
MapReduce: Simplified Data Processing on Large Clusters

.

Abstract
MapReduce is a programming model and an associ-

ated implementation for processing and generating
large data sets. Users specify a map function that
processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function
that merges all intermediate values associated with the
same intermediate key. Many real world tasks are
expressible in this model, as shown in the paper.
Programs written in this functional style are automati-

cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-ily
utilize the resources of a large distributed system.
Our implementation of MapReduce runs on a large

cluster of commodity machines and is highly scalable: a
typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds of MapReduce
pro-grams have been implemented and upwards of one
thou-sand MapReduce jobs are executed on Google’s
clusters every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure of
web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.
As a reaction to this complexity, we designed a new

abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-spired
by the map and reduce primitives present in Lisp and
many other functional languages. We realized that most of
our computations involved applying a map op-eration to
each logical “record” in our input in order to compute a set
of intermediate key/value pairs, and then applying a
reduce operation to all the values that shared the same
key, in order to combine the derived data ap-propriately.
Our use of a functional model with user-specified map and
reduce operations allows us to paral-lelize large
computations easily and to use re-execution as the primary
mechanism for fault tolerance.
The major contributions of this work are a simple and

powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves high
performance on large clusters of commodity PCs.
Section 2 describes the basic programming model and

gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model that
we have found useful. Section 5 has performance
measurements of our implementation for a variety of tasks.
Section 6 explores the use of MapReduce within Google
including our experiences in using it as the basis

To appear in OSDI 2004 1



for a rewrite of our production indexing system. Sec-
tion 7 discusses related and future work.

2 Programming Model

The computation takes a set of input key/value pairs,
and produces a set of output key/value pairs. The user
of the MapReduce library expresses the computation as
two functions: Map and Reduce.
Map, written by the user, takes an input pair and pro-

duces a set of intermediate key/value pairs. The
MapRe-duce library groups together all intermediate
values asso-ciated with the same intermediate key I and
passes them to the Reduce function.
The Reduce function, also written by the user,

accepts an intermediate key I and a set of values for that
key. It merges together these values to form a possibly
smaller set of values. Typically just zero or one output
value is produced per Reduce invocation. The
intermediate val-ues are supplied to the user’s reduce
function via an iter-ator. This allows us to handle lists
of values that are too large to fit in memory.

2.1 Example

Consider the problem of counting the number of oc-
currences of each word in a large collection of docu-
ments. The user would write code similar to the follow-
ing pseudo-code:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

The map function emits each word plus an
associated count of occurrences (just ‘1’ in this simple
example). The reduce function sums together all
counts emitted for a particular word.
In addition, the user writes code to fill in a mapreduce

specification object with the names of the input and out-
put files, and optional tuning parameters. The user then
invokes the MapReduce function, passing it the specifi-
cation object. The user’s code is linked together with the
MapReduce library (implemented in C++). Appendix A
contains the full program text for this example.

2.2 Types

Even though the previous pseudo-code is written in
terms of string inputs and outputs, conceptually the map
and reduce functions supplied by the user have
associated types:

map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

I.e., the input keys and values are drawn from a
different domain than the output keys and values.
Furthermore, the intermediate keys and values are from
the same do-main as the output keys and values.
Our C++ implementation passes strings to and from

the user-defined functions and leaves it to the user code
to convert between strings and appropriate types.

2.3 More Examples

Here are a few simple examples of interesting programs
that can be easily expressed as MapReduce computa-
tions.

Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermedi-
ate data to the output.

Count of URL Access Frequency: The map func-
tion processes logs of web page requests and outputs
hURL, 1i. The reduce function adds together all values
for the same URL and emits a hURL, total counti pair.

Reverse Web-Link Graph: The map function
outputs htarget, sourcei pairs for each link to a target
URL found in a page named source. The reduce
function concatenates the list of all source URLs as-
sociated with a given target URL and emits the pair:
htarget, list(source)i

Term-Vector per Host: A term vector summarizes
the most important words that occur in a document or a
set of documents as a list of hword, f requencyi pairs.
The map function emits a hhostname, term vectori
pair for each input document (where the hostname is
extracted from the URL of the document). The re-duce
function is passed all per-document term vectors for a
given host. It adds these term vectors together, throwing
away infrequent terms, and then emits a final
hhostname, term vectori pair.

To appear in OSDI 2004 2



User
Program

(1) fork
(1) fork (1) fork

Master

split 0

split 1

split 2

split 3

split 4

(2)
assign
map

worker

(3) read
worker

(4) local write

(2)
assign
reduce

(6) write
worker

(5) remote read

worker

output
file 0

output
file 1

worker

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of hword, document IDi
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
hword, list(document ID)i pair. The set of all output pairs
forms a simple inverted index. It is easy to augment this
computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a hkey, recordi pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in
Sec-tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another
for a large NUMA multi-processor, and yet another for
an even larger collection of networked machines.
This section describes an implementation targeted to

the computing environment in wide use at Google:

large clusters of commodity PCs connected together
with switched Ethernet [4]. In our environment:
(1) Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.
(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.
(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.
(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed
file system [8] developed in-house is used to manage
the data stored on these disks. The file system uses
replication to provide availability and reliability on top
of unreliable hardware.
(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3



into a set of M splits. The input splits can be pro-cessed
in parallel by different machines. Reduce invoca-tions
are distributed by partitioning the intermediate key space
into R pieces using a partitioning function (e.g., hash(key)
mod R). The number of partitions (R) and the partitioning
function are specified by the user.
Figure 1 shows the overall flow of a MapReduce op-

eration in our implementation. When the user program
calls the MapReduce function, the following sequence
of actions occurs (the numbered labels in Figure 1
corre-spond to the numbers in the list below):

1. The MapReduce library in the user program first
splits the input files into M pieces of typically 16
megabytes to 64 megabytes (MB) per piece (con-
trollable by the user via an optional parameter). It
then starts up many copies of the program on a
clus-ter of machines.

2. One of the copies of the program is special – the
master. The rest are workers that are assigned work
by the master. There are M map tasks and R reduce
tasks to assign. The master picks idle workers and
assigns each one a map task or a reduce task.

3. A worker who is assigned a map task reads the
contents of the corresponding input split. It parses
key/value pairs out of the input data and passes
each pair to the user-defined Map function. The
interme-diate key/value pairs produced by the
Map function are buffered in memory.

4. Periodically, the buffered pairs are written to local
disk, partitioned into R regions by the partitioning
function. The locations of these buffered pairs on
the local disk are passed back to the master, who is
responsible for forwarding these locations to the
reduce workers.

5. When a reduce worker is notified by the master about
these locations, it uses remote procedure calls to read
the buffered data from the local disks of the map
workers. When a reduce worker has read all in-
termediate data, it sorts it by the intermediate keys so
that all occurrences of the same key are grouped
together. The sorting is needed because typically
many different keys map to the same reduce task. If
the amount of intermediate data is too large to fit in
memory, an external sort is used.

6. The reduce worker iterates over the sorted interme-
diate data and for each unique intermediate key en-
countered, it passes the key and the corresponding set
of intermediate values to the user’s Reduce func-
tion. The output of the Reduce function is appended
to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been
completed, the master wakes up the user program.
At this point, the MapReduce call in the user pro-
gram returns back to the user code.

After successful completion, the output of the mapre-
duce execution is available in the R output files (one
per reduce task, with file names as specified by the
user). Typically, users do not need to combine these R
output files into one file – they often pass these files as
input to another MapReduce call, or use them from
another dis-tributed application that is able to deal with
input that is partitioned into multiple files.

3.2 Master Data Structures

The master keeps several data structures. For each map
task and reduce task, it stores the state (idle, in-
progress, or completed), and the identity of the
worker machine (for non-idle tasks).
The master is the conduit through which the location of

intermediate file regions is propagated from map tasks to
reduce tasks. Therefore, for each completed map task, the
master stores the locations and sizes of the R inter-mediate
file regions produced by the map task. Updates to this
location and size information are received as map tasks are
completed. The information is pushed incre-mentally to
workers that have in-progress reduce tasks.

3.3 Fault Tolerance

Since the MapReduce library is designed to help
process very large amounts of data using hundreds or
thousands of machines, the library must tolerate
machine failures gracefully.

Worker Failure

The master pings every worker periodically. If no re-
sponse is received from a worker in a certain amount of
time, the master marks the worker as failed. Any map
tasks completed by the worker are reset back to their
ini-tial idle state, and therefore become eligible for
schedul-ing on other workers. Similarly, any map task
or reduce task in progress on a failed worker is also
reset to idle and becomes eligible for rescheduling.
Completed map tasks are re-executed on a failure be-

cause their output is stored on the local disk(s) of the
failed machine and is therefore inaccessible. Completed
reduce tasks do not need to be re-executed since their
output is stored in a global file system.
When a map task is executed first by worker A and

then later executed by worker B (because A failed), all

To appear in OSDI 2004 4



workers executing reduce tasks are notified of the re-
execution. Any reduce task that has not already read the
data from worker A will read the data from worker B.
MapReduce is resilient to large-scale worker failures.

For example, during one MapReduce operation,
network maintenance on a running cluster was causing
groups of 80 machines at a time to become unreachable
for sev-eral minutes. The MapReduce master simply re-
executed the work done by the unreachable worker
machines, and continued to make forward progress,
eventually complet-ing the MapReduce operation.

Master Failure

It is easy to make the master write periodic checkpoints of
the master data structures described above. If the mas-ter
task dies, a new copy can be started from the last
checkpointed state. However, given that there is only a
single master, its failure is unlikely; therefore our cur-rent
implementation aborts the MapReduce computation if the
master fails. Clients can check for this condition and retry
the MapReduce operation if they desire.

Semantics in the Presence of Failures

When the user-supplied map and reduce operators
are de-terministic functions of their input values, our
distributed implementation produces the same output as
would have been produced by a non-faulting sequential
execution of the entire program.
We rely on atomic commits of map and reduce task

outputs to achieve this property. Each in-progress task
writes its output to private temporary files. A reduce task
produces one such file, and a map task produces R such
files (one per reduce task). When a map task completes,
the worker sends a message to the master and includes the
names of the R temporary files in the message. If the
master receives a completion message for an already
completed map task, it ignores the message. Otherwise, it
records the names of R files in a master data structure.

When a reduce task completes, the reduce worker
atomically renames its temporary output file to the final
output file. If the same reduce task is executed on multi-
ple machines, multiple rename calls will be executed for
the same final output file. We rely on the atomic rename
operation provided by the underlying file system to guar-
antee that the final file system state contains just the data
produced by one execution of the reduce task.

The vast majority of our map and reduce operators
are deterministic, and the fact that our semantics are equiv-
alent to a sequential execution in this case makes it very

To appear in OSDI 2004

easy for programmers to reason about their program’s be-
havior. When the map and/or reduce operators are non-
deterministic, we provide weaker but still reasonable se-
mantics. In the presence of non-deterministic operators,
the output of a particular reduce task R1 is equivalent to
the output for R1 produced by a sequential execution of
the non-deterministic program. However, the output for a
different reduce task R2 may correspond to the output for
R2 produced by a different sequential execution of the
non-deterministic program.
Consider map task M and reduce tasks R1 and R2.

Let e(Ri ) be the execution of Ri that committed (there
is exactly one such execution). The weaker semantics
arise because e(R1) may have read the output produced
by one execution of M and e(R2) may have read the
output produced by a different execution of M .

3.4 Locality
Network bandwidth is a relatively scarce resource in our
computing environment. We conserve network band-width
by taking advantage of the fact that the input data
(managed by GFS [8]) is stored on the local disks of the
machines that make up our cluster. GFS divides each file
into 64 MB blocks, and stores several copies of each block
(typically 3 copies) on different machines. The
MapReduce master takes the location information of the
input files into account and attempts to schedule a map
task on a machine that contains a replica of the corre-
sponding input data. Failing that, it attempts to schedule a
map task near a replica of that task’s input data (e.g., on a
worker machine that is on the same network switch as the
machine containing the data). When running large
MapReduce operations on a significant fraction of the
workers in a cluster, most input data is read locally and
consumes no network bandwidth.

3.5 Task Granularity

We subdivide the map phase into M pieces and the re-
duce phase into R pieces, as described above. Ideally,
M and R should be much larger than the number of
worker machines. Having each worker perform many
different tasks improves dynamic load balancing, and
also speeds up recovery when a worker fails: the many
map tasks it has completed can be spread out across all
the other worker machines.
There are practical bounds on how large M and R

can be in our implementation, since the master must
make O(M + R) scheduling decisions and keeps O(M ∗
R) state in memory as described above. (The constant
fac-tors for memory usage are small however: the O(M
∗ R) piece of the state consists of approximately one
byte of data per map task/reduce task pair.)

5



Furthermore, R is often constrained by users because
the output of each reduce task ends up in a separate out-
put file. In practice, we tend to choose M so that each
individual task is roughly 16 MB to 64 MB of input data
(so that the locality optimization described above is most
effective), and we make R a small multiple of the num-ber
of worker machines we expect to use. We often per-form
MapReduce computations with M = 200, 000 and
R = 5, 000, using 2,000 worker machines.

3.6 Backup Tasks

One of the common causes that lengthens the total time
taken for a MapReduce operation is a “straggler”: a ma-
chine that takes an unusually long time to complete one
of the last few map or reduce tasks in the computation.
Stragglers can arise for a whole host of reasons. For ex-
ample, a machine with a bad disk may experience fre-
quent correctable errors that slow its read performance
from 30 MB/s to 1 MB/s. The cluster scheduling sys-
tem may have scheduled other tasks on the machine,
causing it to execute the MapReduce code more slowly
due to competition for CPU, memory, local disk, or net-
work bandwidth. A recent problem we experienced was
a bug in machine initialization code that caused proces-
sor caches to be disabled: computations on affected ma-
chines slowed down by over a factor of one hundred.
We have a general mechanism to alleviate the prob-

lem of stragglers. When a MapReduce operation is
close to completion, the master schedules backup
executions of the remaining in-progress tasks. The
task is marked as completed whenever either the
primary or the backup execution completes. We have
tuned this mechanism so that it typically increases the
computational resources used by the operation by no
more than a few percent. We have found that this
significantly reduces the time to complete large
MapReduce operations. As an exam-ple, the sort
program described in Section 5.3 takes 44% longer to
complete when the backup task mechanism is disabled.

4 Refinements

Although the basic functionality provided by simply
writing Map and Reduce functions is sufficient for
most needs, we have found a few extensions useful.
These are described in this section.

4.1 Partitioning Function

The users of MapReduce specify the number of reduce
tasks/output files that they desire (R). Data gets parti-
tioned across these tasks using a partitioning function on

To appear in OSDI 2004

the intermediate key. A default partitioning function is
provided that uses hashing (e.g. “hash(key) mod R”).
This tends to result in fairly well-balanced partitions. In
some cases, however, it is useful to partition data by some
other function of the key. For example, sometimes the
output keys are URLs, and we want all entries for a single
host to end up in the same output file. To support
situations like this, the user of the MapReduce library can
provide a special partitioning function. For example, using
“hash(Hostname(urlkey)) mod R” as the par-titioning
function causes all URLs from the same host to end up in
the same output file.

4.2 Ordering Guarantees

We guarantee that within a given partition, the interme-
diate key/value pairs are processed in increasing key or-
der. This ordering guarantee makes it easy to generate a
sorted output file per partition, which is useful when the
output file format needs to support efficient random
access lookups by key, or users of the output find it
con-venient to have the data sorted.

4.3 Combiner Function

In some cases, there is significant repetition in the inter-
mediate keys produced by each map task, and the user-
specified Reduce function is commutative and associa-
tive. A good example of this is the word counting exam-
ple in Section 2.1. Since word frequencies tend to follow a
Zipf distribution, each map task will produce hundreds or
thousands of records of the form <the, 1>. All of these
counts will be sent over the network to a single re-duce
task and then added together by the Reduce function to
produce one number. We allow the user to specify an
optional Combiner function that does partial merging of
this data before it is sent over the network.
The Combiner function is executed on each

machine that performs a map task. Typically the same
code is used to implement both the combiner and the
reduce func-tions. The only difference between a
reduce function and a combiner function is how the
MapReduce library han-dles the output of the function.
The output of a reduce function is written to the final
output file. The output of a combiner function is written
to an intermediate file that will be sent to a reduce task.
Partial combining significantly speeds up certain

classes of MapReduce operations. Appendix A contains
an example that uses a combiner.

4.4 Input and Output Types

The MapReduce library provides support for reading in-
put data in several different formats. For example, “text”

6



mode input treats each line as a key/value pair: the key is
the offset in the file and the value is the contents of the
line. Another common supported format stores a sequence
of key/value pairs sorted by key. Each input type
implementation knows how to split itself into mean-ingful
ranges for processing as separate map tasks (e.g. text
mode’s range splitting ensures that range splits oc-cur only
at line boundaries). Users can add support for a new input
type by providing an implementation of a sim-ple reader
interface, though most users just use one of a small
number of predefined input types.
A reader does not necessarily need to provide data

read from a file. For example, it is easy to define a
reader that reads records from a database, or from data
struc-tures mapped in memory.
In a similar fashion, we support a set of output types

for producing data in different formats and it is easy for
user code to add support for new output types.

4.5 Side-effects

In some cases, users of MapReduce have found it con-
venient to produce auxiliary files as additional outputs
from their map and/or reduce operators. We rely on the
application writer to make such side-effects atomic and
idempotent. Typically the application writes to a tempo-
rary file and atomically renames this file once it has
been fully generated.
We do not provide support for atomic two-phase com-

mits of multiple output files produced by a single task.
Therefore, tasks that produce multiple output files with
cross-file consistency requirements should be determin-
istic. This restriction has never been an issue in practice.

4.6 Skipping Bad Records

Sometimes there are bugs in user code that cause the Map
or Reduce functions to crash deterministically on certain
records. Such bugs prevent a MapReduce operation from
completing. The usual course of action is to fix the bug,
but sometimes this is not feasible; perhaps the bug is in a
third-party library for which source code is unavail-able.
Also, sometimes it is acceptable to ignore a few records,
for example when doing statistical analysis on a large data
set. We provide an optional mode of execu-tion where the
MapReduce library detects which records cause
deterministic crashes and skips these records in or-der to
make forward progress.
Each worker process installs a signal handler that

catches segmentation violations and bus errors. Before
invoking a user Map or Reduce operation, the MapRe-
duce library stores the sequence number of the argument
in a global variable. If the user code generates a signal,

the signal handler sends a “last gasp” UDP packet that
contains the sequence number to the MapReduce mas-
ter. When the master has seen more than one failure on
a particular record, it indicates that the record should be
skipped when it issues the next re-execution of the
corre-sponding Map or Reduce task.

4.7 Local Execution

Debugging problems in Map or Reduce functions can
be tricky, since the actual computation happens in a dis-
tributed system, often on several thousand machines,
with work assignment decisions made dynamically by
the master. To help facilitate debugging, profiling, and
small-scale testing, we have developed an alternative
im-plementation of the MapReduce library that
sequentially executes all of the work for a MapReduce
operation on the local machine. Controls are provided
to the user so that the computation can be limited to
particular map tasks. Users invoke their program with a
special flag and can then easily use any debugging or
testing tools they find useful (e.g. gdb).

4.8 Status Information

The master runs an internal HTTP server and exports a
set of status pages for human consumption. The sta-tus
pages show the progress of the computation, such as
how many tasks have been completed, how many are in
progress, bytes of input, bytes of intermediate data,
bytes of output, processing rates, etc. The pages also
contain links to the standard error and standard output
files gen-erated by each task. The user can use this data
to pre-dict how long the computation will take, and
whether or not more resources should be added to the
computation. These pages can also be used to figure out
when the com-putation is much slower than expected.
In addition, the top-level status page shows which

workers have failed, and which map and reduce tasks
they were processing when they failed. This informa-
tion is useful when attempting to diagnose bugs in the
user code.

4.9 Counters

The MapReduce library provides a counter facility to
count occurrences of various events. For example, user
code may want to count total number of words processed
or the number of German documents indexed, etc.
To use this facility, user code creates a named counter

object and then increments the counter appropriately in the
Map and/or Reduce function. For example:

To appear in OSDI 2004 7



Counter* uppercase;
uppercase = GetCounter("uppercase");

map(String name, String contents):
for each word w in contents:

if (IsCapitalized(w)):
uppercase->Increment();

EmitIntermediate(w, "1");

The counter values from individual worker machines
are periodically propagated to the master (piggybacked
on the ping response). The master aggregates the
counter values from successful map and reduce tasks
and returns them to the user code when the MapReduce
operation is completed. The current counter values are
also dis-played on the master status page so that a
human can watch the progress of the live computation.
When aggre-gating counter values, the master
eliminates the effects of duplicate executions of the
same map or reduce task to avoid double counting.
(Duplicate executions can arise from our use of backup
tasks and from re-execution of tasks due to failures.)
Some counter values are automatically maintained by

the MapReduce library, such as the number of in-put
key/value pairs processed and the number of output
key/value pairs produced.
Users have found the counter facility useful for san-

ity checking the behavior of MapReduce operations.
For example, in some MapReduce operations, the user
code may want to ensure that the number of output
pairs produced exactly equals the number of input pairs
pro-cessed, or that the fraction of German documents
pro-cessed is within some tolerable fraction of the total
num-ber of documents processed.

5 Performance

In this section we measure the performance of MapRe-
duce on two computations running on a large cluster of
machines. One computation searches through approxi-
mately one terabyte of data looking for a particular pat-
tern. The other computation sorts approximately one
ter-abyte of data.
These two programs are representative of a large sub-

set of the real programs written by users of MapReduce
– one class of programs shuffles data from one
representa-tion to another, and another class extracts a
small amount of interesting data from a large data set.

5.1 Cluster Configuration

All of the programs were executed on a cluster that
consisted of approximately 1800 machines. Each ma-
chine had two 2GHz Intel Xeon processors with Hyper-
Threading enabled, 4GB of memory, two 160GB IDE

To appear in OSDI 2004

(
M
B/
s)

30000

20000

In
pu
t

10000

0
20 40 60 80 100

Seconds

Figure 2: Data transfer rate over time

disks, and a gigabit Ethernet link. The machines were
arranged in a two-level tree-shaped switched network
with approximately 100-200 Gbps of aggregate band-
width available at the root. All of the machines were in
the same hosting facility and therefore the round-trip
time between any pair of machines was less than a mil-
lisecond.
Out of the 4GB of memory, approximately 1-1.5GB

was reserved by other tasks running on the cluster. The
programs were executed on a weekend afternoon, when
the CPUs, disks, and network were mostly idle.

5.2 Grep

The grep program scans through 1010 100-byte
records, searching for a relatively rare three-character
pattern (the pattern occurs in 92,337 records). The input
is split into approximately 64MB pieces (M = 15000),
and the en-tire output is placed in one file (R = 1).
Figure 2 shows the progress of the computation over

time. The Y-axis shows the rate at which the input data is
scanned. The rate gradually picks up as more machines are
assigned to this MapReduce computation, and peaks at
over 30 GB/s when 1764 workers have been assigned. As
the map tasks finish, the rate starts dropping and hits zero
about 80 seconds into the computation. The entire
computation takes approximately 150 seconds from start
to finish. This includes about a minute of startup over-head.
The overhead is due to the propagation of the pro-gram to
all worker machines, and delays interacting with GFS to
open the set of 1000 input files and to get the information
needed for the locality optimization.

5.3 Sort

The sort program sorts 1010 100-byte records
(approxi-mately 1 terabyte of data). This program is
modeled after the TeraSort benchmark [10].
The sorting program consists of less than 50 lines of

user code. A three-line Map function extracts a 10-byte
sorting key from a text line and emits the key and the

8



O
ut
p
ut
(
M
B/
s)
S
h
uf
fl
e
(
M
B/
s)
In
p
ut
(
M
B/
s)

20000

15000

10000

5000

0

20000

15000

10000

5000

0

20000

15000

10000

5000

0

Done

500 1000

500 1000

500 1000
Seconds

(a) Normal execution

20000 20000
Done

1500015000

10000 10000

5000 5000

0 0
500 1000

20000 20000

15000 15000

10000 10000

5000 5000

0 0
500 1000

20000 20000

15000 15000
10000 10000
5000 5000

0 0500 1000
Seconds

(b) No backup tasks

Done

500 1000

500 1000

500 1000
Seconds

(c) 200 tasks killed

Figure 3: Data transfer rates over time for different executions of the sort program

original text line as the intermediate key/value pair. We
used a built-in Identity function as the Reduce operator.
This functions passes the intermediate key/value pair un-
changed as the output key/value pair. The final sorted
output is written to a set of 2-way replicated GFS files (i.e.,
2 terabytes are written as the output of the program).
As before, the input data is split into 64MB pieces

(M = 15000). We partition the sorted output into 4000
files (R = 4000). The partitioning function uses the ini-
tial bytes of the key to segregate it into one of R pieces.
Our partitioning function for this benchmark has

built-in knowledge of the distribution of keys. In a
general sorting program, we would add a pre-pass
MapReduce operation that would collect a sample of
the keys and use the distribution of the sampled keys to
compute split-points for the final sorting pass.
Figure 3 (a) shows the progress of a normal execution

of the sort program. The top-left graph shows the rate at
which input is read. The rate peaks at about 13 GB/s and
dies off fairly quickly since all map tasks finish be-fore
200 seconds have elapsed. Note that the input rate is less
than for grep. This is because the sort map tasks spend
about half their time and I/O bandwidth writing in-
termediate output to their local disks. The corresponding
intermediate output for grep had negligible size.
The middle-left graph shows the rate at which data is

sent over the network from the map tasks to the re-duce
tasks. This shuffling starts as soon as the first map task
completes. The first hump in the graph is for

the first batch of approximately 1700 reduce tasks (the
entire MapReduce was assigned about 1700 machines, and
each machine executes at most one reduce task at a time).
Roughly 300 seconds into the computation, some of these
first batch of reduce tasks finish and we start shuffling data
for the remaining reduce tasks. All of the shuffling is done
about 600 seconds into the computation.
The bottom-left graph shows the rate at which sorted

data is written to the final output files by the reduce tasks.
There is a delay between the end of the first shuffling pe-
riod and the start of the writing period because the ma-
chines are busy sorting the intermediate data. The writes
continue at a rate of about 2-4 GB/s for a while. All of the
writes finish about 850 seconds into the computation.
Including startup overhead, the entire computation takes
891 seconds. This is similar to the current best reported
result of 1057 seconds for the TeraSort benchmark [18].
A few things to note: the input rate is higher than the

shuffle rate and the output rate because of our locality
optimization – most data is read from a local disk and
bypasses our relatively bandwidth constrained network.
The shuffle rate is higher than the output rate because
the output phase writes two copies of the sorted data
(we make two replicas of the output for reliability and
avail-ability reasons). We write two replicas because
that is the mechanism for reliability and availability
provided by our underlying file system. Network
bandwidth re-quirements for writing data would be
reduced if the un-derlying file system used erasure
coding [14] rather than replication.

To appear in OSDI 2004 9



5.4 Effect of Backup Tasks

In Figure 3 (b), we show an execution of the sort pro-
gram with backup tasks disabled. The execution flow is
similar to that shown in Figure 3 (a), except that there is
a very long tail where hardly any write activity occurs.
After 960 seconds, all except 5 of the reduce tasks are
completed. However these last few stragglers don’t fin-
ish until 300 seconds later. The entire computation
takes 1283 seconds, an increase of 44% in elapsed time.

5.5 Machine Failures

In Figure 3 (c), we show an execution of the sort
program where we intentionally killed 200 out of 1746
worker processes several minutes into the computation.
The underlying cluster scheduler immediately restarted
new worker processes on these machines (since only
the pro-cesses were killed, the machines were still
functioning properly).
The worker deaths show up as a negative input rate

since some previously completed map work disappears
(since the corresponding map workers were killed) and
needs to be redone. The re-execution of this map work
happens relatively quickly. The entire computation fin-
ishes in 933 seconds including startup overhead (just an
increase of 5% over the normal execution time).

6 Experience

We wrote the first version of the MapReduce library in
February of 2003, and made significant enhancements
to it in August of 2003, including the locality
optimization, dynamic load balancing of task execution
across worker machines, etc. Since that time, we have
been pleasantly surprised at how broadly applicable the
MapReduce li-brary has been for the kinds of problems
we work on. It has been used across a wide range of
domains within Google, including:

• large-scale machine learning problems,

• clustering problems for the Google News and
Froogle products,

• extraction of data used to produce reports of
popular queries (e.g. Google Zeitgeist),

• extraction of properties of web pages for new
exper-iments and products (e.g. extraction of
geographi-cal locations from a large corpus of web
pages for localized search), and

• large-scale graph computations.

To appear in OSDI 2004

tre
e

1000

in
so
ur
ce

800

600of
ins
ta
nc
es

400

N
u
m
be
r

200

0

2003/03
2003/

06
2003/

09
2003/

12
2004/

03
2004/

06

200
4/0
9

Figure 4: MapReduce instances over time

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288TB
Intermediate data produced 758TB
Output data written 193TB
Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351
Average reduce tasks per job 55
Uniquemap implementations 395
Unique reduce implementations 269
Unique map/reduce combinations 426

Table 1: MapReduce jobs run in August 2004

Figure 4 shows the significant growth in the number of
separate MapReduce programs checked into our primary
source code management system over time, from 0 in early
2003 to almost 900 separate instances as of late September
2004. MapReduce has been so successful be-cause it
makes it possible to write a simple program and run it
efficiently on a thousand machines in the course of half an
hour, greatly speeding up the development and prototyping
cycle. Furthermore, it allows programmers who have no
experience with distributed and/or parallel systems to
exploit large amounts of resources easily.
At the end of each job, the MapReduce library logs

statistics about the computational resources used by the
job. In Table 1, we show some statistics for a subset of
MapReduce jobs run at Google in August 2004.

6.1 Large-Scale Indexing

One of our most significant uses of MapReduce to date
has been a complete rewrite of the production index-

10



ing system that produces the data structures used for the
Google web search service. The indexing system takes
as input a large set of documents that have been
retrieved by our crawling system, stored as a set of GFS
files. The raw contents for these documents are more
than 20 ter-abytes of data. The indexing process runs as
a sequence of five to ten MapReduce operations. Using
MapReduce (instead of the ad-hoc distributed passes in
the prior ver-sion of the indexing system) has provided
several bene-fits:

• The indexing code is simpler, smaller, and easier
to understand, because the code that deals with
fault tolerance, distribution and parallelization is
hidden within the MapReduce library. For
example, the size of one phase of the computation
dropped from approximately 3800 lines of C++
code to approx-imately 700 lines when expressed
using MapRe-duce.

• The performance of the MapReduce library is
good enough that we can keep conceptually
unrelated computations separate, instead of mixing
them to-gether to avoid extra passes over the data.
This makes it easy to change the indexing process.
For example, one change that took a few months to
make in our old indexing system took only a few
days to implement in the new system.

• The indexing process has become much easier to
operate, because most of the problems caused by
machine failures, slow machines, and networking
hiccups are dealt with automatically by the
MapRe-duce library without operator intervention.
Further-more, it is easy to improve the
performance of the indexing process by adding
new machines to the in-dexing cluster.

7 Related Work

Many systems have provided restricted programming
models and used the restrictions to parallelize the com-
putation automatically. For example, an associative func-
tion can be computed over all prefixes of an N element
array in log N time on N processors using parallel prefix
computations [6, 9, 13]. MapReduce can be considered a
simplification and distillation of some of these models
based on our experience with large real-world compu-
tations. More significantly, we provide a fault-tolerant
implementation that scales to thousands of processors. In
contrast, most of the parallel processing systems have only
been implemented on smaller scales and leave the details
of handling machine failures to the programmer.
Bulk Synchronous Programming [17] and some MPI

primitives [11] provide higher-level abstractions that

To appear in OSDI 2004

make it easier for programmers to write parallel pro-grams.
A key difference between these systems and MapReduce
is that MapReduce exploits a restricted pro-gramming
model to parallelize the user program auto-matically and
to provide transparent fault-tolerance.
Our locality optimization draws its inspiration from

techniques such as active disks [12, 15], where compu-
tation is pushed into processing elements that are close to
local disks, to reduce the amount of data sent across I/O
subsystems or the network. We run on commodity
processors to which a small number of disks are directly
connected instead of running directly on disk controller
processors, but the general approach is similar.
Our backup task mechanism is similar to the eager

scheduling mechanism employed in the Charlotte Sys-
tem [3]. One of the shortcomings of simple eager
scheduling is that if a given task causes repeated
failures, the entire computation fails to complete. We
fix some in-stances of this problem with our mechanism
for skipping bad records.
The MapReduce implementation relies on an in-

house cluster management system that is responsible
for dis-tributing and running user tasks on a large
collection of shared machines. Though not the focus of
this paper, the cluster management system is similar in
spirit to other systems such as Condor [16].
The sorting facility that is a part of the MapReduce

library is similar in operation to NOW-Sort [1]. Source
machines (map workers) partition the data to be sorted
and send it to one of R reduce workers. Each reduce
worker sorts its data locally (in memory if possible). Of
course NOW-Sort does not have the user-definable
Map and Reduce functions that make our library widely
appli-cable.
River [2] provides a programming model where pro-

cesses communicate with each other by sending data
over distributed queues. Like MapReduce, the River
system tries to provide good average case performance
even in the presence of non-uniformities introduced by
heterogeneous hardware or system perturbations. River
achieves this by careful scheduling of disk and network
transfers to achieve balanced completion times.
MapRe-duce has a different approach. By restricting the
pro-gramming model, the MapReduce framework is
able to partition the problem into a large number of
fine-grained tasks. These tasks are dynamically
scheduled on available workers so that faster workers
process more tasks. The restricted programming model
also allows us to schedule redundant executions of tasks
near the end of the job which greatly reduces
completion time in the presence of non-uniformities
(such as slow or stuck workers).
BAD-FS [5] has a very different programming model

from MapReduce, and unlike MapReduce, is targeted to

11
th
e



execution of jobs across a wide-area network. How-ever, there are two fundamental similarities. (1) Both
systems use redundant execution to recover from data loss caused by failures. (2) Both use locality-
aware scheduling to reduce the amount of data sent across con-gested network links.
TACC [7] is a system designed to simplify con-struction of highly-available networked services. Like

MapReduce, it relies on re-execution as a mechanism for implementing fault-tolerance.

8 Conclusions

The MapReduce programming model has been success-fully used at Google for many different purposes. We
attribute this success to several reasons. First, the model is easy to use, even for programmers without
experience with parallel and distributed systems, since it hides the details of parallelization, fault-tolerance,
locality opti-mization, and load balancing. Second, a large variety of problems are easily expressible as
MapReduce com-putations. For example, MapReduce is used for the gen-eration of data for Google’s
production web search ser-vice, for sorting, for data mining, for machine learning, and many other systems.
Third, we have developed an implementation of MapReduce that scales to large clus-ters of machines
comprising thousands of machines. The implementation makes efficient use of these machine re-sources and
therefore is suitable for use on many of the large computational problems encountered at Google.
We have learned several things from this work. First, restricting the programming model makes it easy to

par-allelize and distribute computations and to make such computations fault-tolerant. Second, network
bandwidth is a scarce resource. A number of optimizations in our system are therefore targeted at reducing the
amount of data sent across the network: the locality optimization al-lows us to read data from local disks, and
writing a single copy of the intermediate data to local disk saves network bandwidth. Third, redundant
execution can be used to reduce the impact of slow machines, and to handle ma-chine failures and data loss.

13


