
Apache Spark

https://www.researchgate.net/publication/323447097_Apache_Spark?enrichId=rgreq-f6d9cbba0146012d47a071981482bfed-XXX&enrichSource=Y292ZXJQYWdlOzMyMzQ0NzA5NztBUzo2NjcwMzQyNjYzOTg3MzBAMTUzNjA0NDc3MDU4MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf

Apache Spark

1 Definition
Apache Spark is a cluster computing solution and in-memory processing
framework that extends the MapReduce model to support other types of
computations such as interactive queries and stream processing [1]. De-
signed to cover a variety of workloads, Spark introduces an abstraction
called Resilient Distributed Datasets (RDDs) that enables running
computations in memory in a fault-tolerant manner. RDDs, which are
immutable and partitioned collections of records, provide a programming
interface for per-forming operations, such as map, filter and join, over
multiple data items. For fault-tolerance purposes, Spark records all
transformations carried out to build a dataset, thus forming a lineage graph.

2 Overview
Spark [2] is an open-source big data framework originally developed at
the University of California at Berkeley and later adopted by the Apache
Foun-dation, which has maintained it ever since. Spark was designed to
address some of the limitations of the MapReduce model, especially the
need for speed processing of large datasets. By using RDDs, purposely
designed to store restricted amounts of data in memory, Spark enables
performing com-putations more efficiently than MapReduce, which runs
computations on the disk.

Although the project contains multiple components, at its core (Fig-ure 1)
Spark is a computing engine that schedules, distributes, and mon-itors
applications comprising multiple tasks across nodes of a computing cluster
[3]. For cluster management, Spark supports its native Spark cluster
(standalone), Apache YARN [4], or Apache Mesos [5]. At the core also lies
the RDD abstraction. RDDs are sets of data items distributed across the
cluster nodes and that can be manipulated in parallel. At a higher level,

1

Spark SQL
(structured data)

Spark Streaming
(real-time)

MLib
(machine
learning)

GraphX
(graph

processing)

Spark Core

Standalone Scheduler YARN Mesos

Figure 1: The Apache Spark stack [3].

// Create a Scala Spark configuration context
val config = new SparkConf().settAppName("WordCount")
val sc = new SparkContext(config)

// Load the input data
val input = sc.textFile(theInputFile)

// Split it into words
val words = input.flatMap(line => line.split(" "))

// Transform into pairs and count val
counts = words.map(word =>

(word, 1)).reduceByKey{case (x, y) => x + y}

// Save the word count to a text file
counts.saveAsTextFile(theOutputFile)

Figure 2: Word count example using Spark’s Scala API [3].

it provides support for multiple tightly integrated components for handling
various types of workloads such as SQL, streaming and machine learning.

Figure 2 depicts an example of a word count application using Spark’s
Scala API for manipulating datasets. Spark computes RDDs in a lazy fash-
ion, the first time they are used. Hence, the code in the example is evaluated
when the counts are saved to disk, in which moment the results of the com-
putation are required. Spark can also read data from various sources, such
as Hadoop Distributed File System (HDFS), Cassandra, OpenStack Swift1,

and Amazon Simple Storage Service (S3)2.
1 https://wiki.openstack.org/wiki/Swift
2 https://aws.amazon.com/s3/

2

https://wiki.openstack.org/wiki/Swift
https://aws.amazon.com/s3/

2.1 Spark SQL

Spark SQL [6] is a module for processing structured data3. It builds on
the RDD abstraction by providing Spark core engine with more
information about the structure of the data and the computation being
performed. In addition to enabling users to perform SQL queries, Spark
SQL provides the Dataset API, which offers Datasets and DataFrames. A
Dataset can be built using JVM objects that can then be manipulated
using functional transformations. A DataFrame can be built from a large
number of sources and is analogous to a table in a relational database; it
is a Dataset organised into named columns.

2.2 Spark Streaming
Spark Streaming provides a micro-batch based framework for processing
data streams. Data can be ingested from systems such as Apache Kafka4,

Flume or Amazon Kinesis5. Under the traditional stream processing ap-
proach based on a graph of continuous operators that process tuples as they
arrive (i.e. the dataflow model), it is arguably difficult to achieve fault tol-
erance and handle stragglers. As application state is often kept by multiple
operators, fault tolerance is achieved either by replicating sections of the
processing graph or via upstream backup. The former demands synchro-
nisation of operators via a protocol such as Flux [7] or other transactional
protocols [8], whereas the latter, when a node fails, requires parents to
replay previously sent messages to rebuild the state.

Input data
stream Spark

Streaming

Batches of
input data Spark

Engine

Batches of
processed data

Figure 3: High-level view of discretised streams.

Spark Streaming uses a high-level abstraction called discretised stream
or DStream [9]. As depicted in Figure 3, DStreams follows a micro-batch
approach that organises stream processing as batch computations carried
out periodically over small time windows. During a short time interval, D-
Streams stores the received data, which the cluster resources then use as
input dataset for performing parallel computations once the interval elapses.
These computations produce new datasets that represent an intermediate
state or computation outputs. The intermediate state consists of RDDs that
DStreams processes along with the datasets stored during the next interval.

3 https://spark.apache.org/docs/latest/sql-programming-guide.html
4 https://kafka.apache.org/
5 https://aws.amazon.com/kinesis/

3

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://kafka.apache.org/
https://aws.amazon.com/kinesis/

In addition to providing a strong unification with batch processing, this
model stores the state in memory as RDDs that DStreams can
determinis-tically recompute. This micro-batch approach, however,
sacrifices response time as the delay for processing events is dependent
on the length of the micro batches.

2.3 MLlib
Spark contains a library with common Machine Learning (ML) function-
ality such as learning algorithms for classification, regression, clustering,
and collaborative filtering; and featurisation including feature extraction,
transformation, dimensionality reduction, and selection [10]. MLlib also
en-ables the creation of ML pipelines and persistence of algorithms,
models and pipelines. These features are designed to scale out across
large computing clusters using Spark’s core engine.

2.4 GraphX
GraphX [11] extends the RDD API by enabling the creation of a multigraph

(i.e., the property graph) with arbitrary properties attached to vertices and
edges. The library is designed for manipulating graphs, exposing a set of
operators (e.g., subgraph, joinVertices), and for carrying out parallel
computations. It contains a library of common graph algorithms, such as
PageRank and triangle counting.

3 Examples of Applications
Spark has been used for several data processing and data science tasks, but
the range of applications that it enables is endless. Freeman et al. [12], for
instance, designed a library called Thunder on top of Spark for large-scale
analysis of neural data. Many machine learning and statistical algorithms
have been implemented for MLlib, which simplifies the construction of ma-
chine learning pipelines. The source code of Spark has also grown substan-
tially since it became an Apache project. Numerous third party libraries and
packages have been included for performing tasks in certain domains or for
simplifying the use of existing APIs.

Spark provides the functionalities that data scientists need to perform
data transformation, processing, and analysis. Data scientists often need to
perform ad hoc exploration during which they have to test new algorithms or
verify the results in the least amount of time. Spark provides APIs, libraries
and shells that allow scientists to perform such tasks while enabling them to
test their algorithms on large problem sizes. Once the exploration phase is
performed, the solution is productised by engineers who integrate the data
analysis tasks into an often more complex business application.

4

Examples of applications built using Apache Spark include analysis of
data from mobile devices [13] and Internet of Things (IoT), web-scale
graph analytics, anomaly detection of user behaviour and network traffic
for in-formation security [14], real-time machine learning, data stream
processing pipelines, engineering workloads, geospatial data processing,
to cite just a few. New application scenarios are presented each year
during Spark’s Summit6, an event that has become a showcase of next-
generation big data applications.

4 Future Directions of Research
Spark APIs shine both during exploratory work and when engineering a so-lution
deployed in production. Over the years, much effort has been paid towards
making APIs easier to use and to optimise; for instance, the intro-duction of the
Dataset API to avoid certain perform degradations that could occur if a user did
not properly design the chain of operations executed by the Spark engine. As
mentioned earlier, considerable work has also focused on creating new libraries
and packages, including for processing live streams. The discretised model
employed by Spark’s stream processing API, however, introduces some delays
depending on the time length of micro batches.

More recent and emerging application scenarios, such as analysis of
ve-hicular traffic and networks, monitoring of operational infrastructure,
wear-able assistance [15], and 5G services, require data processing and
service response under very short delays. Spark can be used as part of a
larger ser-vice workflow, but alone it does not provide means to address
some of the challenging scenarios that require very short response times.
This requires the use of other frameworks such as Apache Storm.

To reduce the latency of applications delivered to users, many service
components are also increasingly being deployed at the edges of the In-
ternet [16] under a model commonly called edge computing. Some
frame-works are available for processing streams of data using resources
at the edge (e.g. Apache Edgent7), whereas others are emerging. There
are also frameworks that aim to provide high-level programming
abstractions for cre-ating dataflows (e.g. Apache Beam8) with underlying
execution engines for several processing solutions. There is, however, a
lack of unifying solutions on programming models and abstractions for
exploring resources from both cloud and edge computing deployments,
as well as scheduling and resource management tools for deciding what
processing tasks need to be offloaded to the edge.

5

5 Cross References
• Cloud computing for big data analysis.

• Streaming microservices.

• Hadoop.

• In-Memory Processing.

• Advances in MapReduce frameworks.

• Large-scale graph processing.

• Definition of Data Streams.

• Micro-batching vs true streaming.

• Graph processing frameworks.

8

View publication stats

https://www.researchgate.net/publication/323447097

