The MapReduce Framework : Analysis and The Research Perspectives

Abstract —

MapReduce is a simple and powerful
programming model which enables
development of scalable parallel
applications to process large amount of data
which is scattered on a cluster of machines.
The original implementations of Map
Reduce framework had some limitations
which have been faced by many research
follow up work after its introduction. It is
gaining a lot of attraction in both research
and industrial community as it has the
capacity of processing large data. In this
review paper, we are going to discuss the
map reduce framework used in different
applications and for different purposes. This
is a analysis done for implementing the
architecture of Map Reduce from different

research perspectives.
1. Introduction

As there is the continuous and tremendous
increase in the computational power, the
overwhelming flow of data is produced. For
the same, the large scale data processing
mechanism is required. Map Reduce is a
simple and powerful programming model
that enables easy development of scalable
parallel applications to process vast amount
of data on large clusters.[1] Map Reduce is a
programming model and an associated

implementation ~ for processing and
generating large data sets. Users have to
specify a map function that processes a

key/value pair to generate a set of
intermediate key/value pairs and a reduce
function that merges all intermediate values
associated with intermediate key. [2] The
term MapReduce actually refers to two
separate and distinct tasks that Hadoop
programs perform. The first is the map job,
which takes a set of data and converts it into
another set of data, where individual
elements are broken down into tuples
(key/value pairs). The reduce job takes the
output from a map as input and combines
those data tuples into a smaller set of tuples.
As the sequence of the name MapReduce
implies, the reduce job is always performed
after the map job.[3]

The Map Reduce model is applied to large

batch-oriented computation connected
primarily with time to job completion. The
Map Reduce framework by Google and open-
source Hadoop*s system emphasize the

usage through a batch-processing
implementation strategy: the whole output
of each map and reduce stage is materialized
to stable storage before it can be consumed
by the next stage. This materialization
allows for a simple that is critical in large
deployment, which have a high probability
of slowdowns or failures at worker nodes.[4]
MapReduce proposed by Google is a
programming model and an associated
implementation for large-scale data

processing in distributed cluster.

2. Hadoop Distributed File System

HDEFS is the file system component
of Hadoop (Refer Figure 1). While the
interface to HDFS is patterned after the
UNIX file system, faithfulness to standards
was sacrificed in favor of improved
performance for the applications at hand.

HODFS Archibeciure

[Metadata (Hame, replicas, |
Matagats ope | Mamenude ! | hemefosidata, 3.

m Block aps

Read Datanodes - Datanodes
.
=]

[B, (B E (R
m| = | B | (S

?
Pk 1 Whiite Rack 2

&

Fig 1 : HDFS Architecture Source: Apache
Hadoop Website

Hadoop is composed of Hadoop Map
Reduce, an implementation of Map Reduce
designed for large clusters, and the Hadoop
Distributed File System(HDFS), a file
system optimized for batch oriented
workloads such as Map Reduce. Hadoop
installation consists of a single master node
and many Worker Nodes. The master is
called as the Job Tracker, is responsible for
accepting jobs from clients, dividing those
jobs into tasks, and assigning those tasks to
be executed by worker nodes. Each worker
node runs a Task Tracker process that
manages the execution of the tasks currently
assigned to that node. [4] Key-value pair
forms the basic data structure in Map
Reduce. The map function takes the input
record and then generates intermediate key

and value pairs. The reduce function takes
an intermediate key and a set of values to
form a smaller set of values

Hadoop Cluster

Fig 2 : Abstract View of Hadoop Cluster

3.Writing Files To HDFS :

1. HDEFS stores file system metadata and
application data separately

2. HDFS stores metadata on a dedicated
server, called the Name Node.

3. Application data are stored on other
servers called Data Nodes.

4. All servers are fully connected and
communicate with each other using TCP-
based protocols (Refer Fig 2)

4.Map Reduce Framework —

MapReduce is simple and efficient for
computing aggregate. It is compared with
“filtering then group by aggregation” query
processing in a DBMS. The major
advantages of it is ,

e Simple and Easy to use — the
MapReduce model is simple but
expressive. With ~ MapReduce,a
programmer defines job with only
Map and Reduce functions, without

specifying physical distribution of
the jobs across nodes.

Flexible- MapReduce does not have
any dependency on data model and
schema. With MapReduce a
programmer can deal with
unstructured data easily, this facility
is not given by DBMS.

Independent of the storage —
MapReduce is basically independent
from underlying storage layers. It
can work on Big Table and others[5].
Many projects at Google store data
in Big Table which have different
demands from Bigtable, both in
terms of data size (from URLs to
web pages to satellite imagery) and
latency requirements (from backend
bulk processing to real-time data

serving). Despite these varied
demands, Bigtable has successfully
provided a flexible, high-

performance solution for all of these
Google products such as Google
Earth, Google Finance.

Fault Tolerance — MapReduce is
highly fault tolerant, continues
working in spite of failures per
analysis job at Google.[6]

Instead of saying the disadvantages of
MapReduce , it can be said that the
MapReduce is not a suitable choice
when it is :

Real-time processing.
It's not always very easy to
implement each and everything as a
MapReduce program.
o No high-level language — it
does not support any high

level language like SQL in
DBMS and any query
optimization technique.

e When the intermediate processes
need to talk to each other (jobs run in
isolation).

e When the processing requires lot of
data to be shuffled over the network.

e When there is a need to handle
streaming data. MapReduce is best
suited to batch process huge amounts
of data which already is there.

e When you have On Line Transaction
Processing is to be needed then
MapReduce is not suitable for a large
number of short on-line
transactions.[7]

5.Research
Reduce —

on Framework of Map

Chronologically [1] is on the Google
File Systems from 2003,
distributed file system. Basically, files are
split into chunks which are stored in a
redundant fashion on a cluster of commodity
machines. In this, the GFS serves as a solid
base for managing data. The role of Map
Reduce is elaborated here, which allows
development and execution of large scale
data processing jobs. The Map Reduce is
designed to be resilient to failures such as
machine crashes. Google uses Map Reduce
to process data sets up to multiple terabytes
in size for purposes such as indexing web
content. Next [2] is the MapReduce paper
from 2004. MapReduce has
synonymous with Big Data. Legend has it
that Google used it to compute their search
indices.[4,8] The researchers tried to

which is a

become

http://research.google.com/archive/mapreduce.html

improve the performance of MapReduce by
decoupling HDFS from Hadoop using
pipelining streaming and incremental writes
to HDFS. Since Map Reduce depends on
large number of user-defined parameters,
researchers suggested profiling the user”s
jobs and suggest parameter tunings
according the application behavior. [9]

The [10] discusses data access
optimizations over Hadoop file system
(HDFS) which included wusing indices,
column store and improving data locality
using file co-location strategies. On the
other hand, other researchers try to improve
the performance of MapReduce by
decoupling HDFS form Hadoop using
pipelining streaming and incremental writes
to HDFS. Since MapReduce depends on
large number of user-defined parameters,
researchers suggested profiling the user®s
jobs and suggest parameter tunings
according the the application behaviour. It
also included the systems that tries to
optimize failure recovery and redundancy of
MapReduce through optimizing job
placement to improve the performance of
Hadoop. After reviewing the work done on
MapReduce optimizations, it includes
systems that are built over Hadoop to
provide reliable and scalable high level
operations by expressing them using a series
of MapReduce jobs. Finally, it gets finished
with reviewing systems that are built based
on the architecture of MapReduce but
provides more flexible operations and
support wider range of applications.[10]

MapReduce is a parallel data
processing framework designed for a very
specific task: scanning large amounts of
textual data to create a web search index. It

was essentially designed with GFS. As a
result, it boils down computation into just
two phases: map, followed by reduce.
Programmers have to write just two
functions, one for each phase. Regarding the
programming model, it*s something that can
be taught in a matter of days. Map and
reduce are familiar from functional
programming languages, and really small
amounts of code can do very powerful
things. It is quite but when dealing with big
data, the operations basically have to be
data-parallel to complete in any reasonable
time. Google used MapReduce to do a wide
variety of tasks, so the proof of utility is in
the pudding.

The distributed, fault tolerant
framework is what really is there. A single
master manages all the workers (which
potentially means a single point of failure),
but this is way less likely than a worker
failure.[12] But this single point of failure
was present in Hadoop*s Version 1. Prior to
Hadoop 2.0.0, the NameNode was a single
point of failure (SPOF) in an HDFS cluster.
Each cluster had a single NameNode, and if
that machine or process became unavailable,
the cluster as a whole would be unavailable
until the NameNode was either restarted or
brought up on a separate machine.

This impacted the total availability of the
HDFS cluster in two major ways:

e In the case of an unplanned event
such as a machine crash, the cluster
would be wunavailable wuntil an
operator restarted the NameNode.

e Planned maintenance events such as
software or hardware upgrades on

the NameNode machine would result
in windows of cluster downtime.

The HDFS High Availability feature
addresses the above problems by providing
the option of running two redundant Name
Nodes in the same cluster in an

Active/Passive configuration with a hot
standby.[11]

Failure of workers is handled transparently,
by restarting the worker. This is possible
because the output from the map stage is
durably written to disk storage, and then
read by the reducers. Mapper input, of
course, is durably stored as well, so they can
also be easily restarted. Another feature is
chopping off the latency tail caused by
“straggler” workers by starting duplicate
tasks towards the end of the job.

As a whole it can be said that the
MapReduce is a powerful and simple
framework that saw a lot of use at Google
for a variety of tasks.[12]

The basic implementation of the Map
Reduce is useful for handling large data

processing and data loading in
heterogeneous systems. It provides flexible
framework for the executions of more
complicated functions which can be
supported in SQL. MapReduce is highly
effective and efficient tool for large scale
fault tolerant systems. It provides fine-grain
fault tolerance for large jobs; failure in the
middle of a multihouse execution does not

require restarting the job from the beginning.

Some improvements are suggested in the
paper, MapReduce: A Flexible Data
Processing Tool and they are

a. MapReduce should take advantage
of natural indices

b. MapReduce users should avoid using
inefficient textual formats

c. Most MapReduce output should be
left unmerged, since there is no
benefit to merging if the next
consumer is another MapReduce
program[13]

The use of MapReduce is also done
for the analysis of logs. Nowadays
service providers generate large amounts
of logs from all kinds of services, and
the benefits of analyzing them are to be
found when processing them. For
instance, if a provider is interested in
tracking the behavior of a client during
long periods of time, reconstructing user
sessions, it 1S much more convenient to
operate over all the logs. Logs are a
perfect fit for MapReduce for other
reasons too. First, logs usually follow a
certain pattern, but they aren't entirely
structured, so RDBMS is not useful at
such times to process them and may
require changes to the structure of the
database to compute something new.
Secondly, logs represent a use case
where scalability not only matters but is
a key to keep the system sustainable. As
services grow,the amount of log increase
from time to time. Companies such as
Facebook and Rackspace [14] use
MapReduce to examine log files on a
daily basis as it generates statistics and
analyzes them.

Data in a Hadoop cluster is broken
down into smaller pieces (called blocks)
and distributed throughout the cluster. In

this way, the map and reduce functions
can be executed on smaller subsets of
the larger data sets, and it provides the
scalability that is needed for Big Data
Processing.

The goal of Hadoop is to use
commonly available servers in a very
large cluster, where each server has a set
of inexpensive internal disk drives. For
the higher performance, Map Reduce
tries to assign workloads to these servers
where the large data is to be processed is
stored. This is known as data locality.
[15]

The comparison between the Hadoop
implementation of Map Reduce
framework and parallel SQL database
management systems in terms of
performance and development
complexity is described here[16], the
result of it is, parallel databases
displayed a significant performance over
Map Reduce in executing a variety of
data intensive analysis tasks.
MapReduce allows programmers with
no experience with parallel and
distributed systems to easily utilize the
resources of a large distributed system.
A MapReduce computation can process
many terabytes of data on hundreds or
thousands of machines.[16,13]

On the other hand, the Hadoop
implementation is very easier and more
straightforward to set up and use in
comparison with the prior one. Map
Reduce have shown the superior
performance in minimizing the amount
of work that is lost when the hardware
failure occurs. [14] [17]

The HadoopDB Project is a hybrid
system which tries to combine the
scalability advantages of MapReduce
with the performance and efficiency of
parallel databases. The basic idea behind
this is, to connect multiple single node
database systems using Hadoop as the
task co-ordinator and network
communication layer. Queries are
expressed in SQL but their execution is
parallelized across nodes using MR
framework. HadoopDB tries to achieve
the fault tolerance and the ability to
operate in heterogeneous environment.
The MapReduce framework follows
simple master-slave architecture.
Queries are expressed in SQL, translated
into MapReduce by extending existing
tools, and as much work as possible is
pushed into the higher performing single
node databases.[15][18]

The above listed are the different
perspectives from which the study of the
application of MapReduce is done.
Certainly, there are some more viewpoints
which we came across in some more
research papers for which it*s necessary to
take a note of them, without that the
analysis would be incomplete.

In cloud systems, a service provider
delivers virtually computer nodes to a
number of users. This paradigm will be
useful for both the academic researchers
as well as industry practitioners as it
allows to scale up and down in a pay-as-
you-go manner. A cloud data processing
system should provide high degree of
elasticity, scalability, efficiency and fault
tolerance. MapReduce is documented as

a possible means to perform elastic data processing in the cloud. This is for the reason, it has
following characteristics —

e MapReduce programming

model is simple but expressive and flexible. It is able to access the various types
of data, structured or

unstructured and data analysis done for traditional
query processing, data mining, machine learning and graph processing.

e MapReduce is scalable in nature and installation of it can be run on over
thousands of nodes where only tasks on failed nodes have to be restarted.[19,13]

Graphs are popular data structures which are used to model structural relationship
between objects. They are used in a wide variety of high impact applications such as social
networks, computer networks, telecommunication networks and the World Wide Web.

Eventually, Google also had to start mining graph data like the social graph in an online social
network, so Pregel was published in 2010.[20]

The underlying computational model is much more complex than in MapReduce: Basically, you
have worker threads for each node which are run in parallel iteratively.

In Surfer[21] a small set of high Ilevel

building blocks that use the two primitives,

they are Map and Reduce. It provides a GUI using which developers can visually create large graph
processing tasks. Surfer transforms a task into an execution plan composed of MapReduce. It
automatically applies various optimizations to improve the efficiency of distributed execution. In this
paper, the authors demonstrated the ease of programming features of the system and its efficiency on a

social network. The authors have assured it is simple and highly efficient for large graph-based tasks.

The DisCo(Distributed Co-clustering) introduces an approach for distributed data pre-processing and co-
clustering from raw data to end clusters using data pre-processing and co-clustering from the raw data to

end cluster using MapReduce framework. [22]
Conclusion —

We discussed the analytical research perspectives and challenges to MapReduce and mentioned its
progress according to the different researcher™s perspectives. It is simple but provides good scalability
and fault tolerance for large data processing. MapReduce can be used as complementary software with the
DBMS when used for Data Warehousing. When the data is unstructured in nature then MapReduce is
successfully used for analysis while Parallel DBMS can be used when the queries are executed in parallel

manner from different nodes.

