FlumedJava: Easy, Efficient Data-Parallel Pipelines

Abstract

MapReduce and similar systems significantly ease the task of writ-ing
data-parallel code. However, many real-world computations re-quire a
pipeline of MapReduces, and programming and managing such
pipelines can be difficult. We present FlumedJava, a Java li-brary that
makes it easy to develop, test, and run efficient data-parallel pipelines.
At the core of the FlumeJava library are a cou-ple of classes that
represent immutable parallel collections, each supporting a modest
number of operations for processing them in parallel. Parallel
collections and their operations present a simple, high-level, uniform
abstraction over different data representations and execution strategies.
To enable parallel operations to run effi-ciently, FlumeJava defers their
evaluation, instead internally con-structing an execution plan dataflow
graph. When the final results of the parallel operations are eventually
needed, FlumeJava first op-timizes the execution plan, and then
executes the optimized opera-tions on appropriate underlying primitives
(e.g., MapReduces). The combination of high-level abstractions for
parallel data and compu-tation, deferred evaluation and optimization,
and efficient parallel primitives yields an easy-to-use system that
approaches the effi-ciency of hand-optimized pipelines. FlumeJava is in
active use by hundreds of pipeline developers within Google.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming

General Terms Algorithms, Languages, Performance

Keywords data-parallel programming, MapReduce, Java

1. Introduction

Building programs to process massive amounts of data in parallel can
be very hard. MapReduce [6-8] greatly eased this task for data-parallel
computations. It presented a simple abstraction to users for how to think
about their computation, and it managed many of the difficult low-level
tasks, such as distributing and coordinating the parallel work across
many machines, and coping robustly with failures of machines,
networks, and data. It has been used very successfully in practice by
many developers. MapReduce’s success in this domain inspired the
development of a number of related systems, including Hadoop [2],
LINQ/Dryad [20], and Pig [3].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.

PLDI'10, June 5-10, 2010, Toronto, Ontario, Canada

Copyright ¢ 2010 ACM 978-1-4503-0019-3/10/06. . . $10.00

363

MapReduce works well for computations that can be broken
down into a map step, a shuffle step, and a reduce step, but for
many real-world computations, a chain of MapReduce stages is
required. Such data-parallel pipelines require additional
coordination code to chain together the separate MapReduce
stages, and require addi-tional work to manage the creation and
later deletion of the inter-mediate results between pipeline stages.
The logical computation can become obscured by all these low-
level coordination details, making it difficult for new developers to
understand the computa-tion. Moreover, the division of the pipeline
into particular stages becomes “baked in” to the code and difficult
to change later if the logical computation needs to evolve.

In this paper we present FlumeJava, a new system that aims to
support the development of data-parallel pipelines. FlumeJava is a
Java library centered around a few classes that represent parallel
collections. Parallel collections support a modest number of par-
allel operations which are composed to implement data-parallel
computations. An entire pipeline, or even multiple pipelines, can be
implemented in a single Java program using the FlumeJava ab-
stractions; there is no need to break up the logical computation into
separate programs for each stage.

FlumeJava’s parallel collections abstract away the details of
how data is represented, including whether the data is represented
as an in-memory data structure, as one or more files, or as an ex-
ternal storage service such as a MySql database or a Bigtable [5].
Similarly, FlumeJava’s parallel operations abstract away their im-
plementation strategy, such as whether an operation is
implemented as a local sequential loop, or as a remote parallel
MapReduce invo-cation, or (in the future) as a query on a database
or as a streaming computation. These abstractions enable an
entire pipeline to be ini-tially developed and tested on small in-
memory test data, running in a single process, and debugged using
standard Java IDEs and de-buggers, and then run completely
unchanged over large production data. They also confer a degree
of adaptability of the logical Flume-Java computations as new data
storage mechanisms and execution services are developed.

To achieve good performance, FlumeJava internally implements
parallel operations using deferred evaluation. The invocation of a
parallel operation does not actually run the operation, but instead simply
records the operation and its arguments in an internal exe-cution plan
graph structure. Once the execution plan for the whole computation has
been constructed, Flumedava optimizes the exe-cution plan, for
example fusing chains of parallel operations to-gether into a small
number of MapReduce operations. FlumeJava then runs the optimized
execution plan. When running the exe-cution plan, FlumeJava chooses
which strategy to use to imple-ment each operation (e.g., local
sequential loop vs. remote parallel MapReduce, based in part on the
size of the data being processed), places remote computations near the
data they operate on, and per-

‘ Smart ‘

forms independent operations in parallel. FlumeJava also manages
the creation and clean-up of any intermediate files needed within
the computation. The optimized execution plan is typically sev-eral
times faster than a MapReduce pipeline with the same logical
structure, and approaches the performance achievable by an expe-
rienced MapReduce programmer writing a hand-optimized chain of
MapReduces, but with significantly less effort. The FlumeJava
program is also easier to understand and change than the hand-
optimized chain of MapReduces.

As of March 2010, FlumedJava has been in use at Google for
nearly a year, with 175 different users in the last month and many
pipelines running in production. Anecdotal reports are that users
find FlumeJava significantly easier to work with than MapReduce.

Our main contributions are the following:

We have developed a Java library, based on a small set of
composable primitives, that is both expressive and convenient.

We show how this API can be automatically transformed
into an efficient execution plan, using deferred
evaluation and opti-mizations such as fusion.

We have developed a run-time system for executing
optimized plans that selects either local or parallel
execution automatically and which manages many of the
low-level details of running a pipeline.

We demonstrate through benchmarking that our system
is ef-fective at transforming logical computations into
efficient pro-grams.

Our system is in active use by many developers, and
has pro-cessed petabytes of data.

The next section of this paper gives some background on
MapReduce. Section 3 presents the FlumedJava library from the
user's point of view. Section 4 describes the FlumedJava
optimizer, and Section 5 describes the FlumeJava executor.
Section 6 assesses our work, using both usage statistics and
benchmark performance results. Section 7 compares our work
to related systems. Section 8 concludes.

2. Background on MapReduce

FlumeJava builds on the concepts and abstractions for
data-parallel programming introduced by MapReduce. A
MapReduce has three phases:

1. The Map phase starts by reading a collection of values or key/value
pairs from an input source, such as a text file, binary record-
oriented file, Bigtable, or MySql database. Large data sets are often
represented by multiple, even thousands, of files (called shards),
and multiple file shards can be read as a single logical input source.
The Map phase then invokes a user-defined function, the Mapper,
on each element, independently and in parallel. For each input
element, the user-defined function emits zero or more key/value
pairs, which are the outputs of the Map phase. Most MapReduces
have a single (possibly sharded) input source and a single Mapper,
but in general a single MapReduce can have multiple input sources
and associated Mappers.

2. The Shuffle phase takes the key/value pairs emitted by the
Mappers and groups together all the key/value pairs with
the same key. It then outputs each distinct key and a
stream of all the values with that key to the next phase.

3. The Reduce phase takes the key-grouped data emitted by the
Shuffle phase and invokes a user-defined function, the Reducer, on
each distinct key-and-values group, independently and in parallel.
Each Reducer invocation is passed a key and an iterator over all
the values associated with that key, and emits zero

364

or more replacement values to associate with the input key.
Oftentimes, the Reducer performs some kind of aggregation
over all the values with a given key. For other MapReduces,
the Reducer is just the identity function. The key/value pairs
emitted from all the Reducer calls are then written to an
output sink, e.g., a sharded file, Bigtable, or database.

For Reducers that first combine all the values with a given key
using an associative, commutative operation, a separate user-
defined Combiner function can be specified to perform partial
combining of values associated with a given key during the Map
phase. Each Map worker will keep a cache of key/value pairs
that have been emitted from the Mapper, and strive to combine
locally as much as possible before sending the com-bined
key/value pairs on to the Shuffle phase. The Reducer will
typically complete the combining step, combining values from
different Map workers.

By default, the Shuffle phase sends each key-and-values group
to a deterministically but randomly chosen Reduce worker ma-
chine; this choice determines which output file shard will hold
that key’s results. Alternatively, a user-defined Sharder func-
tion can be specified that selects which Reduce worker
machine should receive the group for a given key. A user-
defined Sharder can be used to aid in load balancing. It also
can be used to sort the output keys into Reduce “buckets,” with

all the keys of the i" Reduce worker being ordered before all

the keys of the i+ 18t Reduce worker. Since each Reduce
worker processes keys in lexicographic order, this kind of
Sharder can be used to produce sorted output.

Many physical machines can be used in parallel in each of
these three phases.

MapReduce automatically handles the low-level issues of se-
lecting appropriate parallel worker machines, distributing to them
the program to run, managing the temporary storage and flow of
intermediate data between the three phases, and synchronizing the
overall sequencing of the phases. MapReduce also automatically
copes with transient failures of machines, networks, and software,
which can be a huge and common challenge for distributed pro-
grams run over hundreds of machines.

The core of MapReduce is implemented in C++, but libraries
exist that allow MapReduce to be invoked from other languages.
For example, a Java version of MapReduce is implemented as a
JNI veneer on top of the C++ version of MapReduce.

MapReduce provides a framework into which parallel computa-tions
are mapped. The Map phase supports embarrassingly parallel,
element-wise computations. The Shuffle and Reduce phases sup-port
cross-element computations, such as aggregations and group-ing. The
art of programming using MapReduce mainly involves mapping the
logical parallel computation into these basic opera-tions. Many
computations can be expressed as a MapReduce, but many others
require a sequence or graph of MapReduces. As the complexity of the
logical computation grows, the challenge of map-ping it into a physical
sequence of MapReduces increases. Higher-level concepts such as
“count the number of occurrences” or “join tables by key” must be hand-
compiled into lower-level MapReduce operations. In addition, the user
takes on the additional burdens of writing a driver program to invoke the
MapReduces in the proper sequence, managing the creation and
deletion of intermediate files holding the data passed between
MapReduces, and handling fail-ures across MapReduces.

3. The FlumedJava Library

In this section we present the interface to the FlumeJava library, as
seen by the FlumedJava user. The FlumedJava library aims to offer
constructs that are close to those found in the user’s logical

computation, and abstract away from the lower-level
“physical” details of the different kinds of input and output
storage formats and the appropriate partitioning of the
logical computation into a graph of MapReduces.

3.1 Core Abstractions

The central class of the FlumedJava library is PCollection<T>, a
(possibly huge) immutable bag of elements of type T. A
PCollection can either have a well-defined order (called a se-
quence), or the elements can be unordered (called a collection).
Because they are less constrained, collections are more
efficient to generate and process than sequences. A
PCollection<T> can be created from an in-memory Java
Collection<T>. A PCollection<T> can also be created by
reading a file in one of several possible formats. For example,
a text file can be read as a PCollection<String>, and a binary
record-oriented file can be read as a PCollection<T>, given a
specification of how to decode each binary record into a Java
object of type T. Data sets repre-sented by multiple file shards

can be read in as a single logical PCollection. For example:1

PCollection<String> lines =
readTextFileCollection("/gfs/data/shakes/hamlet.txt");

PCollection<Doclnfo> doclInfos =
readRecordFileCollection("/gfs/webdocinfo/part-*",
recordsOf(Doclnfo.class));

In this code, recordsOf(...) specifies a particular way in
which a Doclnfo instance is encoded as a binary record.
Other pre-defined encoding specifiers are strings() for UTF-
8-encoded text, ints() for a variable-length encoding of 32-
bit integers, and pairsOf(e1,e2) for an encoding of pairs
derived from the en-codings of the components. Users can
specify their own custom encodings.

A second core class is PTable<K,V>, which represents
a (possibly huge) immutable multi-map with keys of type K and
values of type V. PTable<K)V> is a subclass of
PCollection<Pair<K,V>>, and indeed is just an unordered bag of
pairs. Some FlumedJava operations apply only to PCollections of
pairs, and in Java we choose to define a subclass to capture this
abstraction; in another language, PTable<K,V> might better be de-
fined as a type synonym of PCollection<Pair<K,V>>.

The main way to manipulate a PCollection is to invoke a
data-parallel operation on it. The FlumeJava library defines
only a few primitive data-parallel operations; other operations
are im-plemented in terms of these primitives. The core data-
parallel primitive is parallelDo(), which supports elementwise
compu-tation over an input PCollection<T> to produce a new
output PCollection<S>. This operation takes as its main
argument a DoFn<T, S>, a function-like object defining how to
map each value in the input PCollection<T> into zero or more
values to appear in the output PCollection<S>. It also takes an
indication of the kind of PCollection or PTable to produce as a
result. For example:

PCollection<String> words = lines.parallelDo(new
DoFn<String,String>() {
void process(String line, EmitFn<String> emitFn) { for
(String word : splitintoWords(line)) {
emitFn.emit(word);

}

}
}, collectionOf(strings()));

In this code, collectionOf(strings()) specifies that the parallelDo()
operation should produce an unordered PCollection whose
String elements should be encoded using UTF-8. Other options
include sequenceOf(elemEncoding)

1Some of these examﬁ)les have been simplified in minor ways from
the real versions, for clarity and compactness.

for ordered PCollections and tableOf(keyEncoding,
valueEncoding) for PTables. emitFn is a call-back function
FlumeJdava passes to the user's process(...) method, which
should invoke emitFn.emit(outElem) for each outElem that
should be added to the output PCollection. FlumedJava includes
subclasses of DoFn, e.g., MapFn and FilterFn, that provide
simpler interfaces in special cases. There is also a version of
parallelDo() that allows multiple output PCollections to be
produced simultaneously from a single traversal of the input
PCollection.

parallelDo() can be used to express both the map and
reduce parts of MapReduce. Since they will potentially be
distributed remotely and run in parallel, DoFn functions should
not access any global mutable state of the enclosing Java
program. ldeally, they should be pure functions of their inputs.
It is also legal for DoFn objects to maintain local instance
variable state, but users should be aware that there may be
multiple DoFn replicas operating concurrently with no shared
state. These restrictions are shared by MapReduce as well.

A second primitive, groupByKey(), converts a multi-map
of type PTable<K,V> (which can have many key/value pairs
with the same key) into a uni-map of type PTable<K,
Collection<V>> where each key maps to an unordered,
plain Java Collection of all the values with that key. For
example, the following computes a table mapping URLs to
the collection of documents that link to them:

PTable<URL,DoclInfo> backlinks =
doclnfos.parallelDo(new DoFn<Doclinfo,
Pair<URL,Doclnfo>>() {

void process(Doclnfo docinfo,
EmitFn<Pair<URL,DoclInfo>> emitFn) {

for (URL targetUrl : docinfo.getLinks())
{ emitFn.emit(Pair.of(targetUrl, docInfo));

}

}
}, tableOf(recordsOf(URL.class),
recordsOf(Doclnfo.class)));

PTable<URL,Collection<Doclnfo>> referringDoclnfos =
backlinks.groupByKey();

groupByKey() captures the essence of the shuffle step of
MapRe-duce. There is also a variant that allows specifying
a sorting order for the collection of values for each key.

A third primitive, combineValues(), takes an input
PTable<K, Collection<V>> and an associative combining
function on Vs, and returns a PTable<K, V> where each
input collection of values has been combined into a single
output value. For example:

PTable<String,Integer> wordsWithOnes =
words.parallelDo(
new DoFn<String, Pair<String,Integer>>() { void
process(String word,
EmitFn<Pair<String,Integer>> emitFn)
{ emitFn.emit(Pair.of(word, 1));

}
}, tableOf(strings(), ints()));
PTable<String,Collection<Integer>>

groupedWordsWithOnes = wordsWithOnes.groupByKey();
PTable<String,Integer> wordCounts =
groupedWordsWithOnes.combineValues(SUM_INTS);

combineValues() is semantically just a special case of
parallelDo(), but the associativity of the combining function
al-lows it to be implemented via a combination of a
MapReduce com-biner (which runs as part of each mapper)
and a MapReduce re-ducer (to finish the combining), which
is more efficient than doing all the combining in the reducer.
A fourth primitive, flatten(), takes a list of
PCollection<T>s and returns a single PCollection<T> that

contains all the elements of the input PCollections. flatten()
does not actually copy the inputs, but rather creates a view
of them as one logical PCollection.

A pipeline typically concludes with operations that write the
final result PCollections to external storage. For example:

wordCounts.writeToRecordFileTable("/gfs/data/shakes/hamlet-
counts.records");

Because PCollections are regular Java objects, they can
be manipulated like other Java objects. In particular, they
can be passed into and returned from regular Java methods,
and they can be stored in other Java data structures
(although they can-not be stored in other PCollections).
Also, regular Java con-trol flow constructs can be used to
define computations involving PCollections, including
functions, conditionals, and loops. For example:

Collection<PCollection<T2>> pcs =
new Collection<...>();
for (Task task : tasks) {
PCollection<T1>p1 = ...;
PCollection<T2> p2;
if (isFirstKind(task)) {
p2 = doSomeWork(p1);
}else {
p2 = doSomeOtherWork(p1);

}
pcs.add(p2);

3.2 Derived Operations

The Flumedava library includes a number of other operations
on PCollections, but these others are derived operations,
imple-mented in terms of these primitives, and no different than
helper functions the user could write. For example, the count()
function takes a PCollection<T> and returns a PTable<T,
Integer> mapping each distinct element of the input PCollection
to the number of times it occurs. This function is implemented
in terms of parallelDo(), groupByKey(), and combineValues(),
using the same pattern as was used to compute wordCounts
above. That code could thus be simplified to the following:

PTable<String,Integer> wordCounts = words.count();

Another library function, join(), implements a kind of join
over two or more PTables sharing a common key type. When
applied to a multi-map PTable<K, V1> and a multi-map
PTable<K, V2>, join() returns a uni-map PTable<K,
Tuple2<Collection<V1>, Collection<V2>>> that maps each key
in either of the input tables to the collection of all values with
that key in the first table, and the collection of all values with
that key in the second table. This resulting table can be
processed fur-ther to compute a traditional inner- or outer-join,
but oftentimes it is more efficient to be able to manipulate the
value collections directly without computing their cross-product.
join() is imple-mented roughly as follows:

1. Apply parallelDo() to each input PTable<K, Vi> to
convert it into a common format of type PTable<K,
TaggedUnion2<V1,V2>>.

2. Combine the tables using flatten().
3. Apply groupByKey() to the flattened table to produce a
PTable<K, Collection<TaggedUnion2<V1,V2>>>,

4. Apply parallelDo() to the key-grouped table, converting
each Collection<TaggedUnion2<V1,V2>> into a Tuple2
of a Collection<V1> and a Collection<V2>.

Another useful derived operation is top(), which takes a com-
parison function and a count N and returns the greatest N ele-
ments of its receiver PCollection according to the comparison

366

input2 input3

L.
B ()

A A
N

i
A
(\ mputd

nputl \Flln s
e 2
A v
P8 A X
LA D) E)
% N Rk
v
o
oul¢utl I/F)
i S
¥
v
output?

Figure 1. Initial execution plan for the SiteData pipeline.

function. This operation is implemented on
parallelDo(), groupByKey(), and combineValues().
The operations mentioned above to read multiple file shards
as a single PCollection are derived operations too,
implemented using flatten() and the single-file read primitives.

top of

3.3 Deferred Evaluation

In order to enable optimization as described in the next section,
FlumeJava’'s parallel operations are executed lazily using deferred
evaluation. Each PCollection object is represented internally ei-ther
in deferred (not yet computed) or materialized (computed) state. A
deferred PCollection holds a pointer to the deferred operation that
computes it. A deferred operation, in turn, holds references to the
PCollections that are its arguments (which may themselves be
deferred or materialized) and the deferred PCollections that are its
results. When a FlumedJava operation like parallelDo() is called, it
just creates a ParallelDo de-ferred operation object and returns a
new deferred PCollection that points to it. The result of executing a
series of FlumeJava op-erations is thus a directed acyclic graph of
deferred PCollections and operations; we call this graph the
execution plan.

Figure 1 shows a simplified version of the execution plan
con-structed for the SiteData example used in Section 4.5
when dis-cussing optimizations and in Section 6 as a
benchmark. This pipeline takes four different input sources
and writes two outputs. (For simplicity, we usually elide
PCollections from execution plan diagrams.)

Input1 is processed by parallelDo() A.

Input2 is processed by parallelDo() B, and Input3 is pro-cessed
by parallelDo() C. The results of these two operations are
flatten()ed together and fed into parallelDo() D.

Input4 is counted using the count() derived operation,
and the result is further processed by parallelDo() E.

The results of parallelDo()s A, D, and E are joined
together using the join() derived operation. Its result is
processed further by parallelDo() F.

Finally, the results of parallelDo()s A and F are written to
output files.

To actually trigger evaluation of a series of parallel operations, the
user follows them with a call to FlumeJava.run(). This first optimizes the
execution plan and then visits each of the deferred operations in the
optimized plan, in forward topological order, and evaluates them. When
a deferred operation is evaluated, it converts its result PCollection into a
materialized state, e.g., as an in-memory data structure or as a
reference to a temporary intermediate file. FlumeJava automatically
deletes any temporary intermediate files it creates when they are no
longer needed by later operations in the execution plan. Section 4 gives
details on the optimizer, and Section 5 explains how the optimized
execution plan is executed.

3.4 PObjects

To support inspection of the contents of PCollections during
and after the execution of a pipeline, FlumedJava includes a
class PObject<T>, which is a container for a single Java object
of type T. Like PCollections, PObjects can be either deferred or
materialized, allowing them to be computed as results of
deferred operations in pipelines. After a pipeline has run, the
contents of a now-materialized PObject can be extracted using
getValue(). PObject thus acts much like a future [10].

For example, the asSequentialCollection() operation ap-
plied to a PCollection<T> yields a PObject<Collection<T>>,
which can be inspected after the pipeline has run to read
out all the elements of the computed PCollection as a
regular Java in-memory Collection:

PTable<String,Integer> wordCounts = ..;
PObject<Collection<Pair<String,Integer>>> result =
wordCounts.asSequentialCollection();

F"IumeJava.run();
for (Pair<String,Integer> count : result.getValue()) {
System.out.print(count.first + ": " + count.second);

As another example, the combine() operation applied to
a PCollection<T> and a combining function over Ts yields a
PObject<T> representing the fully combined result. Global
sums and maximums can be computed this way.

These features can be used to express a computation
that needs to iterate until the computed data converges:

PCollection<Data> results =
computelnitialApproximation();
for (;;){
results = computeNextApproximation(results);
PCollection<Boolean> haveConverged =
results.parallelDo(checklfConvergedFn(),
collectionOf(booleans()));
PObject<Boolean> allHaveConverged =
haveConverged.combine(AND_BOOLS);
FlumeJava.run();
if (allHaveConverged.getValue()) break;
}

... continue working with converged results ...

The contents of PObjects also can be examined within the ex-
ecution of a pipeline. One way is using the operate() Flume-Java
primitive, which takes a list of argument PObjects and an
OperateFn, and returns a list of result PObjects. When evaluated,
operate() will extract the contents of its now-materialized argu-ment
PObjects, and pass them in to the argument OperateFn. The

2Of course, asSequentialCollection() should be invoked only on rel-
atively small PCollections that can fit into memory. FlumeJava
includes additional operations such as aslterable() that can be
used to inspect parts of larger PCollections.

367

OperateFn should return a list of Java objects, which
operate() wraps inside of PObjects and returns as its results.
Using this primitive, arbitrary computations can be
embedded within a Flume-Java pipeline and executed in
deferred fashion. For example, con-sider embedding a call
to an external service that reads and writes files:

/I Compute the URLs to crawl:
PCollection<URL> urlsToCrawl = ...;

/I Crawl them, via an external service:
PObject<String> fileOfUrlsToCrawl =

urlsToCrawl.viewAsFile(TEXT);
PObject<String> fileOfCrawledDocs =

operate(fileOfUrlsToCrawl, new OperateFn() { String
operate(String fileOfUrlsToCrawl) {
return crawlUrls(fileOfUrlsToCrawl);

}); PCollection<Doclnfo> doclnfos

readRecordFileCollection(fileOfCrawledDocs,
recordsOf(Doclnfo.class));
/I Use the crawled documents.

This example uses operations for converting between
PCollections and PObjects containing file names. The
viewAsFile() operation applied to a PCollection and a file
format choice yields a PObject<String> containing the
name of a temporary sharded file of the chosen format
where the PCollection’s contents may be found during
execution of the pipeline. File-reading operations such as
readRecordFileCollection() are overloaded to allow reading
files whose names are contained in PObjects.

In much the same way, the contents of PObjects can also
be examined inside a DoFn by passing them in as side inputs
to parallelDo(). When the pipeline is run and the parallelDo()
operation is eventually evaluated, the contents of any now-
materialized PObject side inputs are extracted and provided to
the user's DoFn, and then the DoFn is invoked on each
element of the input PCollection. For example:

PCollection<Integer> values = ...;

PObject<Integer> pMaxValue = values.combine(MAX_INTS);
PCollection<Doclnfo> doclnfos = ...; PCollection<Strings>
results = doclInfos.parallelDo(
pMaxValue,
new DoFn<Doclnfo,String>() {
private int maxValue;

void setSidelnputs(Integer maxValue)
{ this.maxValue = maxValue;

}

void process(DoclInfo doclinfo,
EmitFn<String> emitFn) {
... use doclInfo and maxValue ...

}
}, collectionOf(strings()));

4. Optimizer

The FlumedJava optimizer transforms a user-constructed,
modular FlumeJava execution plan into one that can be
executed efficiently. The optimizer is written as a series of
independent graph transfor-mations.

4.1 ParallelDo Fusion

One of the simplest and most intuitive optimizations is
ParallelDo producer-consumer fusion, which is essentially func-
tion composition or loop fusion. If one ParallelDo opera-tion
performs function f, and its result is consumed by an-other
ParallelDo operation that performs function g, the two
ParallelDo operations are replaced by a single multi-output
ParallelDo that computes both f and g f. If the result of the f

Figure 2. ParallelDo Producer-Consumer and Sibling Fusion.

ParallelDo is not needed by other operations in the graph,
fusion has rendered it unnecessary, and the code to
produce it is removed as dead.

ParallelDo sibling fusion applies when two or more
ParallelDo operations read the same input PCollection.
They are fused into a single multi-output ParallelDo
operation that computes the results of all the fused
operations in a single pass over the input.

Both producer-consumer and sibling fusion can apply to ar-
bitrary trees of multi-output ParallelDo operations. Figure 2
shows an example execution plan fragment where ParallelDo
operations A, B, C, and D can be fused into a single ParallelDo
A+B+C+D. The new ParallelDo creates all the leaf outputs from
the original graph, plus output A.1, since it is needed by some
other non-ParallelDo operation Op. Intermediate output A.O is
no longer needed and is fused away.

As mentioned earlier, CombineValues operations are
special cases of ParallelDo operations that can be repeatedly
applied to partially computed results. As such, ParallelDo
fusion also applies to CombineValues operations.

4.2 The MapShuffleCombineReduce (MSCR) Operation

The core of the FlumeJava optimizer transforms combinations of
ParallelDo, GroupByKey, CombineValues, and Flatten op-erations
into single MapReduces. To help bridge the gap be-tween these
two abstraction levels, the FlumeJava optimizer in-cludes an
intermediate-level operation, the MapShuffleCombineRe-duce
(MSCR) operation. An MSCR operation has M input chan-nels
(each performing a map operation) and R output channels (each
optionally performing a shuffle, an optional combine, and a reduce).
Each input channel m takes a PCollection<Tm> as input and
performs an R-output ParallelDo “map” operation (which defaults to
the identity operation) on that input to pro-duce R outputs of type
PTable<Kr,Vr>s; the input channel can choose to emit only to one
or a few of its possible output chan-nels. Each output channel r
Flattens its M inputs and then either

(a) performs a GroupByKey “shuffle”, an optional CombineValues
“combine”, and a Or-output ParallelDo “reduce” (which de-

368

mput2 mput3

Figure 3. A MapShuffleCombineReduce (MSCR) operation
with 3 input channels, 2 grouping output channels, and 1
pass-through output channel.

faults to the identity operation), and then writes the results to Or
output PCollections, or (b) writes its input directly as its output.
The former kind of output channel is called a “grouping”
channel, while the latter kind of output channel is called a
“pass-through” channel; a pass-through channel allows the
output of a mapper to be a result of an MSCR operation.

MSCR generalizes MapReduce by allowing multiple reducers
and combiners, by allowing each reducer to produce multiple out-
puts, by removing the requirement that the reducer must produce
outputs with the same key as the reducer input, and by allowing
pass-through outputs, thereby making it a better target for our op-
timizer. Despite its apparent greater expressiveness, each MSCR
op-eration is implemented using a single MapReduce.

Figure 3 shows an MSCR operation with 3 input channels per-
forming ParallelDos M1, M2, and M3 respectively, two grouping
output channels, each with a GroupByKey, CombineValues, and
reducing ParallelDo, and one pass-through output channel.

4.3 MSCR Fusion

An MSCR operation is produced from a set of related GroupByKey
operations. GroupByKey operations are considered related if they
consume (possibly via Flatten operations) the same input or inputs
created by the same (fused) ParallelDo operations.

The MSCR’s input and output channels are derived from the re-
lated GroupByKey operations and the adjacent operations in the
execution plan. Each ParallelDo operation with at least one out-put
consumed by one of the GroupByKey operations (possibly via
Flatten operations) is fused into the MSCR, forming a new input
channel. Any other inputs to the GroupByKeys also form new input
channels with identity mappers. Each of the related GroupByKey
operations starts an output channel. If a GroupByKey's result is
consumed solely by a CombineValues operation, that opera-tion is
fused into the corresponding output channel. Similarly, if the
GroupByKey’s or fused CombineValues's result is consumed
soleby by a ParallelDo operation, that operation is also fused into
the output channel, if it cannot be fused into a different MSCR’s
input channel. All the PCollections internal to the fused ParallelDo,

mput]

mputl 2 input3 mput4
T co
L s S oy
{Opl) M3 (M4)
R
v
Opl.0 M2.0* M3.0 M4.0 M4.1*
.\\\Hml \ Flin2 A “‘\ Fltn3 o &
i o . P e ./
,:;'-"‘Ji‘\-q —
[eBE1 C GBI\" H [GBm
- e
T T\\ N
e AN,
outputl® Cv2 R3)
; N Lo
! |
‘ﬁ{'_‘> output3*
v

output2*

Opl.0 mput2 iuput'i mputd
o ;

i D ’/Ma\\ <D

C GBMj_ [EP*BKEN:: [I}BT\{\
S e

s W :

R p ‘a\. ¢ ‘

: Sl

e e =

M2.0* outputl * output2* output3* M4.1*

Figure 4. An example of MSCR fusion seeded by three GroupByKey operations. Only the starred PCollections are needed by

later operations.

GroupByKey, and CombineValues operations are now unneces-
sary and are deleted. Finally, each output of a mapper ParallelDo
that flows to an operation or output other than one of the related
GroupByKeys generates its own pass-through output channel.
Figure 4 shows how an example execution plan is fused into an
MSCR operation. In this example, all three GroupByKey operations are
related, and hence seed a single MSCR operation. GBK1 is related to
GBK2 because they both consume outputs of ParallelDo M2. GBK2 is
related to GBK3 because they both consume PCollection M4.0. The
ParallelDos M2, M3, and M4 are incorporated as MSCR input channels.
Each of the GroupByKey operations becomes a grouping output
channel. GBK2’s output channel incorporates the CV2 CombineValues
operation. The R2 and R3 ParallelDos are also incorporated into output
channels. An additional identity in-put channel is created for the input to
GBK1 from non-ParallelDo Op1. Two additional pass-through output
channels (shown as edges from mappers to outputs) are created for the
M2.0 and M4.1 PCollections that are used after the MSCR. The
resulting MSCR operation has 4 input channels and 5 output channels.

After all GroupByKey operations have been transformed
into MSCR operations, any remaining ParallelDo operations
are also transformed into trivial MSCR operations with a
single input chan-nel containing the ParallelDo and a single
pass-through output channel. The final optimized execution
plan contains only MSCR, Flatten, and Operate operations.

4.4 Overall Optimizer Strategy

The optimizer performs a series of passes over the
execution plan, with the overall goal to produce the fewest,
most efficient MSCR operations in the final optimized plan:

1. Sink Flattens. A Flatten operation can be pushed down
through consuming ParallelDo operations by duplicating
the ParallelDo before each input to the Flatten. In
symbols, h(f(a) + g(b)) is transformed to h(f(a)) + h(g(b)).
This transformation creates opportunities for ParallelDo
fusion, e.g., (h f)(a) + (h g)(b).

2. Lift CombineValues operations. If a CombineValues op-
eration immediately follows a GroupByKey operation, the

GroupByKey records that fact. The original CombineValues
is left in place, and is henceforth treated as a normal
ParallelDo operation and subject to ParallelDo fusion.

3. Insert fusion blocks. If two GroupByKey operations are
connected by a producer-consumer chain of one or more
ParallelDo operations, the optimizer must choose which
ParallelDos should fuse “up” into the output channel of the
earlier GroupByKey, and which should fuse “down” into the in-
put channel of the later GroupByKey. The optimizer estimates
the size of the intermediate PCollections along the chain of
ParallelDos, identifies one with minimal expected size, and
marks it as boundary blocking ParallelDo fusion.

4. Fuse ParallelDos.

5. Fuse MSCRs. Create MSCR operations. Convert any
remaining unfused ParallelDo operations into trivial MSCRs.

4.5 Example: SiteData

In this section, we show how the optimizer works on the
SiteData pipeline introduced in Section 3.3. Figure 5 shows the
execution plan initially and after each major optimization phase.

1. Initially. The initial execution plan is constructed from calls
to primitives like parallelDo() and flatten() and derived op-
erations like count() and join() which are themselves imple-
mented by calls to lower-level operations. In this example,
the count() call expands into ParallelDo C:Map,
GroupByKey C:GBK, and CombineValues C:CV, and the
join() call ex-pands into ParallelDo operations J:TagN to tag
each of the N input collections, Flatten J:Fltn, GroupByKey
J:GBK, and ParallelDo J:Untag to process the results.

2. After sinking Flattens and lifting CombineValues. Flatten
operation Fltn is pushed down through con-suming
ParallelDo operatons D and JTag:2. A copy of
CombineValues operation C:CV is associated with C:GBK.

3. After ParallelDo fusion. Both producer-consumer and sibling
fusion are applied to adjacent ParallelDo operations. Due to
fusion blocks, CombineValues operation C:CV is not fused
with ParallelDo operation E+J:Tag3.

(1) Initially: inl’rm
iupi.lll ul]:I.lt_’- f@@
NGO @
NI e
nput tn \\3 /'/ !
/l\ /;\ l @1 + Writel
R @ @ i

outputl

outputl

(3) After ParallelDo fusion:

% 1 Tag2

mput4

-

/o\
\E/

eF

)

mput2 mput3

'

'\\f/'

C+D+ I'Tag2

\5I
e
(]

[I.GBK

[\EL@ outgutl
kN
v
&
'
\} /
output2
(2) After sinking Flattens inputd mput4
and lifting CombineValues: ' (4) After MSCR fusion: l
<& =
Map
nput2 mput3 @
S _ri N
mputl @ <(;/ LCCV D ki
: * &
A D ,*_
* inputl input2 input3 3
\/\Ninel i) { i
i @ +Writel CADT Tag2

outputl

.*J

' J:Untag+F+Wrte2
=%
\J
outputl output2

output2

Figure 5. Optimizations applied to the SiteData pipeline to go from 16 original data-parallel operations down to 2 MSCR operations.

370

4. After MSCR fusion. GroupByKey operation C:GBK and
surround-ing ParallelDo operations are fused into a first MSCR
opera-tion. GroupByKey operations iGBK and J:GBK become
the core operations of a second MSCR operation, which
includes the re-maining ParallelDo operations.

The original execution plan had 16 data-parallel operations
(ParallelDos, GroupByKeys, and CombineValues). The final,
optimized plan has two MSCR operations.

4.6 Optimizer Limitations and Future Work

The optimizer does no analysis of the code within user-written
functions (e.g., the DoFn arguments to parallelDo() operations). It
bases its optimization decisions on the structure of the execution
plan, plus a few optional hints that users can provide giving some
information about the behavior of certain operations, such as an
estimate of the size of a DoFn’s output data relative to the size of
its input data. Static analysis of user code might enable better
optimization and/or less manual user guidance.

Similarly, the optimizer does not modify any user code as
part of its optimizations. For example, it represents the result of
fused DoFns via a simple AST-like data structure that explains
how to run the user's code. Better performance could be
achieved by gen-erating new code to represent the appropriate
composition of the user's functions, and then applying
traditional optimizations such as inlining to the resulting code.

Users find it so easy to write FlumeJava pipelines that they
often write large and sometimes inefficient programs, contain-
ing duplicate and/or unnecessary operations. The optimizer
could be augmented with additional common-subexpression
elimina-tion to avoid duplications. Additionally, users tend to
include groupByKey() operations more often than necessary,
simply be-cause it makes logical sense to them to keep their
data grouped by key. The optimizer should be extended to
identify and remove un-necessary groupByKey() operations,
such as when the result of one groupByKey() is fed into
another (perhaps in the guise of a join() operation).

5. Executor

Once the execution plan is optimized, the FlumeJava library runs it.
Currently, Flumedava supports batch execution: Flumedava tra-
verses the operations in the plan in forward topological order, and
executes each one in turn. Independent operations are executed
si-multaneously, supporting a kind of task parallelism that comple-
ments the data parallelism within operations.

The most interesting operation to execute is MSCR. FlumeJava
first decides whether the operation should be run locally and se-
quentially, or as a remote, parallel MapReduce. Since there is over-
head in launching a remote, parallel job, local evaluation is pre-
ferred for modest-size inputs where the gain from parallel process-
ing is outweighed by the start-up overheads. Modest-size data sets
are common during development and testing, and by using local,
in-process evaluation for these data sets, FlumeJava facilities the
use of regular IDEs, debuggers, profilers, and related tools, greatly
easing the task of developing programs that include data-parallel
computations.

If the input data set appears large, FlumeJava chooses to launch a
remote, parallel MapReduce. It uses observations of the input data
sizes and estimates of the output data sizes to automatically choose a
reasonable number of parallel worker machines. Users can assist in
estimating output data sizes, for example by augmenting a DoFn with a
method that returns the expected ratio of output data size to input data
size, based on the computation represented by that DoFn. In the future,
we would like to refine these estimates through dynamic monitoring and
feedback of observed output data sizes,

371

and also to allocate relatively more parallel workers to jobs
that have a higher ratio of CPU to 1/0.

FlumeJava automatically creates temporary files to hold
the outputs of each operation it executes. It automatically
deletes these temporary files as soon as they are no longer
needed by some unevaluated operation later in the pipeline.

FlumeJava strives to make building and running pipelines
feel as similar as possible to running a regular Java program.
Using local, sequential evaluation for modest-sized inputs is
one way. Another way is by automatically routing any output to
System.out or System.err from within a user’'s DoFn, such as
debugging print statements, from the corresponding remote
MapReduce worker to the main FlumeJdava program’s output
streams. Likewise, any exceptions thrown within a DoFn
running on a remote MapReduce worker are captured, sent to
the main FlumeJava program, and rethrown.

When developing a large pipeline, it can be time-consuming to
find a bug in a late pipeline stage, fix the program, and then
reexecute the revised pipeline from scratch, particularly when it is
not possible to debug the pipeline on small-size data sets. To aid in
this cyclic process, the Flumedava library supports a cached
execution mode. In this mode, rather than recompute an operation,
FlumeJava first attempts to reuse the result of that operation from
the previous run, if it was saved in a (internal or user-visible) file
and if FlumeJava determines that the operation’s result has not
changed. An operation’s result is considered to be unchanged if
(a) the operation’s inputs have not changed, and (b) the operation’s
code and captured state have not changed. FlumeJava performs
an automatic, conservative analysis to identify when reuse of
previous results is guaranteed to be safe; the user can direct
additional previous results to be reused. Caching can lead to quick
edit-compile-run-debug cycles, even for pipelines that would
normally take hours to run.

FlumedJava currently implements a batch evaluation strategy,
for a single pipeline at a time. In the future, it would be
interesting to experiment with a more incremental, streaming,
or continuous execution of pipelines, where incrementally
added input leads to quick, incremental update of outputs. It
also would be interesting to investigate optimization across
pipelines run by multiple users over common data sources.

6. Evaluation

We have implemented the FlumedJava library, optimizer,
and execu-tor, building on MapReduce and other lower-
level services avail-able at Google.

In this section, we present information about how
Flumedava has been used in practice, and demonstrate
experimentally that the FlumeJava optimizer and executor
make modular, clear Flume-Java programs run nearly as well
as their hand-optimized raw-MapReduce-based equivalents.

6.1 User Adoption and Experience

One measure of the utility of the FlumeJava system is the extent to
which real developers find it worth converting to from systems they
already know and are using. This is the principal way in which we
evaluate the FlumeJava programming abstractions and API.

Since its initial release in May 2009, FlumeJava has seen
sig-nificant user adoption and production use within Google. To
mea-sure usage, we instrumented the FlumeJava library to log
a usage record every time a FlumeJava program is run. The
following table presents some statistics derived from these logs,

as of mid-March 2010:3

3The FlumedJava usage logs themselves are processed using a
FlumeJava program.

1-day active users| 62
7-day active users| 106
30-day active users| 176
Total users 319

The N-day active users numbers give the number of distinct
user ids that ran a FlumedJava program (excluding canned
tutorial pro-grams) in the previous N days.

Hundreds of FlumeJava programs have been written
and checked in to Google’s internal source-code repository.
Individual FlumedJava programs have been run successfully
on thousands of machines over petabytes of data.

In general, users seem to be very happy with the FlumeJava
abstractions. They are not always as happy with some aspects of
Java or FlumedJava’s use of Java. In particular, Java provides poor
support for simple anonymous functions and heterogeneous tuples,
which leads to verbosity and some loss of static type safety. Also,
FlumeJava’s PCollection-based data-parallel model hides many of
the details of the individual parallel worker machines and the subtle
differences between Mappers and Reducers, which makes it
difficult to express certain low-level parallel-programming
techniques used by some advanced MapReduce users.

FlumedJava is now slated to become the primary Java-
based API for data-parallel computation at Google.

6.2 Optimizer Effectiveness

In order to study the effectiveness of the FlumeJava optimizer at
reducing the number of parallel MapReduce stages, we instru-
mented the FlumeJava system so that it logs the structure of the
user’s pipeline, before and after optimization. The scatterplot below
shows the results extracted from these logs. Each point in the plot
depicts one or more user pipelines with the corresponding number
of stages. To aid the readability of the plot, we removed data on
about 10 larger pipelines with more than 120 unoptimized stages.

RS L in A B RN B R ARS LA AR MRS RS~ o)

61/" w -
4:[':‘

oo . B

[
[=]
]

Stages After Optimization

i e g Laa I 1
0 16 3 48 o4 80 9%
Stages Before Optimization

Looking at the sizes of the user pipelines both before and
after optimization, it is evident that FlumedJava has been used
for writing small as well as fairly large pipelines. In fact, the
largest of the pipeline so far (not plotted) had 820 unoptimized
stages and 149 optimized stages. This data further
underscores the usability of the FlumeJava API.

Looking at the optimizer's “compression” ratio (the ratio of
number of stages before and after the optimization), the
optimizer appears to achieve on average a 5x reduction in the
number of stages, and some pipelines had compression ratios
over 30x. One pipeline (not plotted) had 207 unoptimized
stages which were fused into a single optimized stage.

The Flumedava optimizer itself runs quickly, especially
com-pared to the actual execution that follows optimization.
For pipelines having up to dozens of operations, the
optimizer takes less than a second or two.

372

6.3 Execution Performance

The goal of FlumeJava is to allow a programmer to express his
or her data-parallel computation in a clear, modular way, while
simultaneously executing it with performance approaching that
of the best possible hand-optimized programs written directly
against MapReduce APls. While high optimizer compression is
good, the real goal is small execution time.

To assess how well FlumeJava achieves this goal, we first con-
structed several benchmark programs, based on real pipelines writ-
ten by FlumeJava users. These benchmarks performed different
computational tasks, including analyzing ads logs (Ads Logs), ex-
tracting and joining data about websites from various sources (Site-
Data and IndexStats), and computing usage statistics from logs
dumped by internal build tools (Build Logs).

We wrote each benchmark in three different ways:

in a modular style using FlumeJava,
in a modular style using Java MapReduce, and
in a hand-optimized style using Java MapReduce.
For two of the benchmarks, we also wrote in a fourth way:

in a hand-optimized style using Sawzall [17], a domain-specific
logs-processing language implemented on top of MapReduce.

The modular Java MapReduce style mirrors the logical
structure found in the FlumeJava program, but it is not the
normal way such computations would be expressed in
MapReduce. The hand-optimized style represents an efficient
execution strategy for the computation, and as such is much
more common in practice than the modular version, but as a
result of being hand-optimized and represented directly in
terms of MapReduces, the logical com-putation can become
obscured and hard to change. The hand-optimized Sawzall
version likewise intermixes logical computation with lower-level
implementation details, in an effort to get better performance.

The following table shows the number of lines of source
it took to write each version of each benchmark:

Benchmark | FlumeJava | MapReduce | MapReduce Sawzall

(Modular) | (Hand-Opt) | (Hand-Opt)
Ads Logs 320 465 399 158
IndexStats 176 296 336 -
Build Logs 276 476 355 -
SiteData 465 653 625 261

For each case, the FlumedJava version is more concise than
the equivalent version written using raw Java MapReduce.
Sawzall is more concise than Java.

The following table presents, for the FlumeJava version,
the number of FlumedJava operations in the pipeline (both
before and after optimization), and for the Java MapReduce
and Sawzall ver-sions, the number of MapReduce stages:

Benchmark | FlumedJava | MapReduce | MapReduce Sawzall

(Modular) | (Hand-Opt) | (Hand-Opt)
Ads Logs 14 1 4 1 4
IndexStats 16 12 3 2 -
Build Logs 7 1 3 1 -
SiteData 12 12 5 2 6

For each benchmark, the number of automatically optimized opera-tions
in the FlumedJava version matches the number of MapReduce stages in
the corresponding hand-optimized MapReduce-based ver-sion. As a
higher-level, domain-specific language, Sawzall does not provide the
programmer sufficient low-level access to enable them to hand-optimize
their programs into this minimum number of MapReduce stages, nor
does it include an automatic optimizer.

The following table shows, for each benchmark, the size
of the input data set and the number of worker machines
we used to run it:

Benchmark | Input Size | Number of Machines
Ads Logs 550 MB 4
IndexStats 3.3TB 200
Build Logs 34 GB 15
SiteData 1.3TB 200

We compared the run-time performance of the different
versions of each benchmark. We ensured that each version used
equivalent numbers of machines and other resources. We
measured the total elapsed wall-clock time spent when
MapReduce workers were run-ning; we excluded the “coordination”
time of starting up the main controller program, distributing
compiled binaries to worker ma-chines, and cleaning up temporary
files. Since execution times can vary significantly across runs, we
ran each benchmark version five times, and took the minimum
measured time as an approximation of the “true” time undisturbed
by unrelated effects of running on a shared cluster of machines.

The chart below shows the elapsed time for each
version of each benchmark, relative to the elapsed time for
the FlumeJava version (shorter bars are better):

2‘8,_ W FlumeJava (Modular)]
E 24k [] MapReduce (Modular)
B I [MapReduce (Hand-Opt)
3 2+ B Sawzall (Hand-Opt) g
E} 1.6 a
g |
o 1.2 Ul
B
S os- |
L]
&l

0.4 1

0

Ad;LogS IndexStats Build Logs ~ SiteData

Comparing the two MapReduce columns and the Sawzall column
shows the importance of optimizing. Without optimizations, the set-
up overheads for the workers, the extra 1/0 in order to store the
intermediate data, extra data encoding and decoding time, and
other similar factors increase the overall work required to pro-duce
the output. Comparing the FlumeJava and the hand-optimized
MapReduce columns demonstrates that a modular program written
in FlumeJava runs at close to the performance of a hand-optimized
version using the lower-level MapReduce APIs.

7. Related Work

In this section we briefly describe related work, and
compare FlumedJava to that work.

Language and library support for data-parallel
programming has a long history. Early work includes *Lisp
[13], C* [18], C** [12], and pH [15].

MapReduce [6-8] combines simple abstractions for data-parallel
processing with an efficient, highly scalable, fault-tolerant
implementation. MapReduce’s abstractions directly support com-
putations that can be expressed as a map step, a shuffle step, and a
reduce step. MapReduces can be programmed in several languages,
including C++ and Java. FlumeJava builds on Java MapReduce,
offering higher-level, more-composable abstractions, and an opti-mizer
for recovering good performance from those abstractions. FlumeJava
builds in support for managing pipelines of MapRe-duces. FlumeJava
also offers additional conveniences that help

373

make developing a FlumeJdava program similar to
developing a reg-ular single-process Java program.

Sawzall [17] is a domain-specific logs-processing language that
is implemented as a layer over MapReduce. A Sawzall program
can flexibly specify the mapper part of a MapReduce, as long as
the mappers are pure functions. Sawzall includes a library of a
dozen standard reducers; users cannot specify their own reducers.
This limits the Sawzall user’s ability to express efficient execution
plans for some computations, such as joins. Like MapReduce,
Sawzall does not provide help for multi-stage pipelines.

Hadoop [2] is an open-source Java-based re-
implementation of MapReduce, together with a job
scheduler and distributed file system akin to the Google File
System [9]. As such, Hadoop has similar limitations as
MapReduce when developing multi-stage pipelines.

Cascading [1] is a Java library built on top of Hadoop. Like
FlumeJava, Cascading aims to ease the challenge of programming
data-parallel pipelines, and provides abstractions similar to those of
FlumeJava. Unlike FlumeJava, a Cascading program explicitly
constructs a dataflow graph. In addition, the values flowing through
a Cascading pipeline are special untyped “tuple” values, and Cas-
cading operations focus on transforms over tuples; in contrast, a
FlumeJava pipeline computes over arbitrary Java objects using ar-
bitrary Java computations. Cascading performs some optimizations
of its dataflow graphs prior to running them. Somewhat akin to
FlumeJava's executor, the Cascading evaluator breaks the
dataflow graph into pieces, and, if possible, runs those in parallel,
using the underlying Hadoop job scheduler. There is a mechanism
for elid-ing computation if input data is unchanged, akin to
FlumeJava’s caching mechanism.

Pig [3] compiles a special domain-specific language called
Pig Latin [16] into code that is run on Hadoop. A Pig Latin
program combines high-level declarative operators similar to
those in SQL, together with named intermediate variables
representing edges in the dataflow graph between operators.
The language allows for user-defined transformation and
extraction functions, and provides support for co-grouping and
joins. The Pig system has a novel debugging mechanism,
wherein it can generate sample data sets that illustrate what
the various operations do. The Pig system has an optimizer
that tries to minimize the amount of data materialized between
Hadoop jobs, and is sensitive to the size of the input data sets.

The Dryad [11] system implements a general-purpose data-
parallel execution engine. Dryad programs are written in C++ us-
ing overloaded operators to specify an arbitrary acyclic dataflow
graph, somewhat akin to Cascading’s model of explicit graph con-
struction. Like MapReduce, Dryad handles the details of commu-
nication, partitioning, placement, concurrency and fault tolerance.
Unlike stock MapReduce but similar to the FlumeJava optimizer's
MSCR primitive, computation nodes can have multiple input and
output edge “channels.” Unlike FlumeJava, Dryad does not have
an optimizer to combine or rearrange nodes in the dataflow graph,
since the nodes are computational black boxes, but Dryad does in-
clude a notion of run-time graph refinement through which users
can perform some kinds of optimizations.

The LINQ [14] extension of C# 3.0 adds a SQL-like construct to
C#. This construct is syntactic sugar for a series of library calls,
which can be implemented differently over different kinds of data
being “queried.” The SQL-like construct can be used to express
queries over traditional relational data (and shipped out to remote
database servers), over XML data, and over in-memory C# ob-jects.
It can also be used to express parallel computations and exe-cuted
on Dryad [20]. The manner in which the SQL-like construct is
desugared into calls that construct an internal representation of the
original query is similar to how FlumeJava’s parallel operations

implicitly construct an internal execution plan. DryadLINQ also
includes optimizations akin to those in FlumedJava. The C# lan-
guage was significantly extended in order to support LINQ; in
con-trast, FlumedJava is implemented as a pure Java library,
with no lan-guage changes. DryadLINQ requires a pipeline to
be expressed via a single SQL-like statement. In contrast, calls
to FlumeJava opera-tions can be intermixed with other Java
code, organized into func-tions, and managed with traditional
Java control-flow operations; deferred evaluation enables all
these calls to be coalesced dynam-ically into a single pipeline,
which is then optimized and executed as a unit.

SCOPE [4] is a declarative scripting language built on top of
Dryad. Programs are written in a variant of SQL, with extensions to
call out to custom extractors, filters, and processors that are written
in C#. The C# extensions are intermixed with the SQL code. As
with Pig Latin, SQL queries are broken down into a series of
distinct steps, with variables naming intermediate streams. The
SQL framework provides named data fields, but there appears to
be little support for those names in the extension code. The
optimizer transforms SQL expressions using traditional rules for
query optimization, together with new rules that take into account
data and communication locality.

Map-Reduce-Merge [19] extends the MapReduce model by
adding an additional Merge step, making it possible to express ad-
ditional types of computations, such as relational algebra, in a sin-
gle execution. FlumeJava supports more general pipelines.

FlumeJava’'s optimizer shares many concepts with tradi-tional
compiler optimizations, such as loop fusion and common-subexpression
elimination. FlumeJava’s optimizer also bears some resemblance to a
database query optimizer: they both produce an optimized execution
plan from a higher-level decription of a logical computation, and both
can optimize programs that perform joins. However, a database query
optimizer typically uses run-time infor-mation about input tables in a
relational database, such as their sizes and available indices, to choose
an efficient execution plan, such as which of several possible algorithms
to use to compute joins. In contrast, FlumeJava provides no built-in
support for joins. Instead, join() is a derived library operation that
implements a particu-lar join algorithm, hash-merge-join, which works
even for simple, file-based data sets lacking indices and which can be
implemented using MapReduce. Other join algorithms could be
implemented by other derived library operations. FlumeJava’s optimizer
works at a lower level than a typical database query optimizer, applying
fu-sion and other simple transformations to the primitives underlying the
join() library operation. It chooses how to optimize without reference to
the sizes or other representational properties of its in-puts. Indeed, in
the context of a join embedded in a large pipeline, such information may
not become available until after the opti-mized pipeline has been partly
run. FlumedJava'’s approach allows the operations implementing the join
to be optimized in the con-text of the surrounding pipeline; in many
cases the joining opera-tions are completely fused into the rest of the
computation (and vice versa). This was illustrated by the SiteData
example in section 4.5.

Before FlumeJava, we were developing a system based on
similar abstractions, but made available to users in the context of a
new programming language, named Lumberjack. Lumber-jack was
designed to be particularly good for expressing data-parallel
pipelines, and included features such as an implicitly par-allel,
mostly functional programming model, a sophisticated poly-morphic
type system, local type inference, lightweight tuples and records,
and first-class anonymous functions. Lumberjack was sup-ported
by a powerful optimizer that included both traditional op-timizations
such as inlining and value flow analysis, and non-traditional
optimizations such as fusion of parallel loops. Lum-berjack
programs were transformed into a low-level intermediate

8. Conclusion

374

representation, which in our implementation was interpreted
but which we planned to eventually dynamically translate
into Java bytecode or native machine code. Lumberjack’s
parallel run-time system shared many of the characteristics
of FlumedJava’s run-time system.

While the Lumberjack-based version of Flume offered a
number of benefits for programmers, it suffered from several
important disadvantages relative to the FlumeJava version:

Since Lumberjack was specially designed for the task,
Lumber-jack programs were significantly more concise than
the equiv-alent FlumeJava programs. However, the
implicitly parallel, mostly functional programming model was
not natural for many of its intended users. FlumeJava’s
explicitly parallel model, which distinguishes Collection from
PCollection and iterator() from parallelDo(), coupled with its
“mostly imperative” model that disallows mutable shared
state only across DoFn boundaries, is much more natural
for most of these programmers.

Lumberjack’s optimizer was a traditional static optimizer, which
performed its optimization over the program’s internal
representation before executing any of it. Since FlumeJava is a
pure library, it cannot use a traditional static optimization ap-
proach. Instead, we adopted a more dynamic approach to op-
timization, where the running user program first constructs an
execution plan (via deferred evaluation), and then optimizes the
plan before executing it. FlumedJava does no static analysis of
the source program nor dynamic code generation, which im-
poses some costs in run-time performance; those costs have
turned out to be relatively modest. On the other hand, being
able to simply run the FlumeJava program to construct the fully
expanded execution plan has turned out to be a tremendous
ad-vantage. The ability of Lumberjack’s optimizer to deduce the
program’s execution plan was always limited by the strength of
its static analysis, but FlumeJava’s dynamic optimizer has no
such limits. Indeed, FlumedJava programmers routinely use
complex control structures and Collections and Maps storing
PCollections in their code expressing their pipeline compu-
tation. These coding patterns would defeat any static analysis
we could reasonably develop, but the FlumeJava dynamic opti-
mizer is unaffected by this complexity. Later, we can augment
FlumeJava with a dynamic code generator, if we wish the re-
duce the remaining overheads.

Building an efficient, complete, usable Lumberjack-based
sys-tem is much more difficult and time-consuming than
building an equivalently efficient, complete, and usable
FlumeJava system. Indeed, we had built only a prototype
Lumberjack-based sys-tem after more than a year’s effort,
but we were able to change directions and build a useful
FlumedJava system in only a couple of months.

Novelty is an obstacle to adoption. By being embedded in a well-
known programming language, FlumeJava focuses the potential
adopter’s attention on a few new features, namely the Flume
abstractions and the handful of Java classes and methods
implementing them. Potential adopters are not distracted by a new
syntax or a new type system or a new evaluation model. Their
normal development tools and practices continue to work. All the
standard libraries they have learned and rely on are still available.
They need not fear that Java will go away and leave their project in
the lurch. By comparison, Lumberjack suffered greatly along these
dimensions. The advantages of its specially designed syntax and
type system were insufficient to overcome these real-world
obstacles.

FlumedJava is a pure Java library that provides a few simple abstrac-tions for programming data-parallel computations. These abstrac-tions
are higher-level than those provided by MapReduce, and pro-vide better support for pipelines. FlumedJava'’s internal use of a form of deferred
evaluation enables the pipeline to be optimized prior to execution, achieving performance close to that of hand-optimized MapReduces.
FlumedJava’s run-time executor can select among al-ternative implementation strategies, allowing the same program to execute completely
locally when run on small test inputs and using many parallel machines when run on large inputs. FlumedJava is in active, production use at
Google. Its adoption has been facilitated by being a “mere” library in the context of an existing, well-known, expressive language.

375

