l' 0

Analysis of Big Data using Apache Spark

Abstract- Data analysis is concerned with the automatic extraction of data related information from variety of sources. Although most
analytical model addresses commercial tasks, such as product reviews, there is increasing interest in the affective dimension of the
social media websites and various other sources. The current analytical models are not ideally suited for real time analysis of data.
This model will collect data from sources of structured and un-structured data; it will filter the relevant data from the raw data in real
time or stored data and make it useful for analysis and process it. Hence, such model will be successful in the sense of performing real

time analysis than the current ones.

Keywords- Big Data; Large Dataset; Hadoop; HDFS; Spark; SparkSQL; RDD; Python; Java

1. INTRODUCTION

Now a days the large data sets are produced by the social
media data, transport data, black box data, stock exchange data
and many more and the traditional way is not that efficient to
handle such a large data set[1]. The big data consist of the higher
velocity, volume and diverse variety of data. Web utilization is
being developed with the advancement in the technologies by
which we can handle large data sets be it the information and
views of the particular product on facebook or twitter or the
performance information of the aircrafts [2]. The data can be
present in three forms like the structured data which includes
relational data in it, semi structured data like XML data and the
unstructured data in which the word, pdf, text, media are included
[3]. There are four organizations of big data volume, velocity,
variety and values. To manage the big data instruments like
Hadoop and Spark can be used. Hadoop can be used to handle the
large and complex data sets by storing it and running the complex
queries in very efficient way [4]. It is the distributed technologies
that shares the work to various servers that is the large job is
splited to small tasks and these tasks are run concurrently, thus
Hadoop is the massively parallel processor. The main pattern in
the Hadoop includes the Map Reduce which is written in Java [5].
But there are some limitations in Hadoop like it does not give the
real time processing of the data, the SQL support is limited,
insufficient execution and many more[6].

Thus to overcome such limitations of Hadoop, Spark can
be used which is more efficient than Hadoop. Nowadays
Spark is in race at it can process large amount of the data
with very low latency processing that the map reduce of
Hadoop is not able to do. Spark cab be preferred over
Hadoop as its speed is 100 times more than that of map

reduction used in the Hadoop [7]. It also reduces the time
which is being consumed for reading and writing. Today
Amazon, eBay, Yahoo and the Netflix has adopted spark.
Thus the spark is the open source of the big data
processing framework. The working of the spark is with
the file system which distributes the data across the entire
cluster and the data is processed simultaneously [8]. In
the Hadoop the MapReduce was coded with the java
whereas here it is coded not only by java but also the
Scala and python[9]. It is the advancement of the
mapreduce that was used in the Hadoop. Spark basically
works with the combination of the SQL, complex
analytics and streaming. It combines the libraries for
SQL and data frames and stores the information rather
than writing it[10].

2. BIG DATA

Big Data refers to large data that can be analysed
computationally in order to reveal patterns, trends and
association, relating to human behaviour and interaction.
These big data can’t be handled with traditional
computing techniques as they mostly use single machine
to process data [1][11].

It portrays data having high volume, velocity and variety
which requires new technologies and system to catch,
store and analyse it. It can be described by “3V’s”.

* Volume - In order to analyse, data is collected from
variety of sources business transitions, social media,
and information from sensor or from machine data.

* Velocity- The flow of data from various sources is
unpredictable, so it makes a challenge for the tradition
approach to handle those kinds of data. In order

resolve those challenge we use big data approach to handle
those datasets.

* Variety — The data to be analysed comes in all type
of formats. It can be real time, predictive, streaming,
mission critical. The data can also be structured,
numeric in traditional databases or unstructured text
documents email, video, stock ticker data and
financial transactions [12].

Two other dimensions defining big data-

* Variability- The dataflow can be highly inconsistent
with periodic trends because of increase in velocity
and varieties of data. This makes data challenging to
manage. The challenge is predominantly
experienced while analysing unstructured data.

* Complexity — Data collection is done from multiple
sources because of which it is difficult to link,
cleanse, match and transform data across systems. It
is important correlate and connect with the
usefulness of the data[13].

Data .
Velocity e

Aeal-tima

-~ Near Boal- .

tima ™
/ < Periodic \
[i Thatch
|I M Gn T PR - Data
- o / Volume
Phote . parabase g
Wels
Social “-\"'-.__A.udlu
UNStructured —
Whileo
Mcbile -
Hate o« e _—

Variety

Figure 1: Area of Big Data
3. HADOOP

Hadoop is the analytics that is used for handling the large data
sets. It is the platform of the big data that basically stores the large
content of data in an efficient way in terms of reliability and
flexibility also Hadoop runs the complex queries over the data
very efficiently. It is the free open source analytical process of
Apache. Scaling is its key feature like if your data increases then
we need to expand our clusters by just adding the servers and the
same query which is being designed can work over thousands of
nodes of the cluster. The ecosystem of Hadoop includes the map
reduction, SQLs on Hadoop, real time big data and also the new
toolkit Apache Spark [14].

3.1 Architecture of Hadoop
Hadoop shares it work among many servers thus it is a distributed
technology. The cluster of the Hadoop is the master architecture
and it knows where the data among the worker that is the nodes of
the cluster is distributed[15]. The cluster coordinates the queries,
splitting it into various or multiple tasks

among the nodes of the cluster. This node stores and executes
the tasks distributed to them by the cluster. For example if we
take into the consideration of the large data file which of 1GB
then in Hadoop the file is splited in various pieces called as
blocks and each block would replicate to have 3 copies of
itself. Thus the 1GB file is now splited into 24 block of
128MB. Thus it is the ability of the Hadoop to split the data
into multiple small tasks and these small tasks runs parellely
to do the processing of the large data set. This is called
massively paralle processing [16].

Hadoop’s ability to split a very large job into many small tasks
while those tasks run concurrently is what makes it so
powerful—that’s called Massively Parallel Processing (MPP),
and it is the basis for querying huge amounts of data and
getting the response in a reasonable time[17] [9] [4]. In order

to see how much benefit you get from high concurrency,
consider a more realistic example—a query of over 1 TB of
data that is split into 256 MB blocks (the block size is one of
the many options you can configure in Hadoop). If Hadoop
splits that query into 4,096 tasks and the tasks take about 90
seconds each,the query would take more than 100 hours to
complete on a single-node machine[18].

'ypncai Architecture of Hadoop

ss Same or Ditferent Rack, Data Center, or Region

Nodes, Files &
Blocks Info

MapReduce | HDFS |

Figure 2. Architecture of Hadoop

On a powerful 12-node cluster, the same query would
complete in 38 minutes. Table 1 shows how those tasks
could be scheduled on different cluster sizes.

TABLE 1. COMPUTE TIME FOR HADOOP CLUSTER

Data Nodes Total CPU Total Best
Cores Concurrent Compute
tasks Time
1 1 1 100 hrs
12 192 160 38 mins
50 1200 1000 6 mins

Hadoop aims for maximum utilization of the cluster when
scheduling jobs. Each task is allocated to a single CPU
core, which means that allowing for some processor
overhead, a Analysis of Big Data using Apache Spark

cluster with 12 data nodes, each with 16 cores, can run 160
tasks concurrently [19].

A powerful 50-node cluster can run more than 1000 tasks
concurrently, completing our 100-hour query in under six
minutes. The more nodes you add, however, the more likely it
is that a node will be allocated a task for which it does not
locally store the data, which means the average task
completion time will be longer, as nodes read data from other
nodes across the network[20][29].

4. HDFS

HDFS is the storage part of the Hadoop platform, and with
it you get reliability and scale with commodity hardware.

Commodity is important—it means you don't need specialist
hardware in your Hadoop cluster, and nodes don't need to have
the same—or even similar—specifications. Many Hadoop
installations have started with a cluster built from beg-or-
borrow servers and expanded with their own higher spec
machines when the project took off. You can add new nodes to
a running cluster while increasing your storage and compute
power without any downtime [5][21].

The resilience built into HDFS means servers can go offline or
disks can fail without loss of data, so that you don't even need
RAID storage on your machines. And because Hadoop is much
more infrastructure-aware than other compute platforms, you can
configure Hadoop to know which rack each server node is on. It
uses that knowledge to increase redundancy—by default, data
stored in Hadoop is replicated three times in the cluster. On a
large cluster with sufficient capacity, Hadoop will ensure one of
the replicas is on a different rack from the others [19][22].

As far as storage is concerned, HDFS is closed system.
When you read or write data in Hadoop, you must do it
through the HDFS interface—because of its unique
architecture, there's no support for connecting directly to a data
node and reading files from its disk. The data is distributed
among many data nodes, but the index specifying which file is
on which node is stored centrally[4][23]. In this chapter, we'll
get a better understanding of the architecture and see how to
work with files in HDFS using the command line.

4.1 Architecture of HDFS

HDFS uses a master/slave architecture in which the master is
called the “name node” and the slaves are called “data nodes.”
Whenever you access data in HDFS, you do so via the name
node, which owns the HDFS-equivalent of a file allocation
table, called the file system namespace.

In order to write a file in HDFS, you make a PUT call to the
name node and it will determine how and where the data will
be stored. To read data, you make a GET call to the name

node, and it will determine which data nodes get copies of
the data and will direct you to read the data from those
nodes [2][24].

The name node is a logical single point of failure for
Hadoop. If the name node is unavailable, you can't access
any of the data in HDFS. If the name node is irretrievably
lost, your Hadoop journey could be at an end—you'll have
a set of data nodes containing vast quantities of data but no
name node capable of mapping where the data is, which
means it might be impossible to get the cluster operational
again and restore data access.

Figure 3. HDFS architecture

In order to prevent that, Hadoop clusters have a
secondary name node that has a replicated file index from
the primary name node. The secondary is a passive node—
if the primary fails, you’ll need to manually switch to the
secondary, which can take tens of minutes. For heavily used
clusters in which that downtime is not acceptable, you can
also configure the name nodes in a high-availability setup.

5. APACHE SPARK

Apache Spark designed for fast computation. It is an
advanced computing technology based on Hadoop
MapReduce and it also extends the Map Reduce model in
oder to use it more efficiently for variety of computations
and streaming process. It helps in memory based cluster
computing which results in increase of the processing speed
of an application[25][27].

The aim of developing Spark was to cover a wide range
of data processing workloads such as batch processing,
iterative algorithms, interactive queries and streaming of
data. Other than supporting data processing in a respective
system, it also reduces the heavy load of maintaining a
separate tool for management [3][28].

The major features of spark are speed, support for
multiple language and advanced analytics.

6. REVIEW

In the past few years there are various analysis process that
have been introduced in order to process the large amount of
data generated by the various sectors. Hadoop that uses the
map-reduce model for processing such a large data but is not
as efficient as spark. There are certain limitation in

the Hadoop that Spark has overcome. In this article we
would be discussing how spark process such a large data
and how it is more efficient than the Hadoop. Spark is the
computing framework that is much faster than the Hadoop.
Its speed for running the application is 40 times faster than
the Hadoop. Although the Hadoop uses the map-reduce
model but is unable to work efficiently as it cannot process
the rich application in single pass. Users wants the iterative
algorithms which the part of the complex multi pass
algorithm for graph processing[30].

Now the problem is that the multi pass complex and the
interactive applications needs to distribute the data and the
only way to do it is to share the data between the parallel
operations in the map reduce is to write the distributed file
system which leads to overhead due to data replication. This
problem is minimized by spark by providing primitive
storage, the resilient distributed dataset RDDs.

The RDDs is more efficient than the distributed file
system it stores the data in the memory over the entire
queries ant it provides the fault tolerance without the
replication. The RDDs runs 40 times faster than the
distributed file system in the Hadoop.

For the better comparison of spark over hadoop we can
consider an example, if we take 100GB data say on 50 node
cluster hadoop takes around 110 second per iteration where
as spark takes only 80 seconds for the iteration to load the
data [20][26].

6.1 Comparison of Hadoop and Spark

It has been proved in many research papers or studies that
Spark is more faster than Hadoop whether it be any
operation. For analysing big data spark is better than Hadoop.
Big data is basically a large dataset and these datasets can
have any type of information, operations, algorithms and etc.
It has been proved that spark is better than Hadoop for
iterative operations.

A research paper was published on November 2013 by Lei
Gu and Huan Li, In which they conducted a series of
exhaustive experiments to evaluate Hadoop and Spark. They
chose five real graph datasets and then generated five
synthetic graph dataset to do the comparison. The following
are the ten graph datasets given in the table below.

Naww e S | Nl s Trsrptbn
il Vg 10 M s 10 Bkl sherdona b vk
e ShabSa | JOAME | Li00 i Rbi wni nreerd o [decan NEW
wohdavgh TISNE | OO0 | L Wb jraph (e Cunsgis
e NISu | AT | e Coann sctwordl smony LS Pacats
Teanr IJGE | IMes | wanms Teoar sl mtwork o ato Adba oy whem mre

& el | 1MET | Symbesr popt grecssied by Krosooker prontes with 19t

R ATLSA | TN | Sesois gk grerd by Kook peier wils 1) g

OV | WM | MO | Sewtheic prph pracnnd by Knimecker prmens with XY intens

Lrmmwler 19
it
hrvmeche | v | 1seAAN | HSSA | Syt prpd gacoed by Kromdker preoy wits 1 wosoes
rmmcker?
[]

LW | Al | TRIMIY | Sywieie puph goamnd by Knoodker pmenter al 2Y s
Figure 4. Graph dataset for experiments
According to the results, Spark has outperformed Hadoop in
running time comparison according to the size of the dataset.

The following is the graph
result.

obtained after evaluating the

ey
et e
=]
i
8
4 (=] ! |
s
F
£
I]
£ h 77
5
T
% .Y LY
% Q_k ‘h v,._‘
%
Dansets
(a) Real Graphs

=

Y

Running Time in Seconds

(b Synthetic Graphs
Figure 5. Running Time Comparison of Hadoop and
Spark

On the other hand, after evaluating the results it came out
the Spark is extremely memory consuming as compared to

Hadoop.

The following graph is memory usage comparison by

Spark and Hadoop using real

graph datasets.

o Ly
g =t o ™ R 2
13
l 13 g e
i i
g sxt | 5 =
= | »
g T (A \A §
8 mat | N ' 8
3 A | : e -
% L | oy
f ol "’.\I. .'LE"‘F E e
| fablead
T e] — b / | .
i — —t -0 G —
2 ; o Pamrty g ren
¥ X W W @ W oW m kW . w 0 =
Tima Saquency in Socends Timse Soqueace in Seconds
(2) Hadoop (b Spark

Figure 6. Memory usage

using real graph datasets

And Fig. 8 shows the memory usage comparison by Spark
and Hadoop using synthetic graph datasets. In conclusion,
we get that Spark is less time consuming and is a
framework to overcome the demerits in Hadoop but is
memory consuming as compared to Hadoop framework.

s

Mo mory Qocupancy in Megabyws
E B E B § E

L]

on

E B
- 1

8

8

M mory Dccupancy In Megatyle s
]
8

L
|

(a) Hadoop

] o] e 0 e e L
Time Sequence in Seconds

(b) Spark

Figure 7. Memory usage using synthetic graph
datasets

Analysis of Big Data using Apache Spark

7. METHODOLOGY

7.1 Structure of Spark
* Apache Spark Core- It is general execution engine for
spark platform on which each one of the alternative
functionality is built upon. It helps In-Memory
computing and referencing datasets in memory device
systems.

* Spark SQL-Spark SQL is a part on top of Spark Core
that introduces an alternative information abstraction
known as SchemaRDD, that provides support for
structured and semi-structured information.

* Spark Streaming-Spark Streaming leverages Spark
Core's quick programing capability to perform streaming
analytics. It ingests information in minibatches and also
performs RDD (Resilient Distributed Datasets)
transformations on those mini-batches of
information[8][2].

GraphX

(machine (graph)

learning)

Apache Spark

Figure 8. Components of Apache Spark

MLIib (Machine Learning Library)- A distributed
machine learning framework on top of Spark as a result of
the distributed memory-based Spark design. Spark MLIib is
9 times as faster in comparison Hadoop disk-based version
of Apache mahout (before mahout gained a Spark interface).
GraphX- A distributed graph-processing framework on top
of Spark which provides an inbuilt API for expressing graph
computation which will model the user-defined graphs by
using the Pregel abstraction API. It additionally provides an
optimized runtime for this abstraction.
In this part we are working on the steps to get our system
ready for collecting and analysing the data.

* Data Collection- Data collection is an important

aspect of any type of analysis. Large data from
various sources are collected. The next step in
information handling flow is storing the data.
Our collected data is uploaded to HDFS and is
stored so that this data can be used to process. By
storing the large datasets into HDFS, the solution
provided is much more efficient, reliable,
economical, and scalable.

* Filtering Data- Filtering data is one of the
important aspects. Raw collected data from variety
sources is filtered according to the needs of the
analysis. The Hadoop administrator will put all
those data in one file that will be imported in
Hadoop HDFS for a filtration.

* Processing Data- Now the filtered data is used in
order to achieve the desired results using various

algorithms or procedures. We can use SparkSQL ,
Java, Python, Scala or R for processing the data.

* Visualisation- After getting the desired outcome
from the processing of big data. We now use that
data to plot graphs and charts so that it is easier for
us to determine the outcome of the processing

8. RESULT AND DISCUSSION

In this paper we have found that after using Spark to
process data we comparatively increased the processing
speed with respect to Hadoop. Also, we have found that it
consumes more amount of RAM is compared to Hadoop
and less amount of disk usage in terms of read/write.The
developed methodology can be used in real time processing
of data using data streams and where there is huge amount
of inflow of data so that it can perform real time
analytics.Figure 9 shows the steps involved in this
methodology.

(START

v

Setup and configure Hadoop Ecosystem
Install Apache Spark

Download large dataset and upload into HDF S

Convert raw data into useful quahtative data

i Setup and configure Spark ecosystem

Get data into Spark using RDD |
Analyse lhe dala using Spark (Spark SglJava,R,Pyhton)

| Draw statistics and useful inference

END

Figure 9. Steps in Analysing Data in Spark and
Hadoop

9. CONCLUSION AND FUTURE SCOPE

In this research article, we described the ongoing resea rch
to design and implement big data with Hadoop and Spark.
This methodology can analyse data in real time and where
there is an immense flow of data into the system.

In future we have to implement this methodology using
Spark and Hadoop so that applications of real time

analytics can be developed with ease.

ACKNOWLEDGEMENT

We are appreciative to my friends, family members and Mr. Ankur Saxena of Amity University at Noida. We thank our fellow
students who provided their insight and expertise that really motivated and guided us during this research. We thank them for assisting

us particularly under techniques and methodology section. We would also like to special thanks to our team for sharing their expertise
and knowledge.

