then sVt covers both s and t.
Proof. (i)=-(ii) Suppose that s and ¢t cover s At. Then p(s) = p(t) = p(s At) + 1 and

p(s Vi) > p(s) = p(t). Hence by (i), p(s Vt) = p(s) +1 = p(t) + 1, so s V t covers both s
and .

(ii)=(i) Suppose that L is not graded, and let [u,v] be an interval of L of minimal length
that is not graded. Then there are elements sy, sy of [u,v] that cover u and such that all
maximal chains of each interval [s;, v] have the same length ¢;, where ¢; # ¢5. By (ii), there
are saturated chains in [s;, v] of the form s; < s1V sy < t; <ty < --- <t} = v, contradicting
0y # 05. Hence L is graded.

Now suppose that there is a pair s,t € L with
p(s) + p(t) < p(s At) +p(s Vi), (3.4)

and choose such a pair with ¢(s A t, sV t) minimal, and then with p(s) + p(¢) minimal. By
(ii), we cannot have both s and t covering s A t. Thus assume that s At < ' < s, say. By
the minimality of £(s At,s V t) and p(s) + p(t), we have

p(s') + p(t) = p(s' At) + p(s" V). (3.5)
Now s’ At = s At, so equations (3.4) and (3.5) imply
p(s) +p(s' Vi) <p(s') + p(s Vi)
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Figure 3.6: A semimodular but nonmodular lattice

Clearly sA(s'Vt) > s" and sV(s'Vt) = sVt. Hence setting S = s and T' = s’ V¢, we have found
apair S, T € L satisfying p(S)+p(T) < p(SAT)+p(SVT) and £(SAT,SVT) < l(sAt,sV1t),
a contradiction. This completes the proof. O

A finite lattice satisfying either of the (equivalent) conditions of the previous proposition is
called a finite upper semimodular lattice, or a just a finite semimodular lattice. The reader
may check that of the 15 lattices with six elements, exactly eight are semimodular.

A finite lattice L whose dual L* is semimodular is called lower semimodular. A finite lattice
that is both upper and lower semimodular is called a modular lattice. By Proposition 3.3.2,
a finite lattice L is modular if and only if it is graded, and its rank function p satisfies

p(s) 4+ p(t) = p(s Nt)+ p(sVt) forall st e L. (3.6)

For instance, the lattice B, (q) of subspaces (ordered by inclusion) of an n-dimensional vector
space over the field F, is modular, since the rank of a subspace is just its dimension, and
equation (3.6) is then familiar from linear algebra. Every semimodular lattice with at most
six elements is modular. There is a unique seven-element non-modular, semimodular lattice,
which is shown in Figure 3.6. This lattice is not modular since s V ¢t covers s and ¢, but s
and ¢t don’t cover s At. It can be shown that a finite lattice L is modular if and only if for
all s,t,u € L such that s < u, we have

sV (tAu)=(sVit)Au. (3.7)

This allows the concept of modularity to be extended to nonfinite lattices, though we will only
be concerned with the finite case. Equation (3.7) also shows immediately that a sublattice
of a modular lattice is modular. (A subset M of a lattice L is a sublattice if it is closed under
the operations of A and V in L.)

A lattice L with 0 and 1 is complemented if for all s € L there is a t € L such that sAt =0
and sV ¢ = 1. If for all s € L the complement ¢ is unique, then L is uniquely complemented.
If every interval [s, t] of L is itself complemented, then L is relatively complemented. An atom
of a finite lattice L is an element covering 0, and L is said to be atomic (or a point lattice)
if every element of L is a join of atoms. (We always regard 0 as the join of an empty set of
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Figure 3.7: A subset S of the affine plane and its corresponding geometric lattice L(S)

atoms.) Dually, a coatom is an element that 1 covers, and a coatomic lattice is defined in the
obvious way. Another simple result of lattice theory, whose proof we omit, is the following.

3.3.3 Proposition. Let L be a finite semimodular lattice. The following two conditions are
equivalent.

t. L 1s relatively complemented.

1t. L s atomic.

A finite semimodular lattice satisfying either of the two (equivalent) conditions (i) or (ii)
above is called a finite geometric lattice. A basic example is the following. Take any finite
set S of points in some affine space (respectively, vector space) V over a field K (or even over
a division ring). Then the subsets of S of the form S N W, where W is an affine subspace
(respectively, linear subspace) of V| ordered by inclusion, form a geometric lattice L(S). For
instance, taking S C R? (regarded as an affine space) to be as in Figure 3.7(a), then the
elements of L(S) consist of 0, {a}, {b}, {c}, {d}, {a,d}, {b,d}, {c,d}, {a,b,c}, {a,b,c,d}.
For this example, L(S) is in fact modular and is shown in Figure 3.7(b).

NOTE. A geometric lattice is intimately related to the subject of matroid theory. A (finite)
matroid may be defined as a pair (S,Z), where S is a finite set and Z is a collection of subsets
of S satistying the two conditions:

o I[f FeZ and G C F, then G € Z. In other words, Z is an order ideal of the boolean
algebra Bg of all subsets of S (defined in Section 3.4).

e For any T'C S, let Zr be the restriction of Z to T, i.e., Zyr = {F € Z : F CT}. Then
all maximal (under inclusion) elements of Zr have the same number of elements.

(There are several equivalent definitions of a matroid.) The elements of Z are called inde-
pendent sets. They are an abstraction of linear independent sets of a vector space or affinely
independent subsets of an affine space. Indeed, if S is a finite subset of a vector space (re-
spectively, affine subset of an affine space) and Z is the collection of linearly independent
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(respectively, affinely independent) subsets of S, then (S,Z) is a matroid. A matroid is
simple if every two-element subset of Z is independent. Every matroid can be “simplified”
(converted to a simple matroid) by removing all elements of S not contained in any inde-
pendent set and by identifying any two points that are not independent. It is not hard to
see that matroids on a set S are in bijection with geometric lattices L whose set of atoms is
S, where a set T' C S is independent if and only if its join in L has rank #7.

The reader may wish to verify the (partly redundant) entries of the following table concerning
the posets of Example 3.1.1.

Properties that Properties that
Poset P P possesses P lacks (n large)
n modular lattice complemented, atomic,

coatomic, geometric

B, modular lattice, relatively
complemented, uniquely
complemented, atomic,
coatomic, geometric

D, modular lattice complemented, atomic
coatomic, geometric
(unless n is squarefree,
in which case D,, = By)

I, geometric lattice modular

B, (q) modular lattice, uniquely complemented
complemented, atomic,
coatomic, geometric
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3.4 Distributive Lattices

The most important class of lattices from the combinatorial point of view are the distributive
lattices. These are defined by the distributive laws

(3.8)

(One can prove that either of these laws implies the other.) If we assume s < w in the
first law, then we obtain equation (3.7) since s V u = u. Hence every distributive lattice is
modular. The lattices n, B,, and D,, of Example 3.1.1 are distributive, while II,, (n > 3) and
B,(q) (n > 2) are not distributive. Further examples of distributive lattices are the lattices
J(P) of order ideals of the poset P. The lattice operations A and V on order ideals are just
ordinary intersection and union (as subsets of P). Since the union and intersection of order
ideals is again an order ideal, it follows from the well-known distributivity of set union and
intersection over one another that J(P) is indeed a distributive lattice. The fundamental
theorem for finite distributive lattices (FTFDL) states that the converse is true when P is
finite.

3.4.1 Theorem (FTFDL). Let L be a finite distributive lattice. Then there is a unique (up
to isomorphism) poset P for which L = J(P).

Remark. For combinatorial purposes, it would in fact be best to define a finite distributive
lattice as any poset of the form J(P), P finite. However, to avoid conflict with established
practices we have given the usual definition.

To prove Theorem 3.4.1, we first need to produce a candidate P and then show that indeed
L = J(P). Toward this end, define an element s of a lattice L to be join-irreducible if s # 0
and one cannot write s = ¢V u where t < s and u < s. (Meet-irreducible is defined dually.)
In a finite lattice, an element is join-irreducible if and only if it covers exactly one element.
An order ideal I of the finite poset P is join-irreducible in J(P) if and only if it is a principal
order ideal of P. Hence there is a one-to-one correspondence between the join-irreducibles
Ag of J(P) and the elements s of P. Since A; C A; if and only if s < ¢, we obtain the
following result.

3.4.2 Proposition. The set of join-irreducibles of J(P), considered as an (induced) subposet
of J(P), is isomorphic to P. Hence J(P) = J(Q) if and only if P = Q.

Proof of Theorem 3.4.1. Because of Proposition 3.4.2, it suffices to show that if P is the
subposet of join-irreducibles of L, then L = J(P). Givent € L, let [, = {s € P : s <
t}. Clearly I, € J(P), so the mapping ¢t — I; defines an order-preserving (in fact, meet-

preserving) map L LA (P) whose inverse is order-preserving on ¢(L). Moreover, ¢ is
injective since J(P) is a lattice. Hence we need to show that ¢ is surjective. Let I € J(P)
and t = \/{s : s € I'}. We need to show that I = I;. Clearly I C I;. Suppose that u € I;.

Now
\A{s:sel}=\/{s:sel} (3.9)
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Apply Au to equation (3.9). By distributivity, we get

\/{s/\u:sel}:\/{s/\u:selt}. (3.10)

The right-hand side is just u, since one term is u and all others are < u. Since u is join-
irreducible (being by definition an element of P), it follows from equation (3.10) that some
t € I satisfies t A u = u, that is, u < t. Since [ is an order ideal we have v € I, so I; C I.
Hence I = I;, and the proof is complete. O

In certain combinatorial problems, infinite distributive lattices of a special type occur natu-
rally. Thus we define a finitary distributive lattice to be a locally finite distributive lattice
L with 0. It follows that L has a unique rank function p: L — N given by letting p(t) be the
length of any saturated chain from 0 to ¢. If L has finitely many elements p; of any given
rank ¢ € N, then we can define the rank-generating function F(L,x) by

F(L,x)= pr(t) = Zplxl

teL 1>0

In this case, of course, F(L,z) need not be a polynomial but in general is a formal power
series. We leave to the reader to check that FTFDL carries over to finitary distributive
lattices as follows.

3.4.3 Proposition. Let P be a poset for which every principal order ideal is finite. Then the
poset J¢(P) of finite order ideals of P, ordered by inclusion, is a finitary distributive lattice.
Conversely, if L is a finitary distributive lattice and P is its subposet of join-irreducibles,
then every principal order ideal of P is finite and L = J;(P).

3.4.4 Example. (a) If P is an infinite antichain, then J;(P) has infinitely many elements
on each level, so F'(J¢(P),x) is undefined.

(b) Let P =NxN. Then J¢(P) is a very interesting distributive lattice known as Young’s
lattice, denoted Y. It is not hard to see that

F(Y,z) = ZP(Z)QTZ = m,

where p(i) denotes the number of partitions of ¢ (Sections 1.7 and 1.8). In fact, YV is
isomorphic to the poset of all partitions A = (A1, Ag, ...) of all integers n > 0, ordered
componentwise (or by containment of Young diagrams). For further information on
Young’s lattice, see Exercise 3.149, Section 3.21, and various places in Chapter 7.

We now turn to an investigation of the combinatorial properties of J(P) (where P is finite)
and of the relationship between P and J(P). If I is an order ideal of P, then the elements
of J(P) that cover I are just the order ideals I U {t}, where ¢ is a minimal element of P — [.
From this observation we conclude the following result.

3.4.5 Proposition. If P is an n-element poset, then J(P) is graded of rank n. Moreover,
the rank p(I) of I € J(P) is just the cardinality #1 of I, regarded as an order ideal of P.
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It follows from Propositions 3.4.2, 3.4.5, and FTFDL that there is a bijection between (non-
isomorphic) posets P of cardinality n and (nonisomorphic) distributive lattices of rank n.
This bijection sends P to J(P), and the inverse sends J(P) to its poset of join-irreducibles.
In particular, the number of nonisomorphic posets of cardinality n equals the number of
nonisomorphic distributive lattices of rank n.

If P = n, an n-element chain, then J(P) = n + 1. At the other extreme, if P = nl, an
n-element antichain, then any subset of P is an order ideal, and J(P) is just the set of subsets
of P, ordered by inclusion. Hence J(n1) is isomorphic to the poset B, of Example 3.1.1(b),
and we simply write B,, = J(nl). We call B, a boolean algebra of rank n. (The usual
definition of a boolean algebra gives it more structure than merely that of a distributive
lattice, but for our purposes we simply regard B,, as a certain distributive lattice.) It is clear
from FTFDL (or otherwise) that the following conditions on a finite distributive lattice L
are equivalent.

a. L is a boolean algebra.

b. L is complemented.

c. L is relatively complemented.
d. L is atomic.

e. 1is a join of atoms of L.

f. L is a geometric lattice.

g. Every join-irreducible of L covers 0.

h. If L has n join-irreducibles (equivalently, rank(L) = n), then L has at least (equiva-
lently, exactly) 2™ elements.

i. The rank-generating function of L is (1 4+ z)" for some n € N.

Given an order ideal I of P, define a map f;: P — 2 by

fr(t) :{ ;: i§62§

Clearly f is order-preserving, i.e., f € 2F. Then f; < fp in 2F if and only if 7 D I’. Hence
J(P)* = 2P Note also that J(P*) = J(P)* and J(P + Q) = J(P) x J(Q). In particular,
B,, = J(n1) = J(1)" = 2". This observation gives an efficient method for drawing B,, using
the method of the previous section for drawing products. For instance, the Hasse diagram of
Bs is given by the first diagram in Figure 3.8. The other two diagrams show how to obtain
the Hasse diagram of Bj.

If I < I’ in the distributive lattice J(P), then the interval [/, I'] is isomorphic to J(I' — I),
where I’ — I is regarded as an (induced) subposet of P. In particular, [I, I'] is a distributive
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B; Step 1 Step 2

Figure 3.8: Drawing B, from Bj

lattice. (More generally, any sublattice of a distributive lattice is distributive, an immediate
consequence of the definition (3.8) of a distributive lattice.) It follows that there is a one-to-
one correspondence between intervals [I, I'] of J(P) isomorphic to By (k > 1) such that no
interval [K, I'| with K < I is a boolean algebra, and k-element antichains of P. Equivalently,
k-element antichains in P correspond to elements of J(P) that cover exactly k elements.

We can use the above ideas to describe a method for drawing the Hasse diagram of J(P),
given P. Let I be the set of minimal elements of P, say of cardinality m. To begin with,
draw B, = J(I). Now choose a minimal element of P — I, say t. Adjoin a join-irreducible
to J(I) covering the order ideal A; — {t}. The set of joins of elements covering A; — {¢}
must form a boolean algebra, so draw in any new joins necessary to achieve this. Now there
may be elements covering A, — {t} whose covers don’t yet have joins. Draw these in to form
boolean algebras. Continue until all sets of elements covering a particular element have joins.
This yields the distributive lattice J(IU{t}). Now choose a minimal element u of P —I —{t}
and adjoin a join-irreducible to J(I U {t}) covering the order ideal A\, — {u}. “Fill in” the
covers as before. This yields J(I U{t,u}). Continue until reaching J(P). The actual process
is easier to carry out than describe. Let us illustrate with P given by Figure 3.9(a). We will
denote subsets of P such as {a,b,d} as abd. First, draw Bs = J(abc) as in Figure 3.9(b).
Adjoin the order ideal A, = abd above ab (and label it d) (Figure 3.9(c)). Fill in the joins of
the elements covering ab (Figure 3.9(d)). Adjoin bece above be (Figure 3.9(e)). Fill in joins
of elements covering be (Figure 3.9(f)). Fill in joins of elements covering abc (Figure 3.9(g)).
Adjoin cf above ¢ (Figure 3.9(h)). Fill in joins of elements covering c¢. These joins (including
the empty join ¢) form a rank three boolean algebra. The elements ¢, ac, be, cf, and abe are
already there, so we need the three additional elements acf, bef, and abef (Figure 3.9(i)).
Now fill in joins of elements covering bc (Figure 3.9(j)). Finally, fill in joins of elements
covering abc (Figure 3.9(k)). With a little practice, this procedure yields a fairly efficient
method for computing the rank-generating function F(J(P),z) by hand. For the above
example, we see that

F(J(P),z) =1+ 3z + 42* + 52° + 4a* + 32° + 5.

For further information about “zigzag” posets (or fences) as in Figure 3.9, see Exercise 3.66.
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Figure 3.9: Drawing J(P)
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3.5 Chains in Distributive Lattices

We have seen that many combinatorial properties of the finite poset P have simple inter-
pretations in terms of J(P). For instance, the number of k-element order ideals of P equals
the number of elements of J(P) of rank k, and the number of k-element antichains of P
equals the number of elements of J(P) that cover exactly k elements. We wish to discuss
one further example of this nature.

3.5.1 Proposition. Let P be a finite poset and m € N. The following quantities are equal:

a. the number of order-preserving maps o: P — m,
b. the number of multichains 0 = Iy < I, < --- < I, = 1 of length m in J(P),

c. the cardinality of J(P x m—1).

Proof. Given o: P — m, define I; = o='(j). Given 0=I,<I,<---<1I, =1, define the
order ideal ] of Pxm—1by I ={(¢t,j) € Pxm—1 : t € I,,,_;}. Given the order ideal /
of Pxm—1, define 0: P — m by o(t) = min{m — j : (¢t,7) € I} if (¢,7) € I for some j,
and otherwise o(t) = m. These constructions define the desired bijections. O

Note that the equivalence of (a) and (c) also follows from the computation

mP ~ (Zm_l)P ~ 2m—1><P‘

As a modification of the preceding proposition, we have the following result.

3.5.2 Proposition. Preserve the notation of Proposition 3.5.1. The following quantities
are equal:

a. the number of surjective order-preserving maps o: P — m,

b. the number of chains 0 =1Iy < I, < --- < I, =1 of length m in J(P).

Proof. Analogous to the proof of Proposition 3.5.1. O

One special case of Proposition 3.5.2 is of particular interest. If #P = p, then an order-
preserving bijection o: P — p is called a linear extension or topological sorting of P. The
number of linear extensions of P is denoted e(P) and is probably the single most useful
number for measuring the “complexity” of P. It follows from Proposition 3.5.2 that e(P) is
also equal to the number of maximal chains of J(P).

We may identify a linear extension o: P — p with the permutation o=1(1),..., 07! (p) of
the elements of P. Similarly we may identify a maximal chain of J(P) with a certain type
of lattice path in Euclidean space, as follows. Let C', ..., C} be a partition of P into chains.
(It is a consequence of a well-known theorem of Dilworth that the smallest possible value of
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Figure 3.10: A polyhedral set associated with a finite distributive lattice

k is equal to the cardinality of the largest antichain of P. See Exercise 3.77(d).) Define a
map §: J(P) — N* by

0I)=(F#UNC),#UINCy),...,#(INCk)).

If we give N* the obvious product order, then § is an injective lattice homomorphism that
is cover-preserving (and therefore rank-preserving). Thus in particular J(P) is isomorphic
to a sublattice of N*. If we choose each #C; = 1, then we get a rank-preserving injective
lattice homomorphism J(P) — B,, where #P = p. Given §: P — N* as above, define
I's = U, conv(§(T)), where conv denotes convex hull in R* and 7' ranges over all intervals
of J(P) that are isomorphic to boolean algebras. (The set conv(§(T")) is just a cube whose
dimension is the length of the interval T.) Thus I's is a compact polyhedral subset of R¥,
which is independent of ¢ (up to geometric congruence). It is then clear that the number
of maximal chains in J(P) is equal to the number of lattice paths in I's from the origin
(0,0,...,0) = d(0) to 4(1), with unit steps in the directions of the coordinate axes. In other
words, e(P) is equal to the number of ways of writing (1) = vy + vy + - - -+ vy, where each v;
is a unit coordinate vector in R*¥ and where v; +vy + - --+v; € I's for all i. The enumeration
of lattice paths is an extensively developed subject which we encountered in various places
in Chapter 1 and in Section 2.7, and which is further developed in Chapter 6. The point
here is that certain lattice path problems are equivalent to determining e(P) for some P.
Thus they are also equivalent to the problem of counting certain types of permutations.

3.5.3 Example. Let P be given by Figure 3.10(a). Take C} = {a,c}, Cy = {b,d, e}. Then
J(P) has the embedding ¢ into N? given by Figure 3.10(b). To get the polyhedral set T's, we
simply “fill in” the squares in Figure 3.10(b), yielding the polyhedral set of Figure 3.10(c).
There are nine lattice paths of the required type from (0, 0) to (2,3) in T, that is, e(P) = 9.
The corresponding nine permutations of P are abcde, bacde, abdce, badce, bdace, abdec,

badec, bdaec, bdeac.

3.5.4 Example. Let P be a disjoint union C 4+ C5 of chains C} and Cs of cardinalities m
and n. Then T's is an m X n rectangle with vertices (0,0), (m,0), (0,n), (m,n). As noted in
Proposition 1.2.1, the number of lattice paths from (0, 0) to (m, n) with steps (1,0) and (0, 1)
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Figure 3.11: The distributive lattice J(2 x 3)

is just (m+”) e(C1+ Cy). A linear extension o : P — m + n is completely determined by
the image o(C' ) which can be any m-element subset of m + n. Thus once again we obtain
e(C1+ Cy) = m+”) More generally, if P = P, + Py + ---+ P, and n; = #P;, then

«r = ( )em)e(&) e(Py).

3.5.5 Example. Let P = 2 x n, and take C; = {(2,5) : j € n}, Co ={(1,7) : j € n}.
Then 6(J(P)) = {(,j) € N* : 0 < i < j < n}. For example, the embedded poset
d(J(2 x 3)) is shown in Figure 3.11. Hence e(P) is equal to the number of lattice paths
from (0,0) to (n,n), with steps (1,0) and (0, 1), that never fall below (or by symmetry, that
never rise above) the main diagonal = = y of the (z,y)-plane. These lattice paths arose in
the enumeration of 321-avoiding permutations in Section 1.5, where it was mentioned that
they are counted by the Catalan numbers C,, = n—+1( ) It follows that e(2 x n) = C,,. By
the definition of e(P) we see that this number is also equal to the number of 2 x n matrices
with entries the distinct integers 1,2, ..., 2n, such that every row and column is increasing.

For instance, (2 x 3) = 5, corresponding to the matrices

123 124 125 134 135
456 356 346 256 246.

ny+ -+ ny
ny,...,Ng

Such matrices are examples of standard Young tableaux (SYT), discussed extensively in
Chapter 7.

We have now seen two ways of looking at the numbers e(P): as counting certain order-
preserving maps (or permutations), and as counting certain chains (or lattice paths). There
is yet another way of viewing e( P)—as satisfying a certain recurrence. Regard e as a function
on J(P), that is, if I € J(P) then e(I) is the number of linear extensions of I (regarded as a
subposet of P). Thus e(I) is also the number of saturated chains from 0 to I in J(P). From

this observation it is clear that
e(I) =Y e(l), (3.11)



Figure 3.12: The distributive lattice J;(N + N)

where [’ ranges over all elements of J(P) that I covers. In other words, if we label the
element I € J(P) by e(l), then e(I) is the sum of those e(I’) that lie “just below” I. This
recurrence is analogous to the definition of Pascal’s triangle, where each entry is the sum of
the two “just above.” Indeed, if we take P to be the infinite poset N+N and let J¢(P) be the
lattice of finite order ideals of P, then J;(P) = N x N, and labeling the element I € J;(P)
by e(I) yields precisly Pascal’s triangle (though upside-down from the usual convention in
writing it). Each finite order ideal I of N 4+ N has the form m + n for some m,n € N, and
from Example 3.5.4 we indeed have