
An empirical study on the challenges that developers encounter when
developing Apache Spark applications✩

a r t i c l e i n f o a b s t r a c t

Apache Spark is one of the most popular big data frameworks that abstract the underlying distributed
computation details. However, even though Spark provides various abstractions, developers may still
encounter challenges related to the peculiarity of distributed computation and environment. To understand
the challenges that developers encounter, and provide insight for future studies, in this paper, we conduct
an empirical study on the questions that developers encounter. We manually analyze 1,000 randomly
selected questions that we collected from Stack Overflow. We find that: 1) questions related to data
processing (e.g., transforming data format) are the most common among the 11 types of questions that we
uncovered. 2) Even though data processing questions are the most common ones, they require the least
amount of time to receive an answer. Questions related to configuration and performance require the most
time to receive an answer. 3) Most of the issues are caused by developers’ insufficient knowledge in API
usages, data conversation across frameworks, and environment-related configurations. We also discuss the
implication of our findings for researchers and practitioners. In summary, our work provides insights for
future research directions and highlight the need for more software engineering research in this area.

1. Introduction

The amount of available data has increased significantly in
recent years. Forbes estimated that 90% of the data in the world is
generated in the last few years (Forbes, 2018). The collected data
contains valuable information that helps in making critical business
decisions, but the data of such scale is difficult to pro-cess and
analyze using a single machine. As a result, developers leverage
various distributed data processing frameworks, such as Apache
Hadoop (Hadoop, 2021) and Apache Spark (Spark, 2021), to
analyze data across tens or even hundreds of machines.

In particular, Spark has become one of the most popular big
data frameworks that companies are adopting (Agarwal, 2019).
Apache Spark is a unified analytics engine for processing large-
scale data. Spark can distribute data processing tasks across
large clusters of computers to speed up the computation. Spark
pro-vides a set of APIs that abstract the distributed computation
details. Thus, developers can call Spark APIs to implement the
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data processing logic and can scale horizontally without modi-fying
the code. Spark supports multiple programming languages (i.e.,
Java, Python, Scala, and R) and offers various high-level API
abstractions to meet a wide range of big data development needs,
such as SQL queries, machine learning, and graph analysis.

Although Spark helps developers abstract the underlying dis-
tributed data processing details, developers may still encounter
various challenges when developing Spark applications. For ex-
ample, while Spark’s abstraction layer automatically optimizes
data processing to achieve better performance, such abstrac-tion
may also pose challenges in debugging data processing tasks
(Wang et al., 2021). Moreover, since developers may in-tegrate
Spark applications with other big data frameworks (e.g., storage
engines such as HDFS), developers may also encounter
integration issues. Spark provides various components, such as
MLlib for machine learning and Spark Streaming for stream data
processing, to perform a wide range of data processing tasks.
However, there may be unique challenges associated with using
various components and process different types of data.

In this paper, we conduct an in-depth qualitative study of the
problems that developers encounter when developing Spark
applications. Prior studies have used Stack Overflow to study the
challenges that developers have in various fields, such as security
and deep learning applications (Meng et al., 2018; Islam et al.,

2019). Similarly, we study both the Spark-related questions and
answers on Stack Overflow.

In total, we collected 12,217 posts (i.e., each post contains the
question and the corresponding answers). Due to the large
number, we conduct our qualitative study based on a statistically
significant sample. We randomly sample 1000 posts, achieving a
confidence level of 95% and a confidence interval of 3%. While
prior research also aimed to study the challenges that big data
developers encounter, the study was purely quantitative (Gulzar et
al., 2019). In our paper, we study each post in detail and examine
the code provided in the questions and answers to obtain deeper
insights into the potential challenges in developing Spark
applications. In particular, we seek to answer the following
research questions:

RQ1: What types of questions do developers ask about Spark
on Stack Overflow?
We uncover 11 types of questions that developers en-
counter when developing Spark applications. We find that
data processing is the most common type of questions,
accounting for 43% of all the studied questions. We also
find that developers often encounter issues related to con-
figuration, integration with other frameworks, and using
machine learning APIs in Spark.

RQ2: Which types of questions have higher view counts and
are more time-consuming to answer?
Although data processing questions or Spark basics ques-
tions have a higher number of view counts, they require less
time to receive an answer (median is one hour). On the
other hand, performance and configuration questions take



more time to get answers (median is eight and 14 h,
respectively), while are still very popular in terms of view
count. We also find that the view-count ranking of the
question type remains stable even if we consider the age of
the question.

RQ3: What are the root causes of Spark-related questions?
By manually analyzing every question and answer in these
1000 posts, we summarize 11 root causes. We find that the
Spark data abstraction and the lack of knowledge of API
usage contribute to the root cause of half of the ques-tions
(50%). Furthermore, complex environment configura-tions
and incorrect or incompatible data format issues also
contribute to many problems during Spark development
(24%).

Our research uncovers the types of common problems in Spark
development. In addition, we discuss the implications of our
findings and provide actionable suggestions to practitioners. Our
findings may inspire future research to better assist developers
with big data development.
Paper Organization. Section 2 discusses the background and
related work on Spark. Section 3 presents the common challenges
in the development of Spark applications, their popularity and
difficulty, and their root causes. Section 4 discusses the implica-
tions of our findings. Section 5 discusses the threats to validity.
Section 6 concludes the paper.

2. Background and related work

In this section, we introduce the background of Apache Spark
and Stack Overflow, which we use to analyze Spark related ques-
tions. Then, we discuss related work in the empirical study and
testing of big data applications, and Stack Overflow.

2.1. Background

The Spark Ecosystem. Apache Spark is a distributed computing
framework that executes the computation in parallel in a cluster. In
Spark, the computation task is automatically sent from the driver
node to the worker nodes so that the worker nodes can perform
the computation in parallel. Spark is widely used for big data
processing by large corporations, such as Amazon (Amazon, 2021)
and Yahoo (Yahoo, 2021). Spark becomes one of the most
popular big data frameworks and is the number one big data tech-
nology that IT decision makers plan to deploy (Agarwal, 2019),
and it has quickly become the largest open-source community in
big data, with over 1600 contributors and 30.4k stars. Spark sup-
ports various programming languages, such as Java, Scala,
Python, and R, and provides three abstracted data structures for
dis-tributed data processing: resilient distributed dataset (i.e.,
RDD), DataSet, and DataFrame. By using such an abstraction,
developers would be free from the burden of implementing the
underlying details on distributed computation. The three data
structures are similar in functionalities, although DataSet and
DataFrame have become the recommended data structure and
API to use since Spark 2.0.

Since Spark is often used in distributed settings, it provides
support for the integration with various data sources and frame-
works. For example, Spark provides APIs that allow developers to
read data from other data storage systems such as HDFS and
Hive. Spark’s data storage APIs also help developers deal with
different data formats (e.g., JSON or CSV) that are used in the
external data storage systems. Although such APIs help simplifies
the integration with other frameworks, there may still be issues
caused by incorrect configurations or API usages. To help ease
the development of various data analysis tasks, Spark supports a
number of high-level APIs including Spark SQL (SQL, 2021) (i.e.,
access data using SQL-like domain specific language), Spark
Streaming (Streaming, 2021) for data stream processing, MLlib
(MLlib, 2021) for machine learning, and GraphX (GraphX, 2021)
for graph processing. All these APIs have their specific design and
data format requirement. Hence, if developers are not familiar with
the data format and the data storage framework that a Spark
application integrates with, there may be unexpected errors during
runtime. Moreover, since Spark abstracts and dis-tributes the
computation across many worker nodes, there may be particular
challenges when using Spark to train distributed machine learning
models compared to models in a single node.

In this paper, we conduct an empirical study to unveil the
challenges that developers encounter when developing Spark
applications. We manually study the issues that developers have
and summarize the root causes of the challenges. Our findings not
only help inspire future research directions on assisting de-
velopers with developing big data applications but also provide
development guidelines for developers.
Stack Overflow. In this paper, we study the Spark issues that
developers encounter on Stack Overflow. Stack Overflow is a well-
known Q&A website for developers to discuss all kinds of
questions related to software development. Users can not only ask
and answer questions but also vote for the most appro-priate
questions and answers. Every question and answer has attributes
such as view count, vote count, and favorite count. The view count
represents the number of views for a question thread, which
reflects the popularity of the associated ques-tion/answer (Bajaj et
al., 2014; Nadi et al., 2016; Yang et al., 2016). Each question can
be upvoted or downvoted by users to reflect the vote count. A
higher vote count means that the question may be more applicable
to the general audience. Finally, Stack Overflow allows users to
‘‘bookmark’’ a question by marking the question as ‘‘favorite’’. In
this paper, we conduct a detailed manual
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analysis on 1000 randomly sampled Spark-related questions on
Stack Overflow. We also analyze the above-mentioned attributes
to study which challenges are more prevalent and may require
support from the research community.

2.2. Related work

Empirical Studies on Big Data Applications. There are several
prior studies that aim to understand the challenges that devel-
opers have when developing big data applications. Bagherzadeh
and Khatchadourian (2019) used Stack Overflow data to study
what kinds of questions big data developers ask. They use topic
models to find the more popular topics. However, their work
focuses only on the quantitative aspects and does not provide an
in-depth analysis of the challenges that developers have. Jiménez
Rodríguez et al. (2018) used a LDA model to study the topics of
the Spark-related questions that developers ask on Stack
Overflow. They found the main libraries and topics of discussion
about Spark and how the discussion of different Spark libraries
change over time. While the study provides a good general
overview of the challenges that Spark developers encounter, the
study is totally quantitative and the categories in their study are
coarse-grained, it offers few insights into the types of information
that can be useful for building and debugging Spark applications.
For example, compared to other Spark libraries, they found that
Spark-SQL may have more problems but they did not discuss
what challenge developer encounter when using Spark-SQL to do
data processing tasks. Kim et al. (2018) surveyed 793 Microsoft
data scientists on the common challenges that they encounter.
They find that the most common challenges are related to data
quality and the scale of data. Fisher et al. (2012) also interviewed
16 data analysts at Microsoft and they found that debugging in a
distributed cloud environment is extremely challenging. Zhou et al.
(2015) analyzed 210 issue reports from one of Microsoft’s big data
platforms. They find that more than 30% of the issues are related
to application design and code logic.

Compared to prior studies, this paper aims to provide a more
comprehensive and in-depth understanding of the problems that
developers encounter and their root causes. We conduct a man-
ual study on 1000 Spark-related questions collected from Stack
Overflow. We manually categorize the questions and identify the
prevalent question types (e.g., in terms of view counts). Finally, we
manually derive the root causes of questions and summarize the
implications of our findings.
Analysis and Testing of Big Data Applications. Gulzar et al.
(2016, 2018, 2019) developed a series of techniques to assist
developers in debugging and testing big data applications. Their
work of BigDebug (Gulzar et al., 2016) simulates breakpoints and
watchpoints to allow interactive debugging in big data applica-tions.
BigSift (Gulzar et al., 2018) applies the concept of delta debugging
to help developers identify the root cause of an error in Spark
applications. Finally, BigTest (Gulzar et al., 2019) auto-matically
generates a small and synthetic dataset for effective and efficient
testing. Zhang et al. (2020) propose a novel coverage-guided fuzz
testing tool for Spark applications. Wang et al. (2021) propose an
approach called DPLOG to provide logging support to monitor
data applications. These studies provide valuable support to
developers and assist in testing and debugging Spark applica-
tions. Our work focuses on identifying problems and their root
causes in developing Spark applications. Our findings provide
directions for future research on improving the quality of Spark
applications.
Other Empirical Studies that Leverage Stack Overflow. Stack
Overflow is a widely used platform to study software engineering
practices from developers’ perspectives. Previous studies provide
valuable insights by analyzing questions on Stack Overflow (Tahir

et al., 2018; Ahmed and Bagherzadeh, 2018; Abdellatif et al., 2020;
Tahaei et al., 2020; Islam et al., 2020; Meng et al., 2018; Islam et
al., 2019). Meng et al. (2018) studied 503 Stack Over-flow posts to
understand developers’ concerns on Java secure coding. Islam et
al. (2019) study over 2000 posts from Stack Overflow to find the
common types and root causes of bugs in five popular deep
learning libraries. Islam et al. (2020) studied 415 repairs from
Stack Overflow and 555 repairs from GitHub to find the bug repair
patterns and challenges in five deep learning libraries. They find
that bug fix patterns of deep neural networks are different
compared to traditional bug fix patterns. Zhang et al. (2019)
studied obsolete answers on Stack Overflow to understand the
evolution of crowdsourced knowledge. Mondal et al. (2021)
studied unanswered questions on Stack Overflow to understand
the difference between unanswered and answered questions.
Similarly, we conduct an empirical study of Spark-related ques-
tions on Stack Overflow to understand the Spark problems that
developers encounter.

Stack Overflow posts cover a wide range of topics. Barua et al.
(2014) found that general programming and web-related topics are
more common on Stack Overflow. To uncover the types of posts
on Stack Overflow, previous studies (Beyer et al., 2020; Alla-
manis and Sutton, 2013) propose categories such as review, con-
ceptual, and learning, to classify the posts. These categories pro-
vide a valuable perspective for classifying issues on Stack Over-
flow. Although such classification categories may be suitable for
general programming-related problems, these categories are too
general for categorizing the problems that developers encounter
during Spark development. Spark, as a distributed data processing
framework, requires certain domain-specific knowledge, such as
data processing, distributed computing, and configuration man-
agement. Such knowledge often does not apply to general pro-
gramming or other domain-specific (e.g., Android or web de-
velopment) questions. Therefore, we propose new classification
schemes to study the Spark-related problems that developers ask
on Stack Overflow.

3. Study results

In this section, we first discuss our data collection process.
Then, we discuss the results of our research questions (RQs). For
each RQ, we discuss the motivation, approach, and results.

3.1. Study setup

Our goal is to understand common challenges that developers
encounter when using Spark and to provide insights towards
potential solutions to Spark challenges. To achieve the goal, we
analyze the questions that developers ask on Stack Overflow —
the most popular Q&A website for software development and
programming questions. We collect the Stack Overflow data from
Stack Exchange Data Explorer.1 This website provides a SQL
query interface where we can download Spark-related posts
through SQL queries. Our collected data contains post information,
such as the detailed content of each post (i.e., a question and its
associated answers), the number of received votes in a post, and
the view count of a question.

To study the types of questions that developers ask on Stack
Overflow, our first step is to identify the posts that are related to
Apache Spark. On Stack Overflow, developers are required to
label at least one and at most five tags when they ask a question.
These tags represent the specific topics for a question. Therefore,
we use the tag apache-spark to select all Spark-related questions
on Stack Overflow. Moreover, we follow prior studies (Wang et al.,

1 https://data.stackexchange.com/help.
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2018; Ponzanelli et al., 2014) to further select questions that have
a score greater than zero. In total, we collected 14,043 questions
and their associated 22,329 answers. To study the questions and
their associated root causes in detail, we only consider the
questions with an accepted answer and code snippets. Finally, we
select the questions that were asked between 2014 and 2019. We
choose the questions in this period because Spark 1.0 (the first
stable version of Spark) was released in 2014 (although Spark
was first open-sourced in 2010). Based on the above-mentioned
crite-ria, we filter our extracted posts and collect 12,217 Spark-
related posts.

3.2. RQ1: What types of questions do developers ask about Spark
on Stack Overflow?

Motivation. Spark is a popular distributed big data processing
framework that is widely used by many large companies around
the world,2 such as Shopify, Baidu, and TripAdvisor. One of the
main advantages of using Spark is that it abstracts the data paral-
lelization and computation for developers, which significantly re-
duces the software development overhead. Spark abstracts com-
plex data computation using a functional programming model, e.g.,
executing operations such as filter, map, and reduce in dis-tributed
and parallel settings. However, due to the peculiarity of Spark and
its abstraction, there may be unique challenges in using Spark
from developers’ perspective. To help developers and practitioners
understand the common issues when using Spark and to inspire
future research, in this RQ, we analyze the Spark-related
questions that developers ask on Stack Overflow.
Approach. As discussed in Section 3.1, we collected a total of
12,217 Spark-related posts (i.e., questions and their associated
an-swers) that have an accepted answer and code snippet. To
answer this RQ, we randomly sampled 1000 posts and conduct a
qualita-tive study. The size of the random sample achieves a
confidence level of 95% with a confidence interval of 3%.3 We
then study each sampled post based on the question itself and the
associated answers (including both text and code snippets) to
identify the challenges that developers have when using Spark.
We did not use the question tags to classify the questions because
the tags are user-provided and only contain high-level information.
More concretely, we followed previous research process (Wang et
al., 2018; Zhang et al., 2019) to manually derive categories. This
process involves three phases and is performed by the first two
authors (i.e., A1–A2) of this paper:

• Phase I: A1 & A2 first independently go through 300 ran-
domly sampled questions and their corresponding com-
ments, and suggested type for each post. A1 & A2 discussed
the suggested types and merged the similar types. They
discuss their opinions to unify the classification criteria, and
finally generate 11 manually-derived types (shown in Table
1).

• Phase II: A1 & A2 independently categorize the question
types for the remaining 700 questions using the types de-
rived in Phase I. We assign each question to the most rele-
vant category. Each question belongs to only one of these 11
types. A1 & A2 took notes regarding the deficiency or
ambiguity of the labels for these questions.

• Phase III: A1 & A2 discussed the coding results that were
obtained in Phase II to resolve any disagreements until a
consensus was reached. The inter-rater agreement of this
coding process has a Cohen’s kappa of 0.825 (measured be-
fore starting Phase III), which indicates that the agreement
level is substantial (McHugh, 2012).

Results. Table 1 shows the manually derived question types. In
total, we uncover 11 types of questions that developers en-counter.
Below, we discuss the uncovered types in detail. To the replication
of our results, we have made the dataset publicly available4 5

Data Processing (43%) is the most prevalent issue that de-
velopers have. Developers often face issues related to data pro-
cessing during Spark development. As a distributed big data pro-
cessing framework, Spark provides users with multiple ways to
process data. However, due to the vast number of APIs and
approaches to process data, developers often cannot quickly find
the most efficient way to process data in different situations. For
example, a developer on Stack Overflow attempted to add a
numeric index to every line.6 His initial attempt used the map
function, which is one of the most common functions in Spark.
However, the code resulted in incorrect output. Even though the
task can be achieved using the map function, the accepted answer
suggested the developer use the function zipWithIndex in Spark. By
design, the zipWithIndex function automatically appends the
corresponding index to the element in a resilient distributed
dataset (RDD).

Developers often encounter issues when configuring
Spark or its integration with other frameworks (15%). Spark
has a high degree of configuration flexibility and a large number of
configuration parameters.7 Therefore, developers may encounter
problems when configuring Spark. In addition, as a distributed big
data processing framework, Spark often needs to be configured in
a cluster setting and communicates with numerous other big data
frameworks. We also find that developers encounter config-uration
issues related to the environment setup. For example, a developer
attempted to save data to Elasticsearch using Spark, but he
encountered a NoClassDefFoundError exception.8 Although the
developer tried to use Maven to manage the dependencies, the
exception still occurred. In the end, an answer pointed out that,
due to the distributed nature of Spark, the initial Maven setting that
the developer used only applied to the driver machine but not the
worker nodes. The developer needed to configure Maven to pass
the dependent classes to both the worker nodes and the driver.
Although less common, developers may also encounter
issues related to configuring logging frameworks in Spark
(1%). For example, a developer had an issue with configur-ing
custom Spark logging for debugging due to the complexity of
distributed systems.9 Since logs are an important source of infor-
mation for debugging large-scale systems, properly configuring
Spark logging is important to assist developers with diagnosing
runtime issues.

11% of the issues are related to data input and output (IO).
Spark provides a series of APIs to access a variety of data
sources in different formats (e.g., Parquet, JSON, and ORC) or
frame-works (e.g., Elasticsearch and Hive). However, developers
may encounter problems with reading and writing the data. For ex-
ample, a developer tried to read some JSON data in Spark but got
an error message after loading the entire 6 GB of the JSON file.10

The reason is that Spark requires the JSON file to be in a specific
format (i.e., not the regular JSON format), where each line in the
file must contain a separate and self-contained valid JSON object.
As a consequence, reading a regular multi-line JSON file

.
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Table 1
Our manual classification of Spark-related posts on Stack Overflow. Percentages in the table are rounded up.

Type Definition Number of posts

Data processing Spark provides a variety of different APIs and data abstraction formats 432 (43%)
to process data, such as RDD, DataFrame, and Dataset. Developers may
encounter issues when they need to transform and process the data to
get the desired data format.

Configuration Developers may encounter issues related to tuning the vast number of 151 (15%)
configurations in Spark, and the required configurations when
integrating Spark with other frameworks.

Input and Output Spark provides a series of APIs to access a variety of data sources. 114 (11%)
Developers may have issues when they read or write data in various
formats (e.g., JSON) or sources (e.g., NoSQL database) when using Spark.

Spark basics Developers may encounter issues with basic Spark usage and concepts 84 (8%)
related to big data development.

MLlib Developers may encounter issues when using MLlib, which is Spark’s 47 (5%)
machine learning (ML) library.

Performance Developers may encounter performance issues when using Spark. The 47 (5%)
issues may be related to the resources in a cluster, e.g., CPU, network
bandwidth, or memory.

Streaming Spark Streaming is an extension of the core Spark API that enables the 44 (4%)
processing of live data streams. Developers may encounter issues
related to using Spark Streaming.

Serialization Spark requires objects to be serializable to be sent to worker nodes for 19 (2%)
computation. Some developers may encounter issues with object
serialization when using Spark.

Spark Bug Developers may encounter unresolved bugs in Spark. 16 (2%)

Logging Developers may encounter issues about the usage of the Spark logging 8 (1%)
system.

Other Issues that do not belong to the above-mentioned categories, such as 38 (4%)
questions about Spark UI monitor or Scala syntax problems.

would result in an error. Such issues may be difficult to detect in
advance due to the vast number of IO sources that Spark supports.
Moreover, due to the size of the data that developers often work
with when using Spark (e.g., 6 GB in the above-mentioned
example), the issues may require a long time to debug.
In addition to regular IO, developers also encounter IO issues
re-lated to streaming (4%). We find that developers often use
Spark together with other stream-processing frameworks (e.g.,
Kafka or Flume) to read/write real-time data streams. Developers
may have issues, such as delays in data reception, checkpoint
issues, or inconsistent data format across frameworks.

Developers sometimes have issues understanding the basics
of Spark (8%). Developers encounter some problems related to the
working principle of Spark and programming language, etc., which are
relatively basic concepts. For example, a developer did not know if the
spark-shell mode can run in a clustered environment like spark-submit

mode.11 These are two different ways to start Spark applications (e.g.,
one is through a shell environment) but they can both run in a cluster
environment. In particular, we find that 2% of the issues are
specifically related to object serialization, where developers
either did not provide any serialization or made a mistake during
the serialization process. Although Spark provides an abstraction for
big data processing, developers may be unfamiliar with the distributed
computing concept behind the abstraction, thus encountering issues
with how to leverage Spark for a given task in hand.

5% of the issues are related to MLlib. MLlib is a machine
learning library in Spark that supports many mainstream machine
learning algorithms, such as logistic regression. One key advan-
tage of MLlib is that it utilizes Spark’s distributed computing
capability so that developers train/apply the ML models using
multiple worker nodes. However, due to the differences between

11

the data representation and processing in Spark and other ma-
chine frameworks (e.g., R or scikit-learn), Spark developers may
encounter problems when using MLlib. For example, a developer
had an question regarding the type of input data that should be
used in Spark’s API for Latent Dirichlet Allocation.12 However,
due to unclear API documentation and the differences in how
Spark represents the input data, the developer did not know how
to properly use MLlib. In short, we find that due to the data types
that are introduced to abstract big data processing (e.g., RDD and
dataset), developers may have difficulties when using MLlib for
machine learning in Spark.

5% of the developers encounter performance issues when
using Spark. Because of the in-memory nature of most Spark
computations, different settings (e.g., IO read and write, clus-ter
configurations, and choice of different APIs) may affect the
performance of Spark applications. Therefore, Spark developers
sometimes encounter performance issues. For example, some
developers discussed which API achieves better performance be-
tween reducebykey and groupbykey.13 For different programming
languages (e.g., Scala or Python), due to differences in imple-
mentation principles, the two APIs may have certain perfor-mance
differences. Using reducebykey may bring a slight perfor-mance
improvement but may also lead to an increase in code complexity.

Developers sometimes encounter unresolved bugs in Spark
(2%). Since the release of Spark, it has attracted much attention from
the software engineering community and is under active development.
Therefore, Spark developers are constantly improv-ing and adding
new features to Spark. There are over 40 Spark releases over seven
years from 2014 (i.e., Spark’s initial release) to 2021. Such active
release practices may make it difficult for users to adopt the most
recent Spark version. We find that in 2%

12 .
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of the studied questions, users encounter some resolved bugs in
Spark. The bugs were already resolved in either the latest release
or in the master trunk, but some users were not aware of the issue
and the fix, which increases the development overhead.

4% of the problems do not belong to the above-mentioned
categories and are assigned to the Other category. We find
that sometimes developers discuss the design of Spark. For
example, a developer discussed that the design of the Row class in
Spark needs some improvement.14 This developer thought that in
order to extract a value, one has to know the exact type, which is a
bad design. Another problem discussed by a developer goes
against the working principle of Spark.15 The developer asked
about how to call another RDD in the map function for an RDD,
which is impossible to achieve and violates the working principle of
Spark. In short, we find that even though Spark provides an
abstraction of big data computation for developers, developers
may still encounter various issues related to the design of
abstraction or the underlying working mechanisms of Spark.

We identify 11 different types of questions that develop-
ers encounter in developing Spark applications. Data pro-
cessing is the most prevalent (43%) issue that developers
encounter. Developers also encounter issues in configur-
ing Spark or in the integration between Spark and other
frameworks. Furthermore, developers encounter other
diverse types of Spark challenges, such as performance
issues, MLlib-related issues, and Spark bugs.

3.3. RQ2: Which types of questions have higher view counts and
are more time-consuming to answer?

Motivation. In our manual analysis, we identified 11 categories of
questions that developers encounter when developing Spark
applications. In this RQ, we further investigate the view counts of
the questions, which helps identify the questions that are most
commonly encountered by users. We also analyze the time to
receive the first accepted answer to questions. These metrics
have been used in prior studies (Yang et al., 2016; Rosen and
Shihab, 2015) as proxies to measure the popularity and difficulty
of the questions in different categories. The finding may help
identify which types of questions may be more popular and
challeng-ing to solve, and thus require more support from the
research community.
Approach. For the 1000 posts that we manually classified, we
follow the steps below to compute the view counts and the time it
takes to receive the first accepted answer.

• View Counts. Similar to prior studies (Bajaj et al., 2014; Nadi
et al., 2016; Yang et al., 2016), we use view counts as a
proxy to measure the popularity of the uncovered cate-gories
of questions. In particular, we also collect some other metrics
(such as the number of favorites and answer score). While
there may be some subtle differences among all these
different metrics, based on our observation, the correlation
between view counts and other metrics is high (from 0.71 to
0.90). Moreover, we find that for the ranking of the types of
questions, these metrics have similar trends compared to
view counts. Therefore, we decided to use view counts as a
proxy for popularity since we believe view counts are easier
to interpret. We compute the normalized view count based
on the age of the question by dividing view count by the year
difference between the posting time and 2020 (our
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Table 2
The average of normalized (i.e., based on the age of the question) and raw view count,
and the median time to receive an accepted answer in each category.

Classification Average of Average of raw Median hours
normalized view count to receive an
view count answer

Spark basics 1361.0 5384.9 1.0
Data processing 1112.9 4213.6 1.0
Input and output 928.3 3710.2 4.2
Configuration 862.4 3560.1 14.4
Performance 698.6 2328.8 8.6
Other 605.4 2048.7 5.2
Streaming 377.7 1291.0 2.6
Spark bug 364.1 1307.0 30
MLlib 361.9 1385.0 4.7
Serialization 271.9 1120.3 3.4

data was collected around the end of 2019). For example, for
the questions that were posted in 2018, we divide the view
count by two. Intuitively, a topic with a larger view count may
be more popular.

• Time to Receive an Accepted Answer. We follow prior
work (Yang et al., 2016; Rosen and Shihab, 2015) and use
the needed time for a question to receive an accepted
answer as a proxy for the difficulty of the questions in each
category. When it takes a longer time for a question to
receive an accepted answer, it may indicate that the question
may be more difficult to answer or less common. We
calculate the median time in hours for the questions that
belong to the same category.

Results. Table 2 shows the average of normalized and raw view
count for the questions that belong to each category. Table 2 also
sorts the categories by the average of normalized view counts.
Note that we exclude one category (i.e., Logging) since this cat-
egory has less than 10 questions and the data is highly skewed.
We find that the ranking based on the normalized view counts is
very similar as the ranking based on the raw view counts. The only
difference is that the rankings of streaming and MLlib have
swapped. The finding shows that the popularity of the question
categories remain stable across the years. We find that questions
related to Spark Basics have much larger normalized view counts
(an average of 1361 views) compared to questions in other
categories. We conjecture that the reason may be related to the
multi-paradigm nature of Spark (i.e., Spark provides APIs in
functional programming paradigm but can also be used in object-
oriented languages such as Java) and its abstraction of complex
distributed data processing. We find that questions related to Data
Processing are the second most-viewed among all categories. The
reason may be that most developers rely on Spark to process
large-scale data, but as we found in our manual study, some
developers may have difficulties knowing how to correctly use
Spark to transform/process the data to the desired format. We also
find that questions in the categories Input and Output and
Configuration have a higher normalized view count (i.e., more than
800), which may indicate that developers encounter such
problems more often. In general, developers not only ask more
questions about Data Processing and Input and Output, but they
also read related questions frequently.

Table 2 shows the median time to receive an accepted answer
for the questions in each category. We find that, even though there
are many questions related to Spark Basics and Data Process-ing,
the median time for these questions to receive an accepted
answer is short (i.e., within one hour). In other words, most of the
issues that developers have in these two categories may be less
difficult to answer, thus leading to a fast accepted answer.
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On the other hand, we find that questions related to Spark Bugs,
Configuration, and Performance require relatively more time to
receive an accepted answer (the medians are 30.0, 14.4, and 8.6
h, respectively). Our findings show that whenever developers
encounter an issue caused by bugs in Spark, they need to wait for
a long time to receive an answer, which may indicate that
developer will have to search other Q&A databases to find what
they need. In addition, due to the complexity of systems based on
Spark, developers may encounter issues on Spark configurations
or configurations related to the integration with other frame-works.
Finally, performance issues also require a longer time to resolve.
For example, a developer used the window function to transform a
dataframe, the developer was looking for a more efficient way to
process his data. It took almost a month to get an accepted
answer.16 As we observed in our manual study, the reason may
be that performance issues are difficult to diagnose in a distributed
computing environment, especially when the computation involves
complex data computation across multiple worker nodes.

In short, our finding highlights the potential bottlenecks and
challenges that developers may encounter when using Spark for
big data applications. Future studies may consider helping de-
velopers with Spark development by providing better diagnostic
support and suggestion for configuration and performance related
issues. Future studies may also help developers identify if the
issue that they encounter is related to bugs in Spark (e.g., by
automatically mining the bug reports), thus reducing the needed
time to fix bugs by requesting help from Stack Overflow.

Questions related to Configuration and Performance re-
ceive a relatively large number of average view counts
and require the most time to answer. On the other hand,
Spark Basics and Data Processing questions have the
most view counts but are faster for developers to solve.
Future studies may consider helping developers with
Configu-ration and Performance related issues due to
their long answering time.

3.4. RQ3: What are the root causes of Spark-related questions?

Motivation. In the previous RQs, we study the types of questions
that developers encounter and how popular/time-consuming they
are. However, questions of the same type can have different root
causes, and different questions can share the same root cause.
Hence, it is important to understand the root causes of Spark
questions and provide insights into the challenges that developers
have. In this RQ, we manually study and identify the root causes
(e.g., incorrect API usage) of the studied Spark questions. Our
findings can help practitioners avoid common issues and inspire
future research directions to better support developers in
improving the quality of Spark applications.
Approach. We manually analyze the same 1000 sampled posts
that we studied in RQ1, with a goal to identify the root causes of
each Spark question. We follow a similar open-coding pro-cess in
RQ1, where two authors first study the questions and identify their
root causes separately based on 300 randomly selected questions.
As it is not possible for us to find and ask the questioner of each
post about why this problem is caused, we speculate about the
cause of their problems based on their questions, the accepted
answers and the code that solves the problem. We generate a list
of root causes after discussions and label the rest of the questions
with our derived list of root

causes. These root causes are related to developers’ usage of the
Spark API/configuration or Spark’s abstraction. After labeling all
the sampled questions, we calculate the distribution of the
questions with different root causes in each question type. We
filter out the question types with fewer than 20 posts, which are
Serialization, Logging, Spark Bug, and the posts that belong to the
Other category. We remove these posts since they are often
unrelated (e.g., the ones that belong to the Other category) or are
very similar (e.g., the ones that are related to Serialization). Thus,
we wish to focus on identifying the root causes of the major
question types.
Results. Table 3 shows our manually identified root causes of the
studied Spark questions together with their corresponding
percentage. In total, we identify 11 root causes about why de-
velopers encounter the question. Below, we discuss the different
root causes in detail.

The root cause of 28% of the studied problems is related to
Spark’s data abstraction since developers are not able to see
the intermediate results in data processing pipelines. Spark
uses various data structures (e.g., RDD and DataFrame) to ab-
stract distributed computation and performance optimization. In a
data processing pipeline (i.e., calling a chained list of meth-ods),
Spark automatically distributes the computation across the worker
nodes and applies lazy evaluation for optimization. In other words,
Spark would not compute the result immediately when a method is
called. Instead, Spark may optimize the perfor-mance of data
processing by combining several method calls into one data
transformation operation. Developers may call several data
transformation methods in a data processing pipeline, but
developers do not know how the data is transformed/processed in
each step. When developers get an unexpected result, they may
not know which step in the data processing pipeline causes the
issue. Debugging such data processing errors can be chal-lenging
since there is no automated way of tracking how the data is
transformed/processed in each step of the data process-ing
pipeline. Moreover, breaking the data processing pipeline to
record intermediate results will result in significant performance
degradation. For example, a developer on Stack Overflow had an
issue with his big data application.17 The application always threw
an exception after running for half an hour, but there was no
information to show which step in the data processing pipeline
caused the issue. Therefore, the developer wished to display step-
by-step execution results to debug the application. Since there
was no readily available solution, the suggested an-swer was to
sample a subset of the data and test the application locally instead
of on the cluster.

Spark’s abstraction for data processing and lazy compu-
tation causes challenges for developers to understand the
intermediate data processing steps during debugging and
monitoring.

The root cause of 22% of the studied problems is related to
insufficient knowledge of API usage. In order for developers to
gain flexibility in working with various data types, Spark provides a
rich set of API functions with various configurations/options to
support development. Developers can choose different API
functions when working with diverse data types. However, due to a
large number of API functions in Spark, it is difficult for developers
to use the proper functions that apply to specific development
scenarios. Developers can encounter problems by using incorrect
API functions or inefficient API functions when a more performant
alternative exists. For example, a developer

7
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Table 3
Root causes of the 1000 manually studied Spark-related questions on Stack Overflow. Percentages in the table are rounded up.
Root cause Definition Number

of questions

Not able to know the
intermediate processed data
due to Spark’s abstraction.

Due to Spark’s lazing evaluation and the nature of its data processing 255 (28%)
pipeline, developers cannot track/view how the data is transformed in the pipeline.
Developers often encounter problems of not knowing how the data is transformed in
each intermediate step, which can make it difficult for users to debug unexpected
results, especially those cause by intermediate data processing functions.

Insufficient knowledge of API Spark provides a wealth of APIs to deal with various development scenarios. 206 (22%)
usage However, with the evolution of Spark, new APIs are constantly introduced and

some of the existing APIs may also have changed significantly over time.
Developers may use an outdated API that is no longer compatible with a
newer version of Spark. We observe that API misuse is the root cause for a
variety of questions, including data processing, performance, streaming,
input/output, and MLlib.

Complex environmental In order for Spark applications to run successfully, developers need to 116 (13%)
configuration configure Spark’s distributed environment and the environment of its

interacting components. The configuration of a distributed environment can
become complex as a Spark application is developed at a large scale. The
complexity of distributed environment configuration is one of the root causes
for the studied questions.

Incorrect or incompatible When using Spark, developers often need to convert different data types 100 (11%)
data format between various formats and representations, e.g., converting RDD to

DataFrame, or converting input data to become compatible with MLlib. When
developers are not familiar with how to convert different data types, they
may encounter unexpected issues.

Lack of basic knowledge of
Spark or programming
language

Spark may have a steep learning curve. Developers need to master some 84 (9%)
programming languages and have certain understanding of distributed
systems. In some questions, the root cause of the issue is that some
developers lack the basic knowledge of Spark or related concepts.

Integration errors with other Spark can read data from other big data frameworks such as HDFS, Flume, 51 (6%)
data sources Kafka, etc. Spark’s input/output and streaming often involve framework

integration. Developers encounter problems related to IO and streaming due
to errors during framework integration.

Incorrect or suboptimal Due to the diverse configuration parameters during Spark development, 45 (5%)
configuration values developers may use suboptimal or even incorrect configuration values in their

Spark applications.

Diverse representation of Parsing and analyzing timestamps in the data due to their diverse 35 (4%)
timestamp data representation (e.g., for a year-month-day timestamp only the year is needed)

analyzing timestamps in the data. Many developers are unclear how to deal
with data containing timestamps, such as changing the time unit.

Data distributed computing In Spark, the data is processed in a distributed manner. Developers may 11 (1%)
encounter performance issues caused by their unfamiliarity with how a
computation task is distributed across worker nodes. Therefore, developers
may not know how to configure the distribution system settings and process
data in a distributed environment. (e.g., data partitions are too small), and
result in poor performance.

Lack of knowledge on Some developers may develop the application without making memory 10 (1%)
memory tuning optimization and caused insufficient memory issues in the application.

Unfamiliar with the working Some developers encounter problems during the MLlib development process 6 (1%)
principle of distributed because they are not clear about how to make the algorithm suitable for
algorithms. parallel computing, which causes them to encounter problems during the

model training process.

(i.e., an asker) on Stack Overflow asked how to determine if a
dataframe contains a specific string and how to extract only the
rows that contain the string. The asker initially attempted to
initialize a user-defined function (UDF) and executed the function
along with Spark’s API. Nevertheless, the final result was differ-ent
from what the asker expected.18 To solve the problem, an
answerer created a user-defined function (x_isin_array), while a
commenter suggested a better solution that reuses a Spark built-in
API function (array_contains) that the answerer was not aware of.

We also find that the names of some Spark functions may be
similar to other popular data processing frameworks, but the
usage can be different. For example, a developer encounters a

problem when he migrated Pandas Dataframe code to Spark

Dataframe.19 While developers know how to use groupby to pro-
cess data in Pandas, they encountered problems using groupby in
Spark due to subtle differences between the two frameworks. In
short, developers may assume that the API in Spark is the same
as the one in Pandas, which results in issues in the application.

Developers may not be familiar with some Spark APIs or
may use them in an incorrect/inefficient way. Further
support is needed to provide better API recommendations
for various data processing tasks.

18 19
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The root cause of 13% of the studied problems is related to
complex environmental and inter-framework configuration.
Since Spark applications are often executed in a distributed envi-
ronment, developers need to properly configure the environment
parameters to ensure the proper operation of the applications.
However, correctly configuring the environment parameters can be
a complex task, especially when developers need to configure
both Spark and other interacting frameworks. This complexity may
lead to configuration-related problems.

We also find that, since the issue may be related to the config-
uration of various frameworks/components in a distributed envi-
ronment, the error message may not be detected in local mode and
propagated back to the main Spark application. Namely, Spark
application developers may be left in the dark when di-agnosing
complex configuration issues in distributed environ-ments. For
example, a developer tried to access a NoSQL database (i.e.,
Cassandra) in a Spark application using Spark’s Cassandra-connector

configured using Maven.20 The connection was estab-lished, but no
result was returned and there was no exception message in the local
mode and driver node . The developer later found out that the issue
was related to file path issues in the con-figuration file. Due to Spark’s
distributed nature, helping develop-ers analyze issues that are
propagated across frameworks/nodes is important for debugging and
ensuring application quality.

Developers often encounter issues caused by config-
urations related to distributed settings or framework
integrations. However, such issues are difficult to debug
because error messages may not be propagated across
frameworks or worker nodes.

11% of the studied problems are related to incorrect or in-
compatible data format. Spark provides different data formats (e.g.,
RDD and DataFrame) to abstract distributed computation for various
data types. Developers may need to convert between data formats
and types to leverage different APIs (e.g., to use APIs in MLlib, the
machine learning library in Spark). However, data format conversions
can be a challenging task for developers, espe-cially if the conversion
involves multiple frameworks. For exam-ple, a developer asked how to
convert a Spark’s DataFrame with an array of doubles to a vector to

pass the vector to a machine learning algorithm.21 The data
conversion process requires con-verting from Double in Scala to
Vectors in Spark MLlib (i.e., across frameworks or libraries), where

there is no standard nor an easy way for such conversation.22 Future
research is needed to assist developers with data format conversation,
especially conversation across frameworks or programming languages.

Developers often need to convert between data formats
when using Spark. However, due to a rich variety of data
formats from different frameworks or programming
languages, developers may encounter challenges when
converting between data formats.

9% of the studied problems are related to a lack of basic
knowledge of Spark or programming language. Developers with
different experience levels may try to use Spark for big data pro-
cessing. Some developers encounter problems because they lack the
basic knowledge of Spark or related programming languages. For
example, a developer was not familiar with the Scala language

20 https://stackoverflow.com/questions/42219747/.
21 https://stackoverflow.com/questions/47543747/.
22 https://stackoverflow.com/questions/42138482/.
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and he did not understand the meaning of rdd.map(_.swap).23 He
mentioned that he studied the Scala/Spark API but still could not
find where .swap is defined, even though .swap is a method
defined in Scala’s Tuples. We found that these types of questions
also have very high view counts on Stack Overflow (e.g., over 7K
views in the above-mentioned example). The Spark community
can improve the documentation to guide developers in under-
standing the basic knowledge of Spark. For example, tools that
help developers extract solutions from the Spark official docu-
mentation would be helpful. A community mentoring program can
also be launched to help developers build high-quality Spark
applications.

Developers may lack basic knowledge of Spark or re-lated
programming languages. Better community sup-port is
needed to guide developers in developing Spark
applications.

Developers may encounter issues related to integrating
Spark applications with other frameworks or data sources
(6%). De-velopers commonly use and integrate a variety of data
man-agement/storage systems, including HDFS, Hive, and Kafka,
with Spark applications. For flexibility and ease of development,
Spark provides a set of APIs that provides an abstraction to the
data management systems. Namely, developers can use the
same set of APIs to access different data storage systems.
However, even though Spark provides an abstraction layer for the
data storage systems, there are still some differences among the
systems that Spark fails to abstract. For instance, a Spark
developer needed to call different APIs when accessing files of
different formats that are stored in HDFS.24 The issue was the
developer was not aware of the Spark API that handles a specific
type of data that is stored in HDFS. The problem can be more
challenging if the data type is not supported by Spark. In such
cases, developers may need to manually handle the integration
with other frameworks, which may be prone to maintenance issues
if the frameworks are updated. Future studies should consider
helping developers with better integration between Spark and
other frameworks by providing support such as automated API
recommendation or better data abstraction.

While developers may know how to interact with some
frameworks and data sources, a certain amount of vari-
ability (e.g., accessing data of different formats stored in
an external framework) can cause problems when
developing Spark applications.

The root cause of 5% of the studied problems is related to
incorrect or suboptimal configuration values. Spark configura-
tion parameters control the application runtime settings, such as
memory limits and network bandwidth. Most of the param-eters
that control internal settings have default values, which can be
changed by developers. However, with hundreds of avail-able
configuration parameters in Spark, it can be challenging for
developers to configure the parameters according to the ap-
plication and its environment setup. For example, a developer
found there was much unused memory in his application and
attempted to leverage the available memory by increasing the
memory limit.25 The developer changed the Spark configura-tion
parameter, spark_worker_memory in the configuration file, but he
found that the used memory limit stays the same. The

23 https://stackoverflow.com/questions/34670957/.
24 https://stackoverflow.com/questions/51994323/.
25 https://stackoverflow.com/questions/24242060/.
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reason is that in order to increase the memory, the developer
should modify the spark.executor.memory parameter rather than
spark_worker_memory parameter. Future research is needed to assist
developers in better managing Spark configurations, espe-cially in a
distributed environment.

Although Spark provides developers with a variety of
configuration options, developers often encounter config-
uration problems due to the inability to find the correct or
optimal configuration parameters.

4% of the studied problems are related to the diversity of
timestamps representations. Timestamps have many different
representations, such as year and month format (yyyy-MM-dd) or
Unix time. Developers often need to do some processing on the
timestamps in the original data based on their needs. Spark
provides some API functions to help developers process times-
tamp data. However, the support from Spark is limited and does
not cover the wide variety of timestamp formats. For example,
Spark provides APIs to calculate timestamp differences in days
but not for other granular levels (e.g., minutes or seconds). A
developer knew that Spark provides the datediff function to get the
number of days between two timestamps but he did not know how
to get the minute difference.26 The accepted answer is to convert
the different times into the long data type and then manually
calculate the difference in minutes. Due to the variety of timestamp
representations, we found that many developers encounter issues
in converting timestamp formats or calculating time differences.
Thus, more support is needed to help developers avoid mistakes
and assist in processing timestamp data.

Due to different representations of timestamps and the
uniqueness of the time difference calculation, developers
can encounter problems when manually processing data
that contains timestamps.

1% of the studied problems are related to the specifics of dis-
tributed data computing. Unlike stand-alone computing, Spark acts
as a distributed data processing engine, allowing developers to
maximize the advantages offered by distributed computing.
Developers should consider how to maximize the use of limited
resources to process data concurrently when running their appli-
cations. Spark automatically sets the number of ‘‘map’’ tasks to run on
each file according to its size (though it can be controlled through
setting optional parameters in SparkContext.textFile). For distributed
‘‘reduce’’ operations, Spark uses the largest specified number of
partitions. Clusters will not be fully utilized unless developers set the
proper level of parallelism for each operation. Some developers
ignored the mechanism of distributed data com-puting and set an
unreasonable partition number. For example, a developer needed to
read all the images into memory as RDD, and the target image was

saved in a directory hosted on HDFS.27 This developer found that the
process is time-consuming and attempted to understand if there was
any better way to load large image data set into Spark. An answerer
suspected that it may because there were a large number of small files
on HDFS that cause the problem. A large number of small files causes
Spark to generate too many tasks and affects performance. This
answerer gave a suggestion which is to set the number of partitions to
a reasonable number: at least 2x the number of cores in the cluster.
This can increase the degree of parallelism and make full use of
cluster resources to process data. Future research is
26 .

needed to provide automated support to help developers utilize
the computing resources in clusters.

Developers may not utilize the resources in a distributed
environment, which can cause performance issues. Fu-
ture research is needed to help developers automatically
configure Spark applications to utilize the cluster settings
and computing resources.

1% of the studied problems are related to a lack of knowl-
edge in Spark’s memory allocation. There are two main types of
memory in Spark: execution and storage. The execution memory
is mainly used to store the temporary data when running a data
processing task. The storage memory is mainly used to store the
cached data and broadcast variable values across nodes in the
cluster. The allocation of the memories has a significant impact on
the performance of Spark programs. However, developers may
lack knowledge in Spark’s memory allocation, which generally
requires a certain level of understanding of the inner workings of
Spark. For example, a developer wished to know why the cached
memory was improved when using order by in a Spark SQL

query.28 An answerer explained that Spark SQL scans the
required columns and automatically optimizes memory usage
through data compression. Therefore, it is important for
developers to know how to choose a proper data structure and
storage strategy to utilize memory usage in Spark applications.

Different data processing tasks may have different mem-
ory allocation and optimization strategies. Therefore,
developers may need to know the inner workings of Spark
to utilize the memory allocation in different data
processing tasks.

The root cause of 1% of the studied problems is related to
being unfamiliar with the working principles of distributed al-
gorithms. We find that in some cases, developers encounter chal-
lenges in the development process because they do not under-
stand the distributed algorithms used in Spark for machine learn-
ing operations. For example, a developer got different results for
multiple runs on the same input matrix when he computed SVD

(Singular Value Decomposition).29 An answer explained that even
though the SVD computation should be deterministic (i.e., does
not rely on random numbers), the final results in Spark are some-
times different. The reason is that every change in Spark may be
regarded as non-deterministic and Spark can merge partial results
of upstream tasks in any order, which can help applications to get
optimal performance in distributed computing. If developers are
not familiar with such optimization and apply the algorithm reg-
ularly, there may be unexpected results. There may be a need to
provide better documentation on helping developers know, from a
high-level perspective, the difference between the distributed and
non-distributed algorithms when applying machine learning
models.

Due to the distributed nature, some machine learn-ing
algorithms may be optimized and have slightly different
behavior. Developers need to be aware of such
differences to avoid issues when developing Spark
applications.

28 .

10



Z The Journal of Systems & Software 194 (2022) 111488

Table 4
The distribution of the root causes of Spark-related questions among the seven uncovered question types. Percentages in the table are rounded up.

Question type Root cause Number of post

Not able to know the intermediate processed data due to Spark’s abstraction. 243 (56%)

Data processing
Insufficient knowledge of API usage 103 (24%)
Incorrect or incompatible data format 51 (12%)
Diversity of the representation of timestamps 35 (8%)

Spark configuration
Complex environmental configuration 106 (70%)
Incorrect or suboptimal configuration values 45 (30%)

Integration errors with other data sources 39 (34%)

Input and Output
Insufficient knowledge of API usage 33 (29%)
Incorrect or incompatible data format 32 (28%)
Complex environmental configuration 10 (9%)

Insufficient knowledge of API usage 24 (51%)
MLlib Incorrect or incompatible data format 17 (36%)

Unfamiliar with the working principle of distributed algorithms 6 (13%)

Insufficient knowledge of API usage 26 (55%)
Spark performance Data distributed computing 11 (23%)

Lack of knowledge about memory tunning 10 (21%)

Insufficient knowledge of API usage 20 (46%)
Streaming Not able to know the intermediate processed data due to Spark’s abstraction. 12 (27%)

Integration errors with other data sources 12 (27%)

Spark basics Lack Basics knowledge of Spark or programming language 84 (100%)

4. Discussion and implications of our findings

In this section, we discuss the implications of our findings. We
discuss actionable implications and future work for two groups of
audiences: researchers and practitioners.

4.1. Discussion and implications for researchers

Developers often encounter issues with using or choosing
the correct API in various tasks when developing Spark
applica-tions. Future studies should provide better API
recommen-dations and usage support. Table 4 shows the root
causes of the different types of problems and their distribution.
Insufficient knowledge of API usage is a common root cause for
questions of various types, including Data Processing, Input and
Output, MLlib, Spark Performance, and Streaming. As we found in
RQ3, choosing the correct API can be a challenging task,
especially given the complex setup of Spark applications (e.g.,
integration with many other frameworks). Therefore, future studies
should consider proposing techniques to help developers identify
the correct APIs to use based on the given data processing tasks,
data types, and the used frameworks. Moreover, once the API is
recommended, it would be important to provide support on
choosing the correct API options/parameters for optimal usage.
Environmental and runtime configuration tuning is essential
in the deployment of Spark applications. Future studies are
needed to automatically help developers detect or debug con-
figuration issues. Configuration problems are prevalent and
difficult to resolve (i.e., require more time to answer, as shown in
RQ2). As discussed in RQ3 and shown in Table 4, configuration
issues are common and may occur when developers need to
leverage other frameworks for data storage. Prior studies (Vitui
and Chen, 2021; Xu et al., 2016; Chen et al., 2016) proposed
approaches to tune configurations or detect configuration errors.
However, prior studies often do not consider the complexity of the
composition of big data applications, where the applications are
integrated with other frameworks in a distributed environ-ment.
Furthermore, applications based on Spark can depend on other
software systems in the big data ecosystem, leading to the
challenge in optimizing the configuration. Hence, an automated
tool that helps developers choose and optimize the configuration
of Spark applications according to the product requirements and
cluster setting can effectively assist developers with application
deployment.

Even though Spark provides APIs for interacting with other
frameworks, developers often encounter issues related to
cross-framework access such as data format conversation.
Automated approaches that help developers better handle
framework integration are needed. When developing Spark
applications, developers often integrate the applications with other
data storage frameworks such as HDFS. Therefore, accessing
data of different types across frameworks is a challenging task. As
shown in Table 4, developers often encounter issues related to
data format conversion when reading/storing data across frame-
works or system components. Although Spark provides a schema
to standardize data reading/writing, developers still encounter data
format-related issues. In many cases, developers need to convert
data format manually, which may be error-prone and increase
maintenance effort. Moreover, some APIs (e.g., MLlib) may even
have specific data format requirements. Hence, ap-proaches that
automatically handle data format conversation and abstraction can
better help developers handle data from various sources.

Developers spend more time solving the performance issues
in Spark. Future research should not only help developers
automatically detect performance problems but also auto-
matically analyze the causes of performance problems for
developers. Although performance issues in Spark development
are not among the major issue types, as shown in RQ2, such
issues require more time to fix. In our manual study, we found that
performance problems are usually solved by tuning parameter
configurations or code optimization. Prior studies (Ren et al., 2018;
Alnafessah and Casale, 2020) often focus on the identifica-tion
and prediction of performance problems. However, once the issue
is found, it may take a long time for developers to resolve
performance issues. Future research is needed to help developers
diagnose the root causes of performance problems in production
environments and provide automated optimization suggestions
based on factors such as deployment settings.
Developers often encounter issues when pre-processing data
or running machine learning models in distributed settings.
Future research should help developers better migrate ma-
chine learning tasks to distributed environments. The machine
learning library (i.e., MLlib) is an important part of Spark. Al-though
Spark aims to abstract the distributed computing de-tails,
developers still encounter various issues. The model train-
ing/inference process in MLlib may be different from other tradi-
tional machine learning libraries (e.g., scikit-learn) due to Spark’s
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distributed nature and integration with other data storage frame-
works. As we found in RQ3, developers may not be aware that



some algorithms may become non-deterministic when running on
Spark, which may affect the model output. Also, some APIs in
MLlib may have specific data format requirement that is not
needed if developers want to train the model in other frame-works.
Future studies are needed to provide developers with additional
information (e.g., API hints Wang et al., 2021) to high-light the
data requirement and behavior of certain algorithms in distributed
settings.

4.2. Implication for Spark application developers

Developers should be aware of the potential risks in using
long method chains and develop good unit testing habits. We
observe that developers commonly make mistakes during data
transformation since the data processing is abstracted away from
developers. It can be difficult for developers to visualize how a set
of data is processed in each step of the data processing pipeline.
Wang et al. (2021) propose an approach to log samples of the
intermediate data processing results. However, developers should
still avoid using long method chaining in a data process-ing
pipeline (e.g., dataframe.filter().groupby().join().distinct()) for better
debugging and maintenance.
Developers should carefully study the official Spark program-
ming and API documentation before developing Spark appli-
cations. Although Spark aims to abstract the distributed data
computation from developers, such abstraction is not always
perfect. Some errors may occur if developers use some Spark
APIs without knowing the underlying details. As we found in RQ1
and RQ3, developers often use Spark APIs incorrectly or
inefficiently, assuming the API usages may be the same as their
single-node counterpart (e.g., Python’s Pandas library). Although
the official Spark programming and API documentation already
highlighted the correct usage, developers may not be aware of
them. Therefore, before using a Spark API, developers should
check the usage examples in the official documentation to avoid
misuse and be aware of the differences with other single-node
data processing frameworks such as Pandas. To support devel-
opers in developing Spark applications, in RQ3 we analyze the
root causes of Spark-related questions and provide guidelines for
developers to mitigate potential issues.

4.3. Implication for Spark framework developers

Spark framework developers can improve the Spark official
documentation and provide more targeted tutorials based on
developers’ needs. During our manual study, we found that the
answers for many problems on Stack Overflow can be found in the
Spark official documentation. The official Spark documenta-tion is
a comprehensive document with detailed explanations and
descriptions of each part of Spark development. However, some
Spark components may require more experience and technical
skills. In our paper, we uncover the most difficult (in terms of time
to receive an answer) and common issues for developers. Spark
framework developers may leverage the findings and doc-ument
explicitly the common issues that we find as common pitfalls to
avoid. Our findings also highlight the challenges that developers
have, and Spark framework developers may consider creating
more targeted tutorials to help developers avoid such issues. For
example, developers spend the most time on solving configuration
issues. Although Spark introduces almost all con-figuration
parameters in the official documentation, the Spark community
can provide more explanations and descriptions of the commonly
used configurations commonly and how to resolve common
configuration issues.

5. Threats to validity

Internal Validity. Threats to internal validity are related to ex-periment
errors or biases. In our study, we rely on studying the Stack Overflow
posts to understand the problems that developers have when
developing Spark applications. To ensure that the questions are
representative, we chose to study the questions with a score higher
than zero by following prior studies (Wang et al., 2018; Ponzanelli et
al., 2014), which indicates that other de-velopers also upvoted the
questions. We study the questions with accepted answers, which may
inadvertently exclude a certain types questions, e.g., questions
specific to the asker’s environ-ment. However, without an accepted
answer, we cannot know the real cause and solution to the problem.
We also exclude the questions without code snippets, since we want
to study the code snippets to better understand the root causes and
fixes. We manually studied 1000 Spark-related posts. To reduce
biases in our manual study process, two authors independently
categorize the posts. Any difference is discussed until a consensus is
reached. We computed the Cohen’s Kappa and found the agreement
value is high (0.825). To measure the popularity and difficulty of the
studied Spark questions, we need to extract some representative
metrics. To minimize the threat that the metrics may not be
representative, we follow previous studies (Yang et al., 2016; Rosen
and Shihab, 2015; Bajaj et al., 2014; Nadi et al., 2016) and use the
same metrics to measure popularity and difficulty. We also normalize
the metrics based on the year that a question was first posted, since
elder questions may receive more votes or view counts by nature. We
find that, the ranking of the categories of the questions remain stable
before and after the normalization.

External Validity. Threats to external validity are related to the
generalization of our results. Since there are over 12,000 Spark-
related posts after the filtering process, it is manually infeasible to
study all of them. Therefore, we chose to study a statistically
significant sample. To increase the generalization of our sampled
data, we conduct the study on 1000 randomly selected posts, re-
sulting in a statistically significant sample using a 95% confidence
level and 3% confidence interval. Although we have a relatively
large sample, it is difficult to guarantee that our samples cover all
types of problems. Some problems with very small percentage in
our sample data are also hard to guarantee that there is the same
percentage on the entire dataset. There may also exist a certain
degree of subjectiveness and ambiguities during the manual study
process. To reduce this threat, the two authors independently
studied the posts and discuss the categorization result.

6. Conclusion

Due to the increased data size, developers start to leverage big
data frameworks such as Apache Spark for data processing and
analysis. Although Spark abstracts the underlying distributed data
computation details, there may still be issues caused by the
abstraction and other challenges associated with big data
development. To understand the challenges that developers en-
counter and help inspire future research direction, in this paper,
we conduct an in-depth study on the issues that developers
encounter when developing Spark applications. We sample 1000
Q&A posts from Stack Overflow and conduct a detailed man-ual
analysis on each post. We classified the problems into 11
categories and found that data processing is the most common
problem that developers. We also found that developers often
encounter issues related to framework integration (e.g., integrate
Spark applications with HDFS) and configuration. Then, we com-
puted the view counts and the time it takes to receive the first
accepted answer to study the popularity and difficulty of the
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questions in different categories. We found while data process-ing and basic Spark questions receive more view counts, they tend to be
solved within an hour. On the other hand, questions related to configuration and performance require more time to answer. Finally, we
manually derived 11 root causes based on the sampled posts. We found that incorrect/inefficient API usage is a common challenge
across various types of questions, including framework integration, data processing, configuration, etc. Our findings summarize the
challenges that developers encounter and we discussed the implication of our findings and future research direction in assisting
developers with big data development.
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