Simple ‘ Smart ‘ Speed

HOOLS

Apache kafka with real-time data streaming

https://www.researchgate.net/publication/348575301_Apache_kafka_with_real-time_data_streaming?enrichId=rgreq-15786340589a8bd31ea42d8d0064b779-XXX&enrichSource=Y292ZXJQYWdlOzM0ODU3NTMwMTtBUzo5ODEzMzIyNDMwMDk1MzZAMTYxMDk3OTI0NzAzOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf

Apache Kafka and real-time data streaming

Abstract— A real-time data streaming is a most popular model of Big data
analytics. In the current era, Apache Kafka is one of the finest framework
used for real-time data streaming which is scalable, durable, distributed
platform with low latency and High throughput. In Kafka, the real-time
streaming of data builds a data stream pipelines between systems or
applications and designed to serve huge data for large organizations. In this
paper, I will be discussing Apache Kafka architecture and real-time data
streaming in Kafka.

Introduction—

Real-time data analytics has become a challenge with the continuously rising
amount of data, which is generated by systems or applications. Stream
processing in big data technology, which enables users to input continuous
data stream and detect conditions fast within a minor period. It is also called as
real-time analytics and streaming analytics. In the current era, Apache Kafka is
most popular architecture used for processing the stream data with aim to
provide a unified, high throughput, low-latency platform. It is an open source
stream framework for real-time data processing, which is written in Java and
Scala. Kafka process streams of records as they occur and is better for
applications of two broad classes, one is structuring a real time streaming of
data pipelines between systems or applications and another is to build
applications streaming for real time that reacts to the record streams. Kafka
can do these things as it run as a cluster on any number of servers. The Kafka
cluster accumulates streams of records in categories called topics while every
record has a key, a value, and a timestamp.

Apache Kafka Architecture—

Kafka is a distributed streaming platform, which is developed by Apache
Software Foundation with the aim to make it scalable, fast, reliable & durable.
Kafka publishes and subscribe the records, which are in the form of streams
and work as a messaging system of an enterprise. It is used in storing streams
of records without any fault and helps in processing record streams. Kafka
runs like cluster, which is compatible for more than one host. The record
consists of key, timestamp and a value. Apache Kafka efficiently processes the
real-time, streaming data when implemented along with Apache Storm, Apache
HBase and Apache Spark. The major terms of Kafka's architecture

are topics, records, and brokers. Topics consist of stream of records while
brokers are responsible for replicating the messages.

Kafka Ecosystem
Kafka C|uste|’ c°nsumer Group
'-.ﬂ--.-------‘
| | d
| |]
\ Producer1) E 2 _Broker1) E consumer]l y
push msg . . pull msg
n []
Producer2 | = * | Broker2 ! f4—— | consumer2 |
y. 4N L 4
\ ’ N : y : P \
\‘ 1 1 "
Producer3 % : | Broker3 | ¢ 3
\ roducer \\ i | Broker3) E “v Kconsumer y
N, B .
. +
\‘ ‘O
?:t :aﬂ::l T ," updates offset
roker

\ ZooKeeper)

Figure 1.1 Apache Kafka Architecture

Kafka is deployed as a cluster on multiple servers, so Kafka handles it’s
publish and subscribe messaging system with the help of four APIs i.e.,
producer API, consumer API, streams API and connector API.

Producer API: It allows application to publish streams of records.

Consumer API: Processing of record streams takes place and the
subscription of any number of topics of Kafka.

Streams API: Effectively processing of input streams takes place, which
ultimately produces output stream to any number of output topics.

Connector API: Running and making use of consumers and producers,
which can be reused again, which helps in connecting Kafka topics to the
application or data systems, which is already available.

Kafka continuously receives requests for receiving and sending messages.
The data is transferred through broker, which are coordinated and managed
by Zookeeper. Katka with ZooKeeper is used to manage service discovery for
Kafka brokers of the Kafka cluster. The broker is nothing more than a Kafka
server, which is a meaningful name to refer to it. The notion of broker leads
directly to that of a cluster. Indeed, brokers run on a Kafka cluster, which is
a group of machines, each executing one instance of Kafka broker.

Producer Producer Producer

g

Kafka Cluster

Broker

Topic 1

| Partition1 || Partition 2 |

Topic 2

| Partition 1 || Partition 2 |

L

——

Consumer Consumer Consumer

Figure 1.2 Apache Kafka Architecture

Broker: A Kafka server running on a cluster. It manages the messages
received and send them to the consumer. Each topic is generally divided into
a number of partitions (saved on peer-to-peer nodes, known as brokers).

Cluster: Kafka cluster typically consists of multiple brokers to maintain load
balance. Kafka brokers are stateless, so they use ZooKeeper for maintaining
their cluster state.

Topics: A topic (similar to a Table in RDMBS, but here each record is
immutable) is a category or feed name to which records are published.

Zookeeper: It has a distributed key-value store. It is highly optimized for
reads but writes are slower. It stores metadata and handles the mechanics
of clustering (distributing updates/configurations, etc). Zookeeper itself is
allowing multiple clients to perform simultaneous reads, writes, and acts as
a shared configuration service within the system.

Real-time streaming in Kafka—

Kafka streaming platform can handle billions of messages per day. Streams
of records are stored in a fault-tolerant durable way. It process streams of
records as they occur in real-time with low latency, publish and subscribe to
streams of records, similar to a message queue or enterprise messaging
system. The main applications of the Kafka streaming is to built real-time
streaming data pipelines that reliably get data between systems or

applications and built real-time streaming applications that transform or
react to the streams of data.

Kafka allows us to have a huge amount of messages go through a centralized
medium and store them without worrying about things like performance or
data loss. This means that it is perfect for use as the heart of your system’s
architecture, acting as a centralized medium that connects different
applications. It simplifies the application development by building on the
producer and consumer libraries that are in Kafka to leverage the Kafka native
capabilities, making it more straightforward and swift. Apache Kafka has a light
but powerful streaming library called Kafka Stream to perform data processing.

The main API in Kafka Streaming is a stream processing Domain Specific
Language (DSL) offering multiple high-level operators. With the Stream API,
it is easier than ever to write business logic, which enriches Kafka topic data
for service consumption. Some of the companies that uses Apache Kafka are:
LinkedIn, Netflix, yahoo and Uber.

Kafka as messaging System:

Kafka builds on publish-subscribe model with the advantage of a messaging
queue system. It achieves this with the use of consumer-groups and
message retention by brokers.

My Topic
Partition 1 2
T - _;f F.
- F =
/ . e - R
f i e L A 000 R # Consumer A
- [1 L/
Producer A [~ ~ & = i
v e
Mg Partition 2

= N
- .
» b i -
\ 1 T

[
>
] Partition 3
- - Fa '
= > (>
Producer B e = - - » - - s
’ :
| 4 | a 1 Cons :
e

Figure 1.3 Apache Kafka Architecture

Within a consumer-group, for a subscribed topic, only one consumer from
the group actually consumes the message from a given partition of the topic,

https://www.cuelogic.com/outsource-software-development

and so only one of the consumers within a consumer-group reads each
particular message. The brokers in their topic partitions, unlike traditional
message queues, also retain the messages.

Multiple consumer-groups can read from the same set of topics, and at
different times catering to different logical application domains. Thus, Kafka
provides both the advantage of high scalability via consumers belonging to the
same consumer group and the ability to serve multiple independent
downstream applications simultaneously.

Conclusion—

As Kafka is a highly reliable and expandable enterprise messaging system to
connect multiple systems, and offers partitioning and high throughput message
delivery. Apache Kafka has a light but powerful streaming library called Kafka
Stream to perform data processing.

With the Kafka widespread integration into enterprise-level infrastructures,
monitoring and Kafka performance at scale has become an increasingly
important concern. Kafka monitoring and end-to-end performance requires
tracking metrics from brokers, consumer, and producers, in addition to
monitoring ZooKeeper, which is used by Kafka for coordination among
consumers. Kafka is used in number of different ways with different cases.
Number of well-reputed companies adopted Kafka streaming platforms to
build mission critical, real-time applications that power their core business
from small to large-scale use cases that handle millions of events per second.
Nowadays Kafka is indeed a great platform to serve millions within less
amount of time and can be used with Apache spark to make real-time data
processing more reliable.

View publication stats

https://www.researchgate.net/publication/348575301

