Simple | Smart | Speed

HOOLS

Apache Spark: A Big Data Processing Engine


https://www.researchgate.net/publication/339176824_Apache_Spark_A_Big_Data_Processing_Engine?enrichId=rgreq-1ef81f011adef15e0e613d296ee20148-XXX&enrichSource=Y292ZXJQYWdlOzMzOTE3NjgyNDtBUzo4NjcxOTIxODI2ODU2OTdAMTU4Mzc2NjEzNjY3NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf

Apache Spark: A Big Data Processing Engine

Abstract—Big data analysis has influenced the industry mar-
ket. It has a significant impact on large and varied datasets to
exhibit the hidden patterns and other revelations. Apache
Hadoop, Apache Flink and Apache Storm are some commonly
used frameworks for big data analysis. Apache Spark is a
consolidated big data analytics engine and provides absolute
data parallelism. This paper scrutinizes a technical review on
big data analytics using Apache Spark and how it uses in-
memory computation that makes it remarkably faster as
compared to other corresponding frameworks. Moreover,
Spark also provides exceptional batch processing and stream
processing capabilities. Furthermore, it also discuses over the
multithreading and con-currency capabilities of Apache Spark.
The point of convergence is architecture, hardware
requirements, ecosystem, use cases, features of Apache
Spark and the use of Spark in emerging technologies.

Index Terms—Big Data Analytics , Machine Learning,
Stream Processing, Resilient Distributed Datasets.

I. INTRODUCTION

Big data analytics research has vastly exerted influence in
the market of industries. It is a strategy of fetching large
volumes of data from an extensive variety of sources, orga-
nizing the same data completely and then analyzing those big
sets of data to locate meaningful facts and figures from the
data collected. As a result of heterogeneous data aggregation,
many organizations that provides web services like Amazon
and Microsoft use cluster of commodity servers.

The term big data is used to refer to a particularly huge
amount of complex datasets that are evolved from new data
sources and are examined for traditional data processing
application software. Big data is used for non-conventional
strategies and technologies that require gathering insights
from large datasets as well as organizing and processing
these data. In a nutshell, big data analysis is a process of
finding knowledge from bulk of data. Therefore, in order to
analyze such huge data, it is necessary to use some kind of
analysis tool or processing framework.

Processing framework is observed to be one of the most
important constituent of big data systems. Processing frame-
works determine data in the system, either by consuming the

data into the system as it is or by reading the data from a non-
volatile storage. Processing frameworks are categorized by the
type and condition of the data they are designed to operate on.
Where some systems deals with data in batches, other systems
undertake data in an uninterrupted stream as it moves into the
system. There are some systems that can handle data in both
ways as well [1]. Mainly, big data processing frameworks can be
divided into the following three categories: batch-only framework,
stream-only framework and hybrid framework.

A batch processing system collects all data into a group
which is stored and processed later in the future. On the
other hand, stream processing systems process the data
as soon as they arrive, i.e. real-time processing. In the
hybrid processing systems, both batch and stream
workloads can be handled. This results in a simpler, more
general data processing since we can apply the same
features or APlIs for both batch and stream data.

Apache Spark is a substantial consolidated analytics engine
for a comprehensive distributed data processing and machine
learning workloads. It has established a broad domain to solve
data science and engineering problems using programming
languages like Python. Apache Spark reinforces techniques
such as in-memory processing, stream and batch processing
of big data workloads. These techniques will be discussed
further in Section Ill. Apache Spark has rapidly been embraced
by an infinite range of industries. It is not only active projects in
Apache Software Foundation but widely accepted open source
project. The act of assembling, processing and storing large
volume of data is big data.

In this paper, we focus specifically on Apache Spark big data
processing framework. We discuss Spark batch and stream
processing abilities. We further describe the different features that
makes Spark a unique framework. We also discuss some of the
main use cases of Apache Spark. After that, we review Spark
ecosystem, architecture and hardware requirements. Finally, we
address Spark multi-threading and concurrency capabilities and
the use of Spark in emerging technologies.

The remaining paper is organized as follows: Section Il



introduces the literature work related to this paper, Section Ill
discusses Apache Spark, and Section IV concludes the paper.

Il. RELATED WORK

In [2], the authors initiated the Apache Spark project that
provides an integrated analytic engine for a wide range of
disseminated data processing. Spark allows programming
whole cluster in parallel. It expands its model to an elementary
data structure called as Resilient Distributed Datasets (RDDs),
even though having a programming model same as MapRe-
duce. Spark is the foremost information processing system for
comprehensive SQL, stream processing, graph processing
and machine learning. Therefore, Apache Spark model can
effectively aid present workloads and provide ample benefits to
the users.

Salloum et al. [3] focused on the key components and
distinctive characteristics of Apache Spark in big data ana-
lytics. Some heterogeneous functionalities for design and
im-plementation are produced by Apache Spark, which
comprises of machine learning pipelines API. Apache
Spark is a wide spread cluster computing framework which
is popular not only in academic community but in the
market of industry. Consequently, this paper directed a
great deal of attention towards the research and growth
correlated to Apache Spark in big data analytics.

In [4], the authors proposed solutions to overcome the
sig-nificant confrontations faced during big data analysis. In
their work, they use Apache Storm framework with a
sample of Twitter data. Apache Storm was able to
successfully overcome those challenges in turn proving that
it can process real-time streams with very low latency.

In [5], the authors developed a new pipeline for func-tional
magnetic resonance imaging (fMRI) using the PySpark on a
single node. PySpark is a language for data analysis and

pipelines, which exposes Spark programming model to Python.

In this pipeline, the brain networks are extricated from fMRI
data by template matching and the sum of squared differences
(SSD) method. In terms of processing time, this pipeline is four
times faster than the one developed in Python. It has upgraded
in-memory data processing in parallel, con-verted the data to
Resilient Distributed Datasets and stored results in other
formats like data frames.

Gopalani et al. [6] mainly presented a comparison between
Apache Hadoops Map Reduce and Apache Spark framework
as both options are used in big data analysis. Furthermore, the
paper compares the two frameworks on various parameters as
well as provides a performance analysis on them using the K-
Means algorithm and it was concluded that the Apache Spark
framework will bring a major change in the big data world due
to its ability of in-memory processing.

In [7], the authors performed a comparative study of Apache
Spark and Apache Flink. In particular, the paper focused on
comparing machine learning libraries in these frameworks for
batch data processing. The machine learning algorithms used
in the study are Support Vector Machines and Linear

Regression. The paper showed with empirical results
that Spark outperforms Flink in terms of performance.

From the usability and ease of use perspective, distributed
data flow-oriented platforms- Apache Hadoop MapReduce,
Apache Spark and Apache Flink were compared in [8].
MapReduce pursuits the challenges like scalability and built-in
redundancy, while as latter two focus on the need of effi-cient
data flow, data caching and declarative data processing
operators. The main intention is to provide a route to select a
suitable platform and provide better understanding for the
functionality of big data processing systems.

Our paper is different from these previous research as
it reviews Apache Spark from various aspects. We focus
on Sparks key features, batch processing and stream
processing abilities, use cases, ecosystem, architecture,
multi-threading and concurrency capabilities. Lastly we
also mention how Spark has become an absolute vital
tool used in current emerging technologies.

1. APACHE SPARK

Apache Spark is a powerful big data processing platform
which adapts the hybrid framework. A hybrid framework of-fers
support for both batch and stream processing capabilities.
Even though Spark uses many similar principles to Hadoops
MapReduce engine, Spark outperform the latter in terms of
performance. For instance, given the same batch processing
workload, Spark can be faster than MapReduce due to the "full
in-memory computation” feature used by Spark compared to
the traditional read from and write to the disk used by
MapReduce. Spark can run in standalone mode or it can be
combined with Hadoop to replace MapReduce engine.

1) Spark Batch Processing Model: The strongest advantage
of Spark over MapReduce is the in-memory computation.
Spark interacts with the disk only for two tasks: loading the
data initially into the memory and storing the final results back
to the memory. All other results in-between is processed in
memory. This in-memory processing makes Spark signifi-
cantly faster than its competitive batch processing framework
Hadoop. Furthermore, holistic optimization used by Spark
contributes further to its high speed where a complete set of
tasks can be analyzed ahead of time. This is accomplished by
generating Directed Acyclic Graphs (DAGs) that are used to
represent all the operations, data and the relationship between
them [1]. To support the in-memory computation feature,
Spark uses Resilient Distributed Datasets (RDD). RDD is a
read-only data structure maintained in memory to make Spark
a fault tolerance framework without having to write to the disk
after every operation.

2) Spark Stream Processing Model : In addition to batch
processing, Spark provides stream processing abilities with
the use of micro-batches. In micro-batching data streams
are treated as a group of very small batches which are in
turn handled as a regular task by Spark batch engine [1].
Even though this micro-batching procedure works well, it
could still lead to some differences in terms of performance
as opposed to a true stream processing frameworks.



A. FEATURES

Apache Spark has many distinguishable features.

Following is a description of some of these features:

Speed: Apache Spark is a tool that can be used for
running Spark applications in Apache Hadoop cluster.
Apache Spark is hundred times faster than Apache
Hadoop and ten times faster than accessing data from
the disk. Spark utilizes the idea of a Resilient
Distributed Dataset (RDD), and enables it to distinctly
store data inside the memory [9].

Usability: Spark enables users to swiftly write applica-
tions in various programming languages such as Java,
Scala, R and Python. This helps programmers to develop
and run their applications on languages familiar to them
which makes it easy to develop parallel applications
Advanced analytics: Besides the simple map and
reduce operations, Sparks favors SQL queries, data
streaming, and other complicated analytics such as
machine learning, and graph algorithms

Runs everywhere: Apache Spark can be run on various
platforms such as Apache Hadoop YARN, Mesos, EC2,
Kubernetes or in the cloud using the Apache Spark
standalone cluster mode. It can retrieve several data
information that are HDFS, Cassandra, HBase etc.
In-memory computing: In-memory cluster computation
allows Spark to run iterative machine learning algorithms
and aids bilateral querying and data streaming analysis at
super-fast speeds. Spark keeps data in the RAM of the
servers so that the stored data can be accessed quickly
Real-time stream processing: Spark streaming
grasps real-time stream processing along with other
configu-rations concluding that spark streaming is
simple, fault tolerant and unsegregated [9].

B. USE CASES OF APACHE SPARK

Healthcare: Spark is used in the healthcare sector as it
provides a thorough analysis of patient records along with
previous medical data. This helps to identify which patients
are prone to face health complications in the near future and
therefore avoids hospital re-admittance which thereby
reduces cost for the hospitals and the patients as it is now

feasible to deploy home services for the identified patient [10].

Furthermore, Spark is also used in genomic sequencing as it
can reduce the processing time required to process genome
data which earlier would take several weeks to organize all
the chemical compounds with genes. MyFitnessPal is
company that utilizes Spark [11].

Finance: Apache Spark provides insights that help to
make correct choices over various issues such as cus-
tomer segmentation, credit risk assessment and targeted
advertising [10]. Financial institutions often use big data
to figure out the exact time and location of when the fraud
had occurred, so that it can be stopped. Various models
are already present which are used to detect fake
transactions and a majority of them are deployed in batch

environment. With the help of Apache Spark on Hadoop,
financial institutions can detect fake transactions in real-
time, based on previous fraud footprints [11].
E-commerce: Spark is used in the e-commerce industry
to find information concerning real-time transactions that
are passed to a streaming clustering algorithms such K-
means clustering algorithm or alternating least squares. It
also improves the recommendations to customers based
on latest trends. Alibaba and eBay are examples of
companies that use Spark in e-commerce.

Entertainment: In the gaming industry, Apache Spark
helps in recognizing patterns from real-time in-game
events and then respond to them to yield fruitful busi-ness
opportunities such as selective advertising, player
retention or the automatic changing of gaming levels
based on its difficulty. Furthermore, Spark combined with
MongoDB is also used in video sharing websites such as
Pinterest, Netflix, and Yahoo. These websites show
related advertisements to its users based on the videos
viewed, shared, and browsed by the users [10].

C. ECOSYSTEM

Service APIs
MLIib
Spark SQL Strsezarlrrlli(n (Machine ((}(r;];hi( R on Spark
(Shark) (st . g) Learning tpt' ) (SparkR)
reamin m ion
eaming Library ) omputatio
Spark Core
(Computing Engine)

Fig. 1. Apache Spark Ecosystem

The Apache Spark ecosystem consists of the
following main components:

Spark SQL: Formerly known as Shark. Spark SQL is a
distributed framework that works with structured and
semi-structured data. It facilitates analytical and
interac-tive application for both streaming and
historical data which can be accessed from various
sources such as JSON, Parquet and Hive table [12].
Spark Streaming: It enables users to process streaming
of data in real time. In order to perform streaming analysis,
Spark streaming enhances the fast scheduling capability
of Apache Spark by inserting data into mini batches. An
operation known as transformation is then applied to
those mini batches that can be easily obtained from live
streams and data sources such as Twitter, Apache Kafka,
loT sensors, and Amazon Kinesis.



MLlIib: It delivers high-quality algorithms with high
speed and makes machine learning easy to use and
scale. Several machine learning algorithms such as
regression, classification, clustering, and linear algebra
are present. It also provides a library for lower level
machine learning primitives like the generic gradient
descent optimization algorithm. It also provides other
functions such as model evaluation and data import. It
can be used in Java, Scala, and Python.
GraphX: It is a graph computation engine that
enables the building, manipulation, transformation
and execution of graph-structured data at a large
scale. It consists of various Spark RDD API that
facilitates the creation of directed graphs.
Spark Core: Various functionalities of Apache Spark
are built on top of the Spark core. It provides a vast
range of APIs as well as applications for programming
languages such as Scala, Java, and Python APIs to
facilitate the ease of development. In-memory
computation is implemented in Spark core in order to
deliver speed and to solve the issue of MapReduce.
SparkR: It is a package for R that enables data scientists
to leverage the power of Spark from R shell. Since
DataFrame is the basic data structure for data processing
in R, similarly SparkR DataFrame is the fundamental unit
of SparkR. It can perform various functions on large
datasets such as selection, filtering and aggregation [12].

D. ARCHITECTURE

As illustrated in Fig. 2, the architecture of Apache Spark
consists of a master node which has a driver program that is
responsible for calling the main program of an application. The
driver program is either the code written by the user or if an
interactive shell is used, it is a shell. This driver program is
responsible for creating Spark context. Spark context behaves
like a gateway to all of the functionalities of Apache Spark. It
works with the cluster manager that is responsible to manage
different jobs [13]. Both Spark context and the driver program
collectively handle the execution of the job within the cluster.

The cluster manager first takes care of the resource allo-cating
work. Then the job is split into numerous tasks that is further
allocated to the worker or slave nodes. The moment an RDD is
created in Spark context, it can be allocated across the different
slave nodes and can be cached there too. The slave nodes play a
role in executing the tasks that were assigned to them by the
cluster manager. They then return these tasks back to Spark
context. The executor carries out the execution of the tasks. The
lifetime of the executors is the same as Spark. In order to increase
the system performance, the number of worker nodes must be
increased so that the jobs can be divided further into more number
of logical portions [14].

E. HARDWARE REQUIREMENTS

Storage Systems: It is necessary to keep storage systems
very close to Spark systems, because most of Spark jobs

read input data from an external storage system such as
HDFS (Hadoop Distributed File System) or HBase [15].
Local Disks: Even though Spark performs a lot of its
computation in memory, it still uses local disks, which
does not fit in RAM, to store data and to preserve
intermediate output between stages. It is better to have 4-
8 disks per node, which are configured without RAID.
Memory: Spark runs well on memory ranging from 8
Gigabyte to hundreds of Gigabyte per machine. It is
better to allocate at most 75% of the memory for
Spark in all cases, and the rest should be assigned
to the operating system and buffer cache.
Network: Numerous Spark applications are network-
bound when the data is found inside the memory.
These applications can be made faster by using a 10
Gigabit or higher network. This is mainly true for
distributed reduce applications such as SQL joins.
CPU Cores: Spark performs minimal sharing
between threads and therefore it scales well to tens
of CPU cores per machine. At least 8-16 cores per
machine must be provisioned. Provisioning the
cores depend on the cost of the CPU workload [15].

F. MULTITHREADING AND CONCURRENCY

1) Multithreading: Apache Spark has APIs for many lan-
guages such as Scala, Python Java, and R. The most popular
use for Spark is with Scala and Python. Choosing which
language to use with Spark depends on the features we are
interested in utilizing [16]. Regarding multithreading, Python is
at a disadvantage compared to Scala since Python does not
support multithreading. Scala on the other hand supports
multithreading. Having a multithreaded program means we can
run more than task at the same time concurrently. A thread is
a lightweight process that consumes less memory than the
heavyweight process. Creating a thread in Scala can be done
in two ways. It can be done by either extending the Thread
class or the Runnable interface. The run() method can be used
after that [17]. A Scala thread can go through five different
states during its lifetime described as follows:

1) New: The initial state of the thread.

2) Runnable: The thread is ready to run but it has not

been picked by the scheduler yet.

3) Running: The thread is being executed.

4) Blocked: The thread is waiting for some event such

as inputs or resources.

5) Terminated: The thread finished executing.
Furthermore, Scala thread flow can be controlled using
dif-ferent Scala thread methods [17]. For example, we
can use sleep() method to put a thread to sleep for a
specific period of time and join() method to let the thread
wait for another thread to terminate.

2) Concurrency: In concurrency, a task is said to have
completed when all the working threads and sub threads are
done processing. In Spark, all the tasks run inside the executor
JVM. The number of tasks that can run at the same time is
controlled by the number of cores which is handled by the



Driver Program

Application <> lSpark Context €€——» Cl\

Slave Node

Executor

/\—)

Slave Node

Executor

N S

Fig. 2. Apache Spark Architecture

executor. The setting is defined during job submission and is
constant in general but can vary if the task uses dynamic
allocation. In general, a task is a single thread that runs the
serialized code which is written for that particular task. The code
within the task is single-threaded and synchronous except when
the code directly indicates that it is not synchronous

[18]. As Scala runs on JVM, it has full access to all its multi-
threading capabilities. However, unlike Java, Scala is not by
default just limited to the concept of threads for achieving
concurrency. It provides other advance options that can
achieve concurrency such as Futures and Actors. On the
contrary, both Python and R languages do not support true
concurrency and multi-threading. Multi-threading can only run
in parallel for some InO tasks, but can only run one at a time
for CPU-bound multiple core tasks. Therefore, more overhead
is produced in managing memory and data [19] .

G. APACHE SPARK IN EMERGING TECHNOLOGIES

1) Fog Computing: Fog computing requires extremely low
latency, parallel processing of machine learning and complex
graph analytical algorithms that is provided by Apache Spark.
Spark streaming along with MLIib and Apache Kafka forms the
base of a fake financial transaction detection. Credit card
transactions of an individual can be obtained to classify the
individuals spending patterns. Models can be further formed
and trained to forecast any abnormality in the card transaction
and along with the Kafka and Spark streaming in real time.
Spark can also be used in interactive analysis since it is
extremely fast as compared to MapReduce that provide tools
like Pig and Hive for interactive analysis [20].

2) Machine Learning: Apache spark has a highly powerful
API for machine learning applications known as MLIib that
consists of several machine learning algorithms. For instance,
we can use Support Vector Machine (SVM) in Spark. SVM is a
machine learning algorithm used for classification and
regression analysis. The only optimizer available for SVM in
Spark is the SGD optimizer [21]. Furthermore, Spark also
supports another machine learning algorithm called XGBoost
or eXtreme Gradient Boosting. This algorithm enables the
users to build a unified pipeline by embedding XGBoost

into the data processing system which is based on
Apache Spark [22].

Another example of using machine learning in Spark
is Deep Learning (DL). Since DL is computationally very
heavy, distributing its processes is a good solution and
Apache Spark is one of the easiest way to implement it.
DL can be implemented in Apache Spark in many ways,
some examples are as follows [23]:

Elephas uses Distributed DL with Keras and
PySpark Yahoo Inc. uses TensorFlowOnSpark
CERN uses Distributed Keras
Qubole uses tutorial Keras and Spark

Furthermore, Deep Learning Pipelines is an open
source library which provides high-level APIs that can
perform scal-able deep learning in Python with Apache
Spark. Some of the advantages of this library are [23]:

With the help of Spark’s ML libraries, we can have
easy-to-use APIs that produce deep learning within
few lines of code.

It does not compromise the performance while
focusing on ease of use and integration.

As it is built by the creators of Apache Spark it has
a greater chance to merge as an official API.

As Python is the language used it makes it easier to
integrate with all of its famous libraries. Moreover, it
uses the power of the two main libraries for Deep
Learning which are TensorFlow and Keras.

IV. CONCLUSION

Big data is a term that refers to an excessively large amount of
datasets that are used to computationally reveal patterns and
trends. In order to analyze and find knowledge from this bulk of
data, a processing framework is required. There are various types
of commonly used big data frameworks such as Apache Hadoop,
Apache Storm, Apache Spark, Apache Flink etc. In this paper we
talk about Apache Spark’s batch processing and stream
processing abilities, use cases, ecosystem, architecture, multi-
threading and concurrency capabilities and lastly the use of Spark
in emerging technologies.



View publication stats


https://www.researchgate.net/publication/339176824

