' Smart

Scanning and enumeration

INFORMATION IN THIS CHAPTER:
Objectives

Scanning

Enumeration

Case Studies: The Tools in Action
Hands-On Challenge

In this chapter, we will lead you through the initial objectives and requirements for
performing scanning and enumeration in support of a penetration test or vulnera-
bility assessment. This includes discussing the final phase of reconnaissance, vitality.
After that, we will dig into some scenarios in which you will see how you can use
these different tools and techniques to their full advantage. Last, we’ll do a hands-on
challenge so you can test your new (or refined) skills in a real-world scena rio.

3.1 OBJECTIVES

In a penetration test, there are implied boundaries. Depending on the breadth and
scope of your testing, you may be limited to testing a certain number or specific type
of host, or you may be free to test anything your client owns or operates.

To properly scan and identify systems, you need to know what the end state is for
your assessment. Once the scanning and enumeration are complete, you s ho ul d:

Confirm that IP addresses found in the reconnaissance phase are reachable. This
is the “vitality” phase of reconnaissance.

Be able to identify the purpose and type of the target systems, that is, what they
are and what they do.

Have specific information about the versions of the services that are running on
the systems.

Have a concise list of targets and services which will directly feed into further
penetration test activities.

|
96

CHAPTER 3 Scanning and enumeration

3.1.1 Before you start
Now that we’re moving into some penetration testing which will actually “touch” the
remote systems, we need to be concerned about the rules around our testing. With
any kind of functional security testing, before any packets are sent or any
configurations are reviewed, make sure the client has approved all of the tasks in If
- systems become unresponsive, you may need to show that management
approved the tests you were conducting. It is not uncommon for system owners to be
unaware when a test is scheduled for a system.

A common document to use for such approval is a “Rules of Engagement”
document. This document should contain at a minimum:

A detailed list of all parties involved, including testers and responsible system

representatives, with full contact information including off-hours contact infor-
mation if needed. At least one party on each side should be designated as the
primary contact for any critical findings or communications.
AcompletelistofallequipmentandInternetProtocol(IP)addressesfortesting,
including any excluded systems.
Rulesaroundcompromisingsystemsfordeeperpenetration.
Acceptable and unacceptable practices such as compromising physical site
security, social-engineering employees, etc.
Agreementofuseofdatafromcompromisedsystemsaswellashowthis(often
confidential) data is stored.
Thetimeframefortesting:

Thedurationofthetests
Acceptabletimesduringthedayornight
Anytimesthatareprohibitedfromtesting
Anyspecificdocumentationordeliverablesthatareexpectedincluding:
Documentationarounddiscoveriesandmethodologies(includingtools)used
Proofofsuccessfulpenetration/systemcompromise
Debriefingschedule
Limitations of liability for any damage caused by the testing.

Having this type of document agreed to and in place prior to your penetration

testing will help ensure that both you and your client are clear on the level and type
of testing that will be performed. The more precise and extensive this document is,
the less room there is for misunderstandings. One of the worst situations a pene-
tration tester can be in is one where the client is furious because the tester brought
down a production system without authorization. Agreeing on the rules and the
scope of the testing up front can help prevent that type of issue.

3.1.2 Why do scanning and enumeration?

If you are given a list of targets, or subnets, some of your work has been done for you;
however, you still may want to see whether other targets exist within trusted

3.2 Scanning 97

subnets that your client does not know about. Regardless of this, you need to follow
a process to ensure the following:

Youaretestingonlytheapprovedtargets.
You are getting as much information as possible before increasing the depth of
your attack.

Youcanidentifythepurposesandtypesofyourtargets,thatis,whatservices
they provide your client.

Youhavespecificinformationabouttheversionsandtypesofservicesthatare
running on your client’s systems.

Youcancategorizeyourtargetsystemsbypurposeandresourceoffering.
Once you figure out what your targets are and how many of them may or may not

be vulnerable, you will then be able to select your tools and exploitation methods.

Not only do poor system scanning and enumeration decrease the efficiency of your

testing, but also the extra, unnecessary traffic increases your chances of being

detected. In addition, attacking one service with a method designed for another is
inefficient and may create an unwanted denial of service (DoS). In general, do not

test vulnerabilities unless you have been specifically tasked with that job.

The purpose of this chapter is to help you understand the need for scanning and
enumeration activities after your reconnaissance is complete, and help you learn how to
best perform these activities with available open source tools. We will discuss the

specific tools that help reveal the characteristics of your targets, including what services
they offer, and the versions and types of resources they offer. Without this foundation,

your testing will lack focus, and may not give you the depth in access that you (or your
customers) are seeking. Not all tools are created equal, and that is one of the things this
chapter will illustrate. Performing a penetration test within tight time constraints can be
difficult enough; let the right tools for the job do some of the heavy lifting.

3.2 SCANNING

No matter what kind of system you are testing, you will need to perform scanning and
enumeration before you start the exploitation and increase the depth of your
penetration testing. With that being said, what do scanning and enumeration activities
give you? What do these terms actually mean? When do you need to vary how you
perform these activities? Is there a specific way you should handle scanning or
enumeration through access control devices such as routers or firewalls? In this
section, we will answer these questions, and lay the foundation for understanding
how to use scanning and enumeration to prepare for deeper penetration testing.

3.2.1 Approach

During the scanning phase, you will begin to gather information about the target’s
purposedspecifically, what ports (and possibly what services) it offers. Information

98

CHAPTER 3 Scanning and enumeration

gathered during this phase is also traditionally used to determine the operating
system (or firmware version) of the target devices. The list of active targets gathered
from the reconnaissance phase is used as the target list for this phase. This is not to
say that you cannot specifically target any host within your approved ranges, but
understand that you may lose time trying to scan a system that perhaps does not
exist, or may not be reachable from your network location. Often your penetration
tests are limited in time frame, so your steps should be as streamlined as possible to
keep your time productive. Put another way: Scan only those hosts that appear to be
alive, unless you literally have “time to kill.”

TIP

Although more businesses and organizations are becoming aware of the value of penetration
testing, they still want to see the time/value trade-off. As a result, penetration testing often
becomes less an “attacker-proof” test and more a test of the client’s existing security controls
and configurations. If you have spent any time researching network attacks, you probably
know that most decent attackers will spend as much time as they can spare gathering
information on their target before they attack. However, as a penetration tester, your time will
likely be billed on an hourly basis, so you need to be able to effectively use the time you have.
Make sure your time counts toward providing the best service you can for your client.

3.2.2 Core technology

Scanning uses some basic techniques and protocols for determining the accessibility
of a system and gathering some basic information on what the system is and which
ports are open on it. The core technologies that we will be focusing on include
Internet Control Message Protocol (ICMP) and some elements of how Transmission
Control Protocol (TCP) functions and the available TCP flags.

3.2.2.1 How scanning works

The list of potential targets acquired from the reconnaissance phase can be rather
expansive. To streamline the scanning process, it makes sense to first determine
whether the systems are still up and responsive. Although the nonresponsive systems
should not be in the list, it is possible that a system was downed after that phase and
may not be answering requests when your scanning starts. You can use several
methods to test a connected system’s availability, but the most common technique
uses ICMP packets.

Chances are that if you have done any type of network troubleshooting, you will
recognize this as the protocol that ping uses. The ICMP echo request packet is a basic
one which Request for Comments (RFC) 1122 (www.ietf.org/rfc/rfc1122.txt) says
every Internet host should implement and respond to. In reality, however, many
networks, internally and externally, block ICMP echo requests to defend against one
of the earliest DoS attacks, the ping flood. They may also block it to prevent scanning
from the outside, adding an element of stealth.

http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc1122.txt

3.2 Scanning 99

If ICMP packets are blocked, you can also use TCP ACK packets. This is often referred
to as a “TCP Ping.” The RFC states that unsolicited ACK packets should return a TCP
RST. So, if you send this type of packet to a port that is allowed through a firewall,
such as port 80, the target should respond with an RST indicating that the target is
active.

When you combine either ICMP or TCP ping methods to check for active targets in a
range, you perform a ping sweep. Such a sweep should be done and captured to a log
file that specifies active machines which you can later input into a scanner. Most
scanner tools will accept a carriage-return-delimited file of IP addresses.

3.2.2.2 Port scanning
Although there are many different port scanners, they all operate in much the same
way. There are a few basic types of TCP port scans. The most common type of scan
is a SYN scan (or SYN stealth scan), named for the TCP SYN flag, which appears in
the TCP connection sequence or handshake. This type of scan begins by sending
a SYN packet to a destination port. The target receives the SYN packet, responding
with a SYN/ACK response if the port is open or an RST if the port is closed. This is
: : . ; the return is analyzed, and
typICaaégt%nar%lr?gt?gmgsr%g%?angbgﬁat%%eétate of lt%ges%tem or port. SYN scans are rela-
tively fast and relatively stealthy, because a full handshake is not made. Because the
TCP handshake did not complete, the service on the target does not see a full
connection and will usually not log the transaction.

Other types of port scans that may be used for specific situations, which we will
discuss later in the chapter, are port scans with various TCP flags set, such as FIN,
PUSH, and URG. Different systems respond differently to these packets, so there is an
element of operating system detection when using these flags, but the primary
purpose is to bypass access controls that specifically key on connections initiated
with specific TCP flags set. Later in the chapter, we will be discussing open source
tools including Nmap, a scanning and enumeration tool. In Table 3.1, you can see a
summary of common Nmap options along with the scan types initiated and expected
response. This will help illustrate some of the TCP flags that can be set and what the
expected response is.

3.2.2.3 TCP versus UDP scanning

A TCP connection involves the use of all of the steps involved in the standard TCP
three-way handshake. In a standard three-way handshake, that is the following
sequence:

SourcesendsSYNtotarget

TargetrespondswithSYN-ACK
SourcerespondswithACK

After that sequence, a connection is considered established. As we’ve discussed
already, stealth TCP scanning makes use of part of the handshake, but never

100

CHAPTER 3 Scanning and enumeration

Nmap
Switch
-sT

-sU

Type of
Packet Sent
0S-based
connect()

TCP SYN

packet

Bare TCP
packet with no
flags (NULL)
TCP packet
with FIN flag
TCP packet
with FIN, PSH,
and URG flags
(Xmas Tree)
TCP packet
with ACK flag

TCP packet
with ACK flag

TCP FIN/ACK
packet

TCP SYN
packet

IP packet
headers

0S-based
connect()

Blank User
Datagram
Protocol (UDP)
header

Table 3.1 Nmap Options and Scan Types

Response
if Open
Connection
made

SYN/ACK

Connection
timeout

Connection
timeout
Connection
timeout

RST

RST

Connection
timeout

SYN/ACK

Response in
any protocol

Connection
made

ICMP
unreachable
(Type 3,
Code1,2,9,
10, 0r13)

Response
if Closed
Connection
refused or
timeout

RST

RST

RST

RST

RST

RST

RST

RST

ICMP
unreachabl
e (Type 3,
Code 2)
Connection
refused or
timeout

ICMP port
unreachable
(Type 3,
Code 3)

Notes
Basic nonprivileged
scan type

Default scan type
with root privileges
Designed to bypass
nonstateful firewalls

Designed to bypass
nonstateful firewalls
Designed to bypass
nonstateful firewalls

Used for mapping
firewall rulesets, not
necessarily open
system ports

Uses value of TCP
window (positive or
zero) in header to
determine whether
filtered port is open
or closed

Works for some
BSD systems

Uses a “zombie”
host that will show
up as the scan
originator

Used to map out
which IPs are used
by the host

FTP bounce scan

used to hide
originating scan
source

Used for UDP
scanning; can be
slow due to
timeouts from open
and filtered ports

3.2 Scanning 101

Nmap
Switch
-sV

Type of
Packet Sent
Subprotocol-
specific probe
(SMTP, FTP,
HTTP, etc.)

Both TCP and
UDP packet
probes

N/A

Response
if Open
N/A

N/A

N/A

Table 3.1 Nmap Options and Scan Types (Continued)

Response
if Closed
N/A

N/A

N/A

Notes

Used to determine
service running on
open port; uses
service database;
can also use
banner grab
information

Uses multiple
methods to
determine target
OS/firmware
version

Skips port scan
after host
discovery.

completes the connection. In a stealth scan, the final ACK is never sent back to the

target thus the connection is not established.
Scanning UDP is more difficult as it is a connectionless protocol and does not use
a handshake like TCP. With UDP, the following sequence is used:

SourcesendsUDPpackettotarget
Targetcheckstoseeiftheport/protocolisactivethentakesactionaccordingly

This makes scanning UDP ports especially challenging. If you receive a response,
it will be one of three types: an ICMP type 3 message if the port is closed and the

firewall allows the traffic, a disallowed message from the firewall, or a response from

the service itself. Otherwise, no response could mean that the port is open, but it could
also mean that the traffic was blocked or simply didn’t make it to the target.

While it’s typically faster and more productive to perform TCP scans, it can
sometimes be worth the time and effort to perform a UDP scan as well. Many
administrators tend to focus more on securing TCP-based services and often don’t
consider UDP-based services when determining their security policies. With this in
mind, you can sometimes find (and exploit) vulnerabilities in UDP-based services,

giving you another potential entry point to your target system.

3.2.3 Open source tools

To start our discussion on open source tools in this chapter, we’ll begin by discussing
tools that aid in the scanning phase of an assessment. Remember, these tools will

scan a list of targets in an effort to determine which hosts are up and which ports are

open.

102

CHAPTER 3 Scanning and enumeration

3.2.3.1 Nmap

Port scanners accept a target or a range as input, send a query to specified ports, and
then create a list of the responses for each port. The most popular scanner is Nmap,
written by Fyodor and available from www.insecure.org. Fyodor’s multipurpose tool
has become a standard item among pen testers and network auditors. The intent of
this book is not to teach you all of the different ways to use Nmap; however, we will
focus on a few different scan types and options, to make the best use of your
scanning time and to return the best information to increase your attack depth.

Nmap USAGE

How to use:

nmap [Scan Type(s)] [Options] Target(s)
Input fields:

[Scan Type] is the type of scan to perform. Different scan options are available and are
discussed throughout this chapter.

[Options] include a wide variety of configuration options including DNS resolution, use of
traceroutes, and more.

Target is the target specification which can be a single host, a list of host names or IPs,
or a full network.

Output:

Displays host information to the screen depending on scan type and options selected
including accessibility of the host, active ports, and fingerprint data. There are also options
available to output this data to a file.

Typical output: (extract)

root@bt:~/nmap_scans# nmap -sn --send-ip 192.168.1.0/24 -oA
nmap-sweep

Starting Nmap 5.30BETAT (http://nmap.org) at 2010-08-01 10:17 CDT
Nmap scan report for 192.168.1.1

Host is up.

Nmap scan report for 192.168.1.100

Host is up (0.061s latency).

MAC Address: 00:0C:29:67:63:F5 (VMware)

Nmap scan report for 192.168.1.110

Host is up (0.0047s latency).

MAC Address: 00:0C:29:A2:C6:E6 (VMware)

Nman daone- 2056 |P addroeggoeg (3 hogtg 1un) scanned in 89 70
seconds

3.2.3.1.1 Nmap: ping sweep

Before scanning active targets, consider using Nmap’s ping sweep functionality with
the -sn option. This option will not port-scan a target, but it will report which targets
are up. When invoked as root with nmap -sn ip_address, Nmap will send ICMP echo
and timestamp packets as well as TCP SYN and ACK packets to determine whether a
host is up. If the target addresses are on a local Ethernet network, Nmap will
automatically perform an ARP scan versus sending out the packets and waiting for a
reply. If the ARP request is successful for a target, it will be displayed. To override this
behavior and force Nmap to send IP packets use the -send-ip option. If the sweep
needs to pass a firewall, it may also be useful to use

http://www.insecure.org/
http://www.insecure.org/

3.2 Scanning 103

a TCP ACK scan in conjunction with the TCP SYN scan. Specifying -PA will send a
single TCP ACK packet which may pass certain stateful firewall configurations that
would block a bare SYN packet to a closed port. In previous Nmap releases, this type
of scan was invoked using the -sP option.

By understanding which techniques are useful for which environments, you increase
the speed of your sweeps. This may not be a big issue when scanning a handful of
systems, but when scanning multiple /24 networks, or even a /16, you may need this
extra time for other testing. In the example illustrated in Fig. 3.1, the standard ping
sweep was the fastest for this particular environment, but that may not always be the
case.

3.2.3.1.2 Nmap: ICMP options

If Nmap can’t see the target, it won’t scan the target unless the -Pn (do not ping)
option is used. This option was invoked using the -PO and -PN option in previous
Nmap releases. Using the -Pn option can create problems because Nmap will try to
scan each of the target’s ports, even if the target isn’t up, which can waste time. To
strike a good balance, consider using the -P option to select another type of ping
behavior. For example, the -PP option will use ICMP timestamp requests and the -PM
option will use ICMP netmask requests. Before you perform a full sweep of a network
range, it might be useful to do a few limited tests on known IP addresses, such as
Web servers, DNS, and so on, so that you can streamline your ping sweeps and cut
down on the number of total packets sent, as well as the time taken for the scans.

FIGURE 3.1
Nmap TCP Ping Sweep.

|
104

CHAPTER 3 Scanning and enumeration

3.2.3.1.3 Nmap: output options

Capturing the results of the scan is extremely important, as you will be referring to
this information later in the testing process, and depending on your client’s
requirements, you may be submitting the results as evidence of vulnerability. The
easiest way to capture all the needed information is to use the -0A flag, which outputs
scan results in three different formats simultaneously: plaintext (.nmap), greppable
text (.gnmap), and XML (.xml). The .gnmap format is especially important to note,
because if you need to stop a scan and resume it at a later date, Nmap will require
this file to resume, by using the -resume switch. Note the use of the -o0A flag in Fig.
3.1

TIP

Penetration testing can take some heavy computing resources when you are scanning and
querying multiple targets with multiple threads. Running all of your tools from a LiveCD directly
may not be the most efficient use of your resources on an extended pen test. Consider
performing a hard-drive installation of your toolset so that you can expand and fully utilize the
tools. Utilizing a virtual machine is another option to help better utilize machine resources
while eliminating the need to install all of your tools individually. Basically, keep your pene-
tration test scope in mind when you are designating your resources so that you do not get
caught on the job without enough resources.

3.2.3.1.4 Nmap: basic scripting

When you specify your targets for scanning, Nmap will accept specific IP addresses,
address ranges in both CIDR format such as /8, /16, and /24, as well as ranges using
192.168.1.100e200-style notation. If you have a hosts file, which may have been
generated from your ping sweep earlier (hint, hint), you can specify it as well, using
the -iL flag. There are other, more detailed Nmap parsing programs out there such as
the Nmap::Parser module for Perl (http://code.google.com/p/nmap-parser/), but Fig.
3.2 shows how you can use the awk command to create a quick and dirty hosts file
from an Nmap ping sweep. Scripting can be a very powerful addition to any tool, but
remember to check all the available output options before doing too much work, as
some of the heavy lifting may have been done for you.

3.2.3.1.5 Nmap: speed options
Nmap allows the user to specify the “speed” of the scan, or the amount of time from
probe sent to reply received, and therefore, how fast packets are sent. On a fast local

Session Edit View Bookmarks 5

FIGURE 3.2
Using awk to Parse Nmap Results.

http://code.google.com/p/nmap-parser/
http://code.google.com/p/nmap-parser/
http://code.google.com/p/nmap-parser/

3.2 Scanning 105

area network (LAN), you can optimize your scanning by setting the -T option to 4, or
Aggressive, usually without dropping any packets during the send. If you find that
anormal scan is taking a very long time due to ingress filtering, or a firewall device,
you may want to enable Aggressive scanning. If you know that an IDS sits between
you and the target, and you want to be as stealthy as possible, using -TO or Paranoid
should do what you want; however, it will take a long time to finish a scan, perhaps
several hours, depending on your scan parameters. Table 3.2 shows the timing
template options for Nmap.

3.2.3.1.6 Nmap: port-scanning options

Besides ping sweeps, Nmap also does port scanning to identify which ports are open
on a given target system. As part of our scan, we should find out which ports are open
and then later determine which services (and versions) are using those ports as part
of the enumeration phase. There are many options for performing this type of scan
(as listed in Table 3.1), but we're going to focus on SYN scanning for this example.
By using the -sS option with Nmap, you are able to do a port scan on a target or
group of targets using a SYN scan. This is the default scan mechanism used by
Nmap and is one of the most commonly performed scans due to its speed, stealth,
and compatibility with most target operating systems. With this type of scan, no full
TCP connection is made and it is therefore considered a “half-open” scan. Fig. 3.3
shows the results of a SYN scan against some sample hosts.

This produces a listing of the open ports on the target, and possibly open/filtered
ports, if the target is behind a firewall. The ports returned as open are listed with
what service the ports correspond to, based on port registrations from the Internet

Table 3.2 Nmap Timing Templates

Template Number Template Name Description
Used for IDS evasion. One port scanned at

0 Paranoid a time with five minutes between probes.
Used for IDS evasion. One port scanned at
1 Sneaky atime with 15 s between probes.
Uses less bandwidth and machine
2 Polite resources than normal. One port scanned at

atime with 0.4 s between probes.

A standard scan (default if no options
3 Normal specified) using parallel processing. Works
both locally and over the Internet.
A fast scan used with fast, stable
4 Aggressive connections. Has a 10 ms delay between
probes and uses parallel processing.
A very fast scan used typically for very fast
5 Insane networks or if you’re willing to sacrifice
accuracy for speed. Reduces delay
between probes to 5 ms and uses parallel
processing.

106 CHAPTER 3 Scanning and enumeration

FIGURE 3.3
Nmap TCP SYN Scan.

Assigned Numbers Authority (IANA), as well as any commonly used ports, such as
31337 for Back Orifice.

By default, Nmap 5.30 scans over 1000 ports for common services. This will

catch most open TCP ports that are out there. However, sneaky system adminis-
trators may run services on uncommon ports, practicing security through obscurity.
Without scanning those uncommon ports, you may be missing these services. If you
have time, or you suspect that a system may be running other services, run Nmap
with the -p0-65535 parameter, which will scan all 65,536 TCP ports. Note that this
may take a long time, even on a LAN with responsive systems and no firewalls,
possibly up to a few hours. Performing a test such as this over the Internet may take
even longer, which will also allow more time for the system owners, or watchers, to
note the excessive traffic and shut you down.

3.2.3.1.7 Nmap: stealth scanning

For any scanning that you perform, it is not a good idea to use a connect scan (-sT),
which fully establishes a connection to a port. Excessive port connections can create
a DoS condition with older machines, and will definitely raise alarms on any IDS.

For that reason, you should usually use a stealthy port-testing method with Nmap,
such as a SYN scan. Even if you are not trying to be particularly stealthy, this is

much easier on both the testing system and the target.

In addition to lowering your profile with half-open scans, you may also consider
the ftp or “bounce” scan and idle scan options which can mask your IP from the

3.2 Scanning 107

target. The ftp scan takes advantage of a feature of some FTP servers, which allow
anonymous users to proxy connections to other systems. If you find during your
enumeration that an anonymous FTP server exists, or one to which you have login
credentials, try using the -b option with user:pass@server:ftpport. If the server does
not require authentication, you can skip the user:pass, and unless FTP is running on a
nonstandard port, you can leave out the ftpport option as well. This type of scan
works only on FTP servers, allowing you to “proxy” an FTP connection, and many
servers today disable this option by default.

The idle scan, using -sI zombiehost:port, has a similar result but a different method of
scanning. This is detailed further —at Fyodors web page,
http://nmap.org/book/idlescan.html, but the short version is that if you can identify a
intermediate target (zombie) with low traffic and predictable fragment identifi- cation
(IP ID) values, you can send spoofed packets to your real target, with the source set
to the zombie or idle target. The result is that an IDS sees the idle scan target as the
system performing the scanning, keeping your system hidden. If the idle target is a
trusted IP address and can bypass host-based access control lists, even better! Do
not expect to be able to use a bounce or idle scan on every penetration test
engagement, but keep looking around for potential targets. Older systems, which do
not offer useful services, may be the best targets for some of these scan options.

NOTE

So far, we have focused on TCP-based services because most interactive services that may be
vulnerable run over TCP. This is not to say that UDP-based services, such as rpcbind, tftp,
snmp, nfs, and so on, are not vulnerable to attack. UDP scanning is another activity which
could take a very long time, on both LANs and wide area networks (WANSs). Depending on the
length of time and the types of targets you are attacking, you may not need to perform a UDP
scan. However, if you are attacking targets that may use UDP services, such as infrastructure
devices and SunOS/Solaris machines, taking the time for a UDP scan may be worth the effort.
Nmap uses the flag -sU to specify a UDP scan.

3.2.3.2 Netenum: ping sweep

If you need a very simple ICMP ping sweep program that you can use for scriptable
applications, netenum might be useful. It performs a basic ICMP ping and then replies
with only the reachable targets. One quirk about netenum is that it requires a timeout
to be specified for the test. If no timeout is specified, it outputs a CR- delimited dump
of the input addresses. If you have tools that will not accept a CIDR-formatted range
of addresses, you might use netenum to simply expand that into a listing of individual
IP addresses. Fig. 3.4 shows the basic usage of netenum in ping sweep mode with a
timeout value of 5, as well as network address expansion mode showing the valid
addresses for a CIDR of 192.168.1.0/24, including the network and broadcast
addresses.

http://nmap.org/book/idlescan.html

108 CHAPTER 3 Scanning and enumeration

Netenum USAGE

How to use:

netenum destination [Timeout] [Verbosity]

Input fields:

Destination is the target specification which can be a single host or a full network/
subnet.

[Timeout] is a value to use for the scan. Any value greater than 0O will use pings to scan.
[Verbosity] is a value 0—3 that determines how verbose the output is.

Output:

Displays active hosts to the screen. Can be redirected to a file or to another command for
scripted scans.
Typical output:

FIGURE 3.4
Netenum Output.

3.2.3.3 Unicornscan: port scan and fuzzing

Unicornscan is different from a standard port-scanning program; it also allows you to
specify more information, such as source port, packets per second sent, and
randomization of source IP information, if needed. For this reason, it may not be the
best choice for initial port scans; rather, it is more suited for later “fuzzing” or
experimental packet generation and detection. However, just as Nmap has capa-
bilities which far exceed that of a ping sweep, Unicornscan can be used for basic port
scans in addition to its more complex features.

Unicornscan USAGE

How to use:
unicornscan [Options] Target(s):Port(s)
Input fields:

[Options] are very wide ranging and control the type of scan performed as well as very
granular control over the packets sent. A list of all options can be seen by using the -h option.
Target(s) is the target specification which can be a single host or a range using a CIDR

mask.

Port(s) are the ports to scan.

Output:

Displays identified ports and their status to the screen.

3.2 Scanning

Typical output:

FIGURE 3.5
Unicornscan Port-scan Output.

Figure 3.5 shows Unicornscan in action, performing a basic SYN port scan with broken
CRC values for the sent packets. This type of port scan can provide data on open ports
and shows which IPs have those ports open. Due to its rich feature set, Unicornscan
might be better suited for scanning during an IDS test, where the packet-forging
capabilities could be put to more use.

WARNING

Tools are also available which do scanning/enumeration/vulnerability scans at the same time
such as OpenVAS (www.openvas.org). Why don’t we use those for the scanning phase of our
penetration tests? Sure, it would be a lot easier if instead of running these granular tools, we
could just fire up the big bad vulnerability scanner and have it do all the work for us. In some
situations, this is perfectly acceptable; however, it always pays to know what’s going on
behind the scenes on those scanners. Because much of their operation is abstracted from the
user (you), sometimes it can be hard to tell what is actually tested when the scanning and
enumeration portion is performed. In some cases, those vulnerability scanners simply wrap a
user interface around the same tool you would normally use for scanning and enumeration
directly.

When you run the specific and targeted tools yourself to build up a list of valid hosts
and services, you know exactly what is open at the time of scanning and what is not. If
there was a bug or misconfiguration in the specification of your target addresses, you
would know pretty quickly, and sometimes that is not the case with the integrated
vulnerability scanners.

Vulnerability scanners serve a very important purpose in penetration testing, risk
management, and functional security overall. However, during initial information gath-
ering, as we are describing in this chapter, it is usually better to take a bit more time and
run the basic tools yourself so that you have a firm understanding of what is really out
there.

109

http://www.openvas.org/

|
110

CHAPTER 3 Scanning and enumeration

3.3 ENUMERATION

So, what is enumeration? Enumeration involves listing and identifying the specific
services and resources that a target offers. You perform enumeration by starting with
a set of parameters, such as an IP address range, or a specific domain name system
(DNS) entry, and the open ports on the system. Your goal for enumeration is a list of
services which are known and reachable from your source. From those services, you
move further into the scanning process, including security scanning and testing, the
core of penetration testing. Terms such as banner grabbing and fingerprinting fall
under the category of enumeration.

3.3.1 Approach

With that goal in mind, let’s talk about our approach to enumeration. An example of
successful enumeration is to start with a host such as 192.168.1.100 which has
Transmission Control Protocol (TCP) port 22 open. After performing enumeration on
the target, you should be able to state with a reasonable level of confidence that
OpenSSH v4.3 is running with protocol version 1. Moving into operating system
fingerprinting, an ideal result would be determining that the host is running Linux
kernel 2.6.x. Granted, sometimes your enumeration will not get to this level of detail,
but you should still set that for your goal. The more information you have, the better.
Remember that all the information gathered in this phase is used to deepen the
penetration in later phases.

As we've already discovered, keeping good notes is very important during a
penetration test, and it is especially important during enumeration. Sometimes your
client may want to know the exact flags or switches you used when you ran a tool, or
what the verbose output was. If you cannot provide this information upon request, at
best you may lose respect in the eyes of your client. Some clients and contracts
require full keylogging and output logging, so again make sure you understand the
require- ments upon you as the tester for all responsibilities, including
documentation. This should be spelled out very clearly in your Rules of Engagement
document.

TIP

If the tool you are using cannot output a log file, make sure you use tools such as tee, which will
allow you to direct the output of a command not only to your terminal, but also to a log file.

One quick note about the tee command: If you need to keep detailed records about the
tools and testing, you can use date to make a timestamp for any output files you create. In Fig.
3.6, the date command is used to stamp with day-month-year and then hour:minute. You can
use lots of other options with date, so if you need that level of detail, try date -help to get a full
list of parameters.

So our approach based on this example is to take the information that we have
already gathered such as the IP address (from reconnaissance) and the open ports
(from scanning) and gather as much extended data about the target and the services

3.3 Enumeration 111

FIGURE 3.6
Using Date with the tee Command.

running on it as possible using a variety of techniques and tools. To do this, we will be
using some basic core technologies similar to but more extensive than those used in
the scanning phase.

3.3.2 Core technology

Enumeration is based on the ability to gather information from an open port. This is
performed by either straightforward banner grabbing when connecting to an open
port, or by inference from the construction of a returned packet. There is not much
true magic here, as services are supposed to respond in a predictable manner;
otherwise, they would not have much use as a service!

3.3.2.1 Active versus passive

You can perform enumeration using either active or passive methods. Proxy methods
may also be considered passive, as the information you gather will be from a third
source, rather than intercepted from the target itself. However, a truly passive scan
should not involve any data being sent from the host system. Passive data is data that
is returned from the target, without any data being sent from the testing system. A
good example of a truly passive enumeration tool is pOf, which is detailed later in the
chapter. Active methods are the more familiar ones, in which you send certain types
of packets and then receive packets in return. Most scanning and enumeration tools
are active.

3.3.2.2 Service identification

Now that the open ports are captured through your scanning efforts, you need to be
able to verify what is running on them. You would normally think that the Simple Mail
Transport Protocol (SMTP) is running on TCP 25, but what if the system administrator
is trying to obfuscate the service and it is running Telnet instead? The easiest way to
check the status of a port is a banner grab, which involves capturing the target’s
response after connecting to a service, and then comparing it to a list of known
services, such as the response when connecting to an OpenSSH server as shown in
Fig. 3.7. The banner in this case is pretty evident, as is the version of the service,
OpenSSH version 4.3 listening for SSH version 1.99 connections. Please

112

CHAPTER 3 Scanning and enumeration

FIGURE 3.7

Basic Telnet Banner Grab.

note that just because the banner says it is one thing does not necessarily mean that
it is true. System administrators and security people have been changing banners and
other response data for a long time in order to fool attackers.

3.3.2.2.1 RPC enumeration

Some services are wrapped in other frameworks, such as Remote Procedure Call
(RPC). On UNIX-like systems, an open TCP port 111 indicates this. UNIX-style RPC
(used extensively by systems such as Solaris) can be queried with the rpcinfo
command, or a scanner can send NULL commands on the various RPC-bound ports to
enumerate what function that particular RPC service performs. Fig. 3.8 shows the
output of the rpcinfo command used to query the portmapper on the Solaris system
and return a list of RPC services available.

3.3.2.3 Fingerprinting

The goal of system fingerprinting is to determine the operating system version and
type. There are two common methods of performing system fingerprinting: active and
passive scanning. The more common active methods use responses sent to TCP or
ICMP packets. The TCP fingerprinting process involves setting flags in the header that
different operating systems and versions respond to differently. Usually several
different TCP packets are sent and the responses are compared to known baselines
(or fingerprints) to determine the remote OS. Typically, ICMP-based methods use
fewer packets than TCP-based methods, so in an environment where you need to be
stealthier and can afford a less specific fingerprint, ICMP may be the way to go. You
can achieve higher degrees of accuracy by combining TCP/UDP and ICMP methads,
assuming that no device in between you and the target is reshaping packets and
mismatching the signatures.

For the ultimate in stealthy detection, you can use passive fingerprinting. Unlike

the active method, this style of fingerprinting does not send any packets, but relies on
sniffing techniques to analyze the information sent in normal network traffic. If your
target is running publicly available services, passive fingerprinting may be a good

way to start off your fingerprinting. Drawbacks of passive fingerprinting are that it is
usually less accurate than a targeted active fingerprinting session and it relies on an

3.3 Enumeration 113

root@bt: ~ - Shall - Konsole
p 144.15.17. 186
port
111
111

laaaay
100007
1

logoez
18806032

FIGURE 3.8
Rpcinfo Output.

existing traffic stream to which you have access. It can also take much longer
depending on how high the activity level of the target system is.

3.3.2.4 Being loud, quiet, and all that lies between

There are always considerations to make when you are choosing what types of
enumerations and scans to perform. When performing an engagement in which your
client’s administrators do not know that you are testing, your element of stealth is
crucial. Once you begin passing too much traffic that goes outside their baseline, you
may find yourself shut down at their perimeter and your testing cannot continue.
Conversely, your penetration test may also serve to test the administrator’s response,
or the performance of an intrusion detection system (IDS) or intrusion prevention
system (IPS). When that is your goal, being noisydthat is, not trying to hide your

114

CHAPTER 3 Scanning and enumeration

scans and attacksdmay be just what you need to do. Here are some things to keep in
mind when opting to use stealth.

3.3.2.4.1 Timing

Correlation is a key point when you are using any type of IDS. An IDS relies on timing
when correlating candidate events. Running a port scan of 1500 ports in 30 seconds
will definitely be more suspicious than one in which you take six hours to scan those
same 1500 ports. Sure, the IDS might detect your slower scan by other means, but if
you are trying to raise as little attention as possible, throttle your connection timing
back. Also, remember that most ports lie in the “undefined” category. You can also
reduce the number of ports you decide to scan if you're interested in stealth.

Use data collected from the reconnaissance phase to supplement the scanning
phase. If you found a host through a search engine such as Google, you already know
that port 80 (or 443) is open. There’s no need to include that port in a scan if you're
trying to be stealthy. We discussed using Google for reconnaissance activities in

W%Fo%eed to create connections at a high rate, take some of the recon-

naissance data and figure out when the target passes the most traffic. For example, on
paydays or on the first of the month a bank should have higher traffic than on other
days in the month due to the higher number of visitors performing transactions. You
may even be able to find pages on the bank’s site that show trends regarding traffic.
Perform your scans during those peak times and you are less likely to stand out
against that background noise.

3.3.2.4.2 Bandwidth issues

When you are scanning a single target over a business broadband connection, you
likely will not be affecting the destination network even if you thread up a few scans

Eléqw eﬁ“@ﬁﬁ‘fv\%h BB IR thi

own. Unless’you are per ormlngrjalgliggrsztgst, this is a bad idea because you may
be causing negative conditions for your target and excessive bandwidth usage is one
of the first things a competent system administrator will notice. Even a nonsecurity-
conscious system administrator will notice when the helpdesk phone board is lit up
with “I can’t reach my email!” messages. Also, sometimes you will need to scan
targets that are located over connections such as satellite or microwave. In those
situations, you definitely need to be aware of bandwidth issues with every action you
take. Nothing is worse than shutting down the sole communications link for a remote
facility due to a missed flag or option.

3.3.2.4.3 Unusual packet formation

A common source for unusual packets is active system fingerprinting programs. When
the program sets uncommon flags and sends them along to a target system, although
the response serves a purpose for determining the operating system, the flags may
also be picked up by an IDS and firewall logs as rejections. Packets such as ICMP
Source Quench coming from sources that are not in the internal network of target,
especially when no communication with those sources has been

your

3.3 Enumeration 115

established, are also a warning flag. Keep in mind that whatever you send to your
target can give away your intent and maybe even your testing plan.
3.3.2.5 SNMP enumeration

One of the less talked about technologies which can be used for enumeration is the
Simple Network Management Protocol (SNMP). SNMP is used for monitoring and
managing many systems which could exist on a network including network devices
and servers. It is based on UDP and is therefore a stateless protocol.

SNMP should be included in any discussion about enumeration for three reasons.
First, it is widely deployed, but often forgotten, leading to a lack of security around
the community strings used for SNMP authentication. Secondly, it is typically used
to monitor or control some of the most important devices or systems on any given
network. Lastly, a vast amount of information about a device or system can be very
rapidly gathered using some very simple SNMP queries making it a very rapid
method of enumerating a host and its services.

3.3.3 Open source tools

Now, let’s talk about tools that aid in the enumeration phase of an assessment. Based
on the data that we gathered during our scanning, we now take our penetration
testing to the next level and start gathering some in-depth information about our
targets. The information we gather in this phase should include:

Operating system

Operating system version
Services (ftp, http, pop3, etc.)
Software providing those services
Software versions

3.3.3.1 Nmap: OS fingerprinting

Let’s go back to our old friend Nmap. You should be able to create a general idea of
the remote target’s operating system from the services running and the ports open.
For example, port 135, 137, 139, or 445 often indicates a Windows-based target.
However, if you want to get more specific, you can use Nmap’s -0 flag, which invokes
Nmap’s fingerprinting mode. You need to be careful here as well, as some older
operating systems, such as AIX prior to 4.1, and older SunOS versions, have been
known to die when presented with a malformed packet. Keep this in mind before
blindly using -0 across a full subnet. In Figs 3.9 and 3.10, you can see the output from
two fingerprint scans using nmap -0O. Note that the fingerprint option without any
scan types will invoke a SYN scan, the equivalent of -sS, so that ports can be found for
the fingerprinting process to occur.

3.3.3.2 Nmap: banner grabbing

You invoke Nmap’s version scanning feature with the -sV flag. Based on a returned
banner, or on a specific response to an Nmap-provided probe, a match is made
between the service response and the Nmap service fingerprints. This type of
enumeration can be

116 CHAPTER 3 Scanning and enumeration

FIGURE 3.9
Nmap OS Fingerprint of Windows XP System.

FIGURE 3.10
Nmap OS Fingerprint of Linux System.

very noisy as unusual packets are sent to guess the service version. As such, IDS alerts
will likely be generated unless some other type of mechanism can be used to mask it.
Figure 3.11 shows a successful scan using nmap -sS -sV -0 against a Linux

server. This performs a SYN-based port scan with a version scan and uses the OS
fingerprinting function. The version scanner picked up the version (4.3) and protocol
(1.99) of OpenSSH in use, along with the Linux kernel level range (2.6.x), the web
server type and version (Apache 2.0.55) and a mod (PHP 5.1.2), the pop3 server
(Openwall), and a variety of other service and version information. Overall, we

3.3 Enumeration 117

FIGURE 3.11
Nmap Banner Grab.

ended up with a great deal of information about this target! Information such as this
would help you to classify the system as a general infrastructure server with lots of
possible targets and entry points.

With Nmap, you can still gather a little more information about your target by using
the -A option. This option enables OS and version detection, script scanning, and a
traceroute thus supplying you with extended enumeration on the target. You can see
an example of the results gathered from the same target using this option in Fig. 3.12.

As you can see from the results, we now have information on which SMTP
commands the target accepts as well as SSH host keys, POP3 and IMAP capabilities,
and traceroute information. This additional level of detail can save some time later
by helping us quickly identify whether a service is vulnerable to a specific attack
which requires certain commands to be available.

3.3.3.3 Netcat

We used telnet for an initial example of doing a banner grab, but a more versatile tool
is, quite simply,

tedvaied i frrelapesksiteleh ReRhewe 0BlkdNeCRtidNeoateem rather vague, but
that ambiguity is its greatest feature, giving it a range of flexibility beyond that

which most tools offer. Netcat can run as either a client or a server using either TCP
or UDP for its data transfer and allows you to perform some pretty cool tricks.

We’ll examine some of Netcat’s more advanced features as we dig deeper into
penetration testing, but for now, we’ll use its ability to connect to a TCP port and
allow us to grab the banner. For this example, we’ll use Netcat to connect to port 21
on our target. We received this message using Nmap:

21/tcp open ftp vsftpd (broken: could not bind listening
IPv4 socket)

118

CHAPTER 3 Scanning and enumeration

FIGURE 3.12
Nmap -A Output.

Let’s see what response we get with Netcat. You can see these results in Fig. 3.13. It
looks like we ended up with an identical result which validates our Nmap scan results
and indicates that there is an issue with connecting to the FTP server on that host.
However, the additional results shown in Fig. 3.13 for a connection to port 22 give us
the banner for SSH on the host. This also matches the Nmap results but shows
another way to gather that type of data.

3.3.3.4 POf: passive OS fingerprinting

POf is one of the few open source passive fingerprinting tools. If you want to be
extremely stealthy in your initial scan and enumeration processes, and you don’t
mind getting high-level results for OS fingerprinting, pOf is the tool for you. It works by
analyzing the responses from your target on innocuous queries, such as web traffic,
ping replies, or normal operations. POf gives the best estimation on operating system
based on those replies, so it may not be as precise as other active tools, but it can still
give a good starting point.

While the accuracy may not be as high as with an active tool, the benefit of using pOf
is in its stealth and its ability to fingerprint systems based on packet captures. If you
happen to have a sniffer capture of a target environment, pOf can analyze that data
and attempt to fingerprint the hosts.

3.3 Enumeration 119

wWn server error

.168.1.100
uld not bind listening

wn server error : Con

FIGURE 3.13
Netcat Connection Results.

Figure 3.14 shows the results of using pOf to monitor network traffic on ethO and
attempt to fingerprint hosts based on the traffic that it sees. Fig. 3.15 shows the traffic
that pOf was monitoring at the time it fingerprinted the host. As you can see, if you were

monitoring a live network the chances that this type of connection would be made at
some point is very high and thus you’d have fingerprint data on your target in short order.

pOf USAGE
How to use:
pOf [Options]
Input fields:

[Options] are very wide ranging and include the following:

A list of all options can be seen by using the -h option.
Output:

Displays packets matching the scan criteria and any identified OS versions.

FIGURE 3.14
pOf Fingerprinting Results.

120 CHAPTER 3 Scanning and enumeration

ing 192.168.1.
Con d to
Escape character 1s

FIGURE 3.15
Sample Data for pOf Fingerprinting.

It should be noted, however, that while this tool is very useful, it has been a long time
(2006) since an update has been published and signature files are becoming more
and more out of date. Fortunately, you can add signatures to a custom file and have
pOf read from that file to update its fingerprinting capabilities.

3.3.3.5 Xprobe2: OS fingerprinting

Xprobe2 is primarily an OS fingerprinter, but it also has some basic port-scanning
functionality built in to identify open or closed ports. You can also specify known open
or closed ports, to which Xprobe2 performs several different TCP, UDP, and ICMP-
based tests to determine the remote OS. Although you can provide Xprobe2 with a
known open or closed port for it to determine the remote OS, you can also tell it to
“blindly” find an open port for fingerprinting using the -B option, as shown in Fig.
3.16.

Xprobe2 USAGE

How to use:

xprobe2 [Options] target
Input fields:

[Options] are very wide ranging and include the following:

A list of all options can be seen by using the -h option.

Output:
Displays packets matching the scan criteria and any identified OS versions.

3.3 Enumeration 121

Typical output:

FIGURE 3.16
Xprobe2 Fingerprinting Results.

3.3.3.6 Httprint

Suppose you run across a Web server and you want to know the HTTP daemon
running, without loading a big fingerprinting tool that might trip IDS sensors. Httprint
is designed for just such a purpose. It only fingerprints HTTP servers, and it does both
banner grabbing as well as signature matching against a signature file. In Fig. 3.17,
you can see where httprint is run against the Web server for a test system, using -h for
the host and -PO for no ICMP ping, and where it designates the signatures with -s
signatures.txt.

Httprint is not in the standard path for the root user if you're using the BackTrack
toolset, so you must run it via the program list or CD into the directory /pentest/
enumeration/www;/httprint_301/linux. The resulting banner specifies Apache 2.0.55
and the nearest signature match is Apache 2.0.x, which matches up. Listed beneath
that output are all signatures that were included, and then a score and confidence
rating for that particular match.

122 CHAPTER 3 Scanning and enumeration

Httprint USAGE

How to use:

httprint {-h <host> i-i

<sighatures [Options]

Input fields:

Target Specification:
-hcanbeusedwhere<host>isaDNShostnameorIPaddress

-icanbeusedtoreadindatafromaspecific<inputfile>
-xwilluseanNmap-generatedXMLfileforinputasspecifiedby<nmapxmilfile>

<input file> ; -x <nmap xmifiile>} -s

-s specifies the file where the signatures are stored using the identifier <signatures>
[Options] are very wide ranging and include the following:

-o<outputfile>-OutputfileforHTMLresults
-t<timeout>—Connection/readtimeout
-PO-TurnoffICMPping
-th<threads>—Numberofthreads
-B-BlindlyguessopenTCPports

Alist of all options can be seen by using the -? option.

Output:
Displays web host signature and banner information as well as other potential matches and

confidence levels.
Typical output:

FIGURE 3.17

Httprint Fingerprinting Results.

3.3 Enumeration 123

3.3.3.7 Ike-scan: VPN assessment

One of the more common virtual private network (VPN) implementations involves the
use of IPsec tunnels. Different manufacturers have slightly different usages of IPsec,
which can be discovered and fingerprinted using ike-scan. IKE stands for Internet Key
Exchange, and you use it to provide a secure basis for establishing an IPsec-secured
tunnel. You can run ike-scan in two different modes, Main and Aggressive (-A), each
which can identify different VPN implementations. Both operate under the principle
that VPN servers will attempt to establish communi- cations to a client that sends
only the initial portion of an IPsec handshake. An initial IKE packet is sent (with
Aggressive mode, a User ID can also be specified), and based on the time elapsed
and types of responses sent, the VPN server can be identified based on service
fingerprints.

In addition to the VPN fingerprinting functionality, ike-scan also includes psk- crack,
which is a program that is used to dictionary-crack Pre-Shared Keys (psk) used for
VPN logins. Ike-scan does not have fingerprints for all VPN vendors, and because the
fingerprints change based on version increases as well, you may not find a fingerprint
for your specific VPN. However, you can still gain useful information, such as the
authentication type and encryption algorithm used. Fig. 3.18 shows ike- scan running
against a Cisco VPN server. The default type of scan, Main, shows that an IKE-enabled
VPN server is running on the host. When using the Aggressive mode (-A), the scan
returns much more information, including the detected VPN based on the fingerprint.
The -M flag is used to split the output into multiple lines for easier readability.

Tke-scan USAGE

How to use:
ike-scan [Options] [Hosts]

Input fields:

[Options] are very extensive and a list of all options can be seen by using the -h option.

FIGURE 3.18

lke-scan Results.

|
124

CHAPTER 3 Scanning and enumeration

3.3.3.8 SNMP

SNMP is one of the protocols which can be used for enumeration but is often
forgotten by penetration testers and system administrators alike. That generally
theamsstaat opportunity there to gather a great deal of system information from a
source that may not be secured very well. For example, the SNMP community string
“public” is frequently used to monitor network devices and servers. Using a few
simple tools, we can view extensive and useful information on many systems. More
frightening than that is that the community string “private” is often the default for
allowing modification of system con- figurations!

3.3.3.8.1 Snmpwalk

Snmpwalk is a tool which allows you to pull detailed information using SNMP from a
supporting device or system. Many different options are available for snmpwalk, but
to start, let’s take a look at some basic commands. First, let’s see what happens if we
scan a Windows system using the default community string:

snmpwalk -c public -v1 192.168.1.120 1

Figure 3.19 shows the result of this scan. As you can see, there is a huge amount of
data presented. By using some of the options available with snmpwalk, you can prune
down the amount of data to some of the more useful nuggets. For example, consider
the following syntax instead:

snmpwalk -c public -v1 192.168.1.120 SNMPv2-
MIB:: sysDescr .0

The results of this are shown in Fig. 3.20 and are much more useful to us for
a quick look at the host.

Snmpwalk USAGE
How to use: <agent>
snmpwalk [Options]

Input fields:
-v<version>-SNMPversiondesignator
[OptigastHgyery miansiaafkinclude:

-t<value>-Timeout

A list of all options can be seen by using the -h option.
Agent is the host and MIB to use.

Output:

Displays all data gathered from the SNMP MIB.

3.3 Enumeration 125

Typical output:

FIGURE 3.19
Snmpwalk Full Results.

What else can we do with this? There are many options. Take a look at the
Management Information Base (MIB) support options from Microsoft at http://support
.microsoft.com/kh/237295. This details out the MIBs supported by each OS which can
help you see what options are available to you. For another example, try this command:

snmpwalk -c public -v1192.168.1.120 1 j grep
hrSWI nstal ledName

FIGURE 3.20
Snmpwalk System Description.

3.3.3.8.2 snmpenum.pl

The snmpenum.pl tool can be used to quickly enumerate most of the useful infor-
mation available through the MIBs available on a variety of systems. By executing

http://support.microsoft.com/kb/237295
http://support.microsoft.com/kb/237295
http://support.microsoft.com/kb/237295

126 CHAPTER 3 Scanning and enumeration

this tool against a host, it will send the appropriate SNMP packets, gather the
resulting data, and format it in a nicely readable form for you to make use of. An
example of the use of snmpenum.pl is shown in Fig. 3.21.

snmpenum.pl USAGE

How to use: <hosts <community string<configfile>

snmpenum.pl

knpostieligsthe IP address to scan.

< community string> is the community string to use for authentication.

< config file> specifies the config file to use for the scan which differs based on the type of
system being scanned.

Output:
Displays all data gathered from the SNMP MIB in an easy to read format.
Typical output:

s.txt

main Mames Mit

FIGURE 3.21
snmpenum.pl Output.

3.3 Enumeration 127

As you can see from the results shown in Fig. 3.21, snmpenum.pl can save a lot of
time spent analyzing the SNMP results and allows you to quickly get some great
information about your target system. It is very valuable to use this often forgotten
service to enumerate massive amounts of usable data.

TIP

What about SMB? Since the MS Blaster, Nimda, Code-Red, and numerous LSASS.EXE worms
spread with lots of media attention, it seems that users and system administrators alike are
getting the word that running NetBIOS, SMB, and Microsoft-ds ports open to the Internet is
a Bad Thing. Because of that, you will not see many external penetration tests where lots of
time is spent enumerating for NetBIOS and SMB unless open ports are detected. Keep this in
mind when you are scanning. Although the security implications are huge for finding those
open ports, do not spend too much time looking for obvious holes that most administrators
already know about.

3.3.3.9 Nbtscan

When you encounter Windows systems (remember, TCP ports such as 135, 137, 139,
and 445) on the target network, you may be able to use a NetBIOS broadcast to
query target machines for information. Nbtscan acts as a Windows system by
querying local systems for NetBIOS resources. Usage is rather simple; you can launch
nbtscan at either a single IP address or an entire range. Scanning for resources is a
fairly quick affair, as it has to broadcast only one query and then wait for the
responses. Fig. 3.22 shows nbtscan’s output from a class C network scan.

Nbtscan USAGE

How to use: <scan range>
nbtscan [Options]

&(r?é)utit%réﬂjg:re extensive and include:

-v—Outputverbosity
-s<separator>—Outputinscript-friendlyformatusingdesignatedseparator
-h—-Usehuman-readableformatforservices

-t<value>-Timeout

A list of all options can be seen by running nbtscan with no options.

Output:

Displays all data systems which respond to the scan including their IP address, name,
services, user, and MAC address.

128

CHAPTER 3 Scanning and enumeration

Typical output:

FIGURE 3.22
Nbtscan Output.

3.3.3.10 Nmap scripting

One of the more advanced features recently added to Nmap is the ability to create
scripts enabling automation. These scripts can be used to automate a wide variety of
functions including enumeration, vulnerability scans, and even exploitation. For
example, the Nsploit tool (http://trac.happypacket.net/) has the ability to use Nmap
to scan a target, and then automatically call Metasploit to attempt to exploit any
identified vulnerabilities.

For the purposes of enumeration, these Nmap scripts can help automate some of
your work and speed up your penetration testing process. More scripts are being
developed constantly, but most security toolsets such as BackTrack include
a number of basic scripts. In most cases, these scripts will be stored in the /usr/share/
nmap/scripts or /usr/local/share/nmap/scripts directory.

To call one of the scripts, we will use the --script option for Nmap. Fig. 3.23 shows an
example using the script “http-enum.nse” to enumerate some additional http
information on a remote web server. In this example, the script was able to expand
on the basic port and fingerprint data and provide us some details on directories
which exist within the web server.

As you can see, the scripting capability of Nmap can be very useful. By looking at the
source code for existing scripts, you can see how the scripts work as well as modify
them for your own needs.

3.4 CASE STUDIES: THE TOOLS IN ACTION

Okay, here is where it all comes together, the intersection of the tools and the
methodology. We will run through a series of scenarios based on external and internal
penetration tests, including a very stealthy approach and a noisy IDS test. We will
treat these scenarios as the initial rounds in a penetration test and will give a scope
for each engagement. The goal for these case studies is to determine enough
information about the targets to move intelligently into the exploitation

http://trac.happypacket.net/
http://trac.happypacket.net/

3.4 Case studies: the tools in action 129

FIGURE 3.23
Nmap http-enum.nse Script Results.

phase. IP addresses have been changed or obfuscated to protect the (clueless)
innocent.

3.4.1 External

The target for this attack is a single address provided by the client. There is no IDS,
but a firewall is involved. The target DNS name is faircloth.is-a-geek.org.

The first step is to perform a WHOIS lookup, ping, and host queries to make sure the
system is truly the target. Running WHOIS faircloth.is-a-geek.org returns NOT
FOUND, so we do a WHOIS on the domain only, is-a-geek.org. This returns
registration information for DynDNS.org, which means that the target is likely a
dynamic IP address using DynDNS for an externally reachable DNS name. This is
commonly used for home systems, or those that may not be reachable 100 percent of
the time. A dig faircloth.is-a-geek.org returns the IP address of 68.89.112.40, the
target IP address.

Performing a reverse lookup with host 68.89.112.40 gives a different host
name than the one provided: adsl-68-89-172-40.dsl.hstntx.swbell.net. SWBell.net is

130

CHAPTER 3 Scanning and enumeration

the domain for SBC Communications, an ISP, and “hstntx” in the domain name leads
us to believe that the IP address may be terminated in Houston, TX. This may not be
useful information right now, but any information about the target could be useful
further into the test. Also note that at this point, not a single ping has been sent to the
target, so all reconnaissance thus far has been totally indirect.

In Fig. 3.24, we run nmap -sS -0A external-nmap faircloth.is-a-geek.org, which
performs a SYN scan, writing the output to the files external-nmap. This scan returns
three TCP ports opend22, 443, and 993. To check for any UDP-based services, we
also run nmap -sU -oA external-udp-nmap faircloth.is-a-geek.org, which returns
indicating that all scanned ports are open or filtered as shown in Fig. 3.24.

To identify what those open ports are running, we can use Nmap again using the

-sV and -0 options to do some fingerprinting. This reveals that the target is running
OpenSSH 5.1-p1, with protocol version 2.0; port 443 shows as Apache 2.2.11
(Ubuntu) with PHP 5.2.6; and 993 returns as SSL (however, it isalsothe
IANA-assigned port for IMAP over Secure Sockets Layer [SSL]) and looks to be
running Courier Imapd. OS detection is a little questionable, but based on the service
information, we can assume that we’re dealing with Ubuntu. Fig. 3.25 shows the
exact output and execution of the Nmap command.

Although this process was very direct and simple, the point of this case study is to
show how straightforward a basic external scan and enumeration can be. Each
discovered software product would be investigated to search for known vulnera-
bilities, and further testing would be performed against the software to determine any
misconfigurations.

an| filtarad

FIGURE 3.24
Nmap Results for faircloth.is-a-geek.org.

3.4 Case studies: the tools in action 131

open and

http://nmap.

FIGURE 3.25
Nmap Fingerprinting Results for faircloth.is-a-geek.org.

3.4.2 Internal

flog internal case study, we will scan and enumerate the 192.168.1.0/24 network. No
internal network firewalls exist, but host firewalls are installed.

Performing a ping sweep using nmap -sP -PA -o0A
intcase-nmap-sweep

192.168.1.0/24 reveals four targets, shown in Fig. 3.26.

and given the IP address of 192.168.1.200,

Toprovideathoroughscan,werannmap -sS -sV -O -iL valid-hosts
-0A full-internal-scan, where valid-hosts was created through the use of
the earlier awk command shown in Fig. 3.2. Interesting items of note from this scan
include an IIS 6.0 web server on 10.0.0.99 (a Windows 2003 Server system) and
a mail server running SMTP and IMAP on 10.0.0.9 (a Linux system). These two

132 CHAPTER 3 Scanning and enumeration

nmap -sP -PA .o

FIGURE 3.26
Ping Sweep.

servers seem to comprise most of the infrastructure needed for a small network.
Information such as this will set up further attack scenarios. See the following output
for the Nmap results:

Nmap 5.30BETAI1 scan initiated Mon Aug 2 16:56:37 2010
as: nmap -sS -sV -0 -iL valid_hosts -o0A full-internal-

scan

Nmap scan report for 192.168.1.100

Host is up (0.0051s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE VERSION
20/tc closed ftp-data

open ftp vsftpd(broken:couldnotbind
ﬂyttémng IPv4 socket)
P2/tcp ope ssh OpenSSH4.3(protocol1.99)
25/tcp n smt Sendmail8.13.7/8.13.7
80/tcp ®p2 p Apachehttpd2.0.55((Unix)PHP/
n htt
110/tcpocp>|ee Bop Openwallpopa3d

UWimapd2004.357
Lﬁsz&%ogl%sedlmaps
MAC Address: ®0:0C:29:67:63:F5 (VMware)
Device type: general purpose
Running: Linux 2.6.X
OS details: Linux 2.6.13 - 2.6.28
Network Distance: 1 hop
Service Info: Host: slax.example.net; OS: Unix
Nmap scan report for 192.168.1.110

3.4 Case studies: the tools in action

Host is up (0.0046s latency).

Not shown: 996 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp vsftpd 2.0.4
22/tcp open ssh?

80/tcp open http?

631/tcpope ipp CUPSI1.1
MAC Address: 00:0C:29:A2:C6:E6 (VMware)
Device type: general purpose
Running: Linux 2.6.X

OS details: Linux 2.6.13 - 2.6.28
Network Distance: 1 hop

Service Info: OS: Unix

Nmap scan report for 192.168.1.120
Host is up (0.0064s latency).

Not shown: 988 closed ports

PORT STATE SERVICEVERSION
21/tc opeftp FileZillaftpd

n smtp Mercury/32smtpd(Mailserver
35[:T<§unt PRéser)
1?9/tc Bpe finger Mercury/32fingerd

n http Apachehttpd2.2.14((Win32)DAV/2
Ber@ICssI/QQe14 OpenSSL/0.9.8] mod_autoindex_color
PHP/ 5.3.Mmod_apreq2-20090110/2.7.1 mod_perl/2.0.4
Perl/ v5.10 .1) 106/tcp 110/tcp 135/tcp 139/tcp 143/tcp
443/tcp open pop3pw Mercury/32 poppass service

ope pop3 Mercury/32pop3d

n msrpc MicrosoftWindowsRPC

OpPen netbios-ssn

Bpe imap Mercury/32 imapd 4.72

n ssl/http Apachehttpd2.2.14((Win32)

133

DAV/2 moe®essl/2.2.14 OpenSSL/0.9.8] mod_autoindex_color
PHP/5.3.1nmod_apreq2-20090110/2.7.1 mod_perl/2.0.4 Perl/

v5.10 .1)

445/tcp open microsoft-ds Microsoft Windows XP
micro soft- ds

3306/tcp open mysql MySQL (unauthorized)

MAC Address: 00:0C:29:D9:AF:58 (VMware)

Device type: general purpose

Running: Microsoft Wmdowsﬁ(@o3

OS details: Microsoft Windows XP Professional SP2 or
Windows Server 2003

Network Distance: 1 hop

Service Info: Host: localhost; OS: Windows

134 CHAPTER 3 Scanning and enumeration

OS and Service detection performed. Please report any
incorrect results at http://nmap.org/submit/ .

Nmap done at Mon Aug 2 16:59:30 2010 -- 3 IP addresses
(3 hosts up) scanned in 173.53 seconds

As a server running Windows was detected, we could use nbtscan to pull any
information from that target. The NetBIOS name detected was ETRANS-VM. As some
of these targets also have DNS names registered and others do not, dynamic DNS
may not be enabled for this particular network. The -v option is used for nbtscan to
show the full and verbose NBT resources offered, as well as the Media Access Control
(MAC) address of the targets. Fig. 3.27 shows the results from nbtscan.

3.4.3 Stealthy

To demonstrate a stealthy approach, we will target an internal host that may or may
not have an IDS or a firewall. Either way, we will attempt to avoid tripping sensors
until we know more information about the system. The IP address of this target is
192.168.1.100.

First, we will need to perform a port scan, but one that an IDS will not notice. To do
this we will be combining a slow targeted Nmap scan with a firewall rule that will drop
the automatic RST packet sent back to the target, by creating an iptables

rule using iptables -A OUTPUT -p tcp --tcp-flags RST
RST -d

192.168.1.100 -j DROP. By expanding on the same principle, you can create rules
that will drop packets depending on the scan type, such as a FIN

scan; iptables -A OUTPUT -p tcp -tcp-flags FIN FIN -d
192.168.1.100 will trigger the rule creation, dropping FIN packets once they are
detected by the scan.

FIGURE 3.27
nbtscan Results.

3.4 Case studies: the tools in action 135

If you want to use iptables to automate this process, perhaps on a standing scan
system, you may also investigate the use of the iptables RECENT module, which
allows you to specify limits and actions on the reception of specific packets.
Something similar to the following code might be useful for this purpose. This should
drop any FIN packets outbound from the scanner, except for one every 10 s.
Legitimate traffic should resend without much trouble, but the scanner should not
resend. Note that this will work for only one port checked every 10 s.

iptables -A OUTPUT -m recent --name FIN-DROP --rcheck
--rdest --proto tcp --tcp-flags FIN FIN --seconds 10 -j
DROP

iptables -A OUTPUT -m recent --name FIN-DROP --set
--rdest --proto tcp --tcp-flags FIN FIN -j ACCEPT

Now that the iptables rules are set up, we launch a SYN scan directly to the target
with no additional scans, such as version or fingerprint. We do, however, slow down

the scan by using Nmap’s “Polite” timing template. We could also use the “Sneaky”

timing template for this to slow the scan down further and reduce the possibilities

of being identified. The resultant commands used are nmap -sS -T2
192.168.1.110. Fig. 3.28 shows the results from the scan.

As far as the results go, they show FTP, SSH, HTTP, and IPP being available on

the target system. With this variety of services, it would be difficult to fingerprint

from this information alone. To get a more complete picture of the system, we

launch a targeted service identification scan using Nmap against three services that

should give a more proper view of the system fingerprint. SSH, SMTP, and IMAP are

targeted and send packets only once every 15 s, using the command nmap -sV

-T1-p21,22,80 192.168.1.100. Fig. 3.29 shows the results from that

6 (VMware)

a@: 1 IP address (1 host up) scanned

FIGURE 3.28
Stealth Nmap Scan Results.

136

CHAPTER 3 Scanning and enumeration

bt:-# nmap -sV

incorrect results at http:/fnm

FIGURE 3.29

Stealth Targeted Nmap Scan Results.

slow, targeted scan. From these results, we can guess with a high confidence level
that this is a Linux server running as a VMware virtual machine.

Because this is a stealthy test, pOf would be useful if we simply wanted to get a
system fingerprint. However, because we are doing an Nmap scan, pOf would be a bit
redundant and would not provide much value to the scan.

3.4.4 Noisy (IDS) testing

For this example, the target (192.168.1.100) will have an IDS in-line so that all traffic
will pass the IDS. The goal for this scan is to test that the IDS will pick up the “basics”
by hammering the network with lots of malicious traffic.

During this test, we will initiate a SYN flood from the scanner to the target, and a SYN
scan with version scanning and OS fingerprinting will be performed during that scan.
The hope is that the IDS does not detect the targeted scan due to the flood of traffic
coming in from the scanner.

WARNING

Please note that testing of this type can be harmful to the network on which you are testing.
Never do any type of testing that can create a DoS condition without explicitly getting
permission or allowances for it first.

To initiate the SYN flood, we will use a tool called hping to send out SYN packets at a
very fast rate. We do this with the command hping2 -S --fast 192.168.1.100, as
shown in Fig. 3.30.

Once the flooding has started, launch an Nmap scan that will hopefully be
masked in the torrent of SYN packets currently being sent. This scan uses a standard

3.4 Case studies: the tools in action 137

red, 100%

FIGURE 3.30
Hping SYN Flood.

SYN scan while performing service version matching and OS fingerprinting, all set at
the highest rate of send for Nmap, -T5 or Insane. Just in case the target is not
returning ICMP pings, ping checking is disabled. Fig. 3.31 shows the output from this
scan.

Since our scan was successful while we were flooding the target, the next step for the
client would be to take a look at their IDS and see if they at least logged our scan. It's
obvious that we weren’t blocked, but we could have set off some alarms. This
example shows one of the reasons that your documentation must be extensive and
precise. The client may need to know the timestamp or source IP from your scan in
order to correlate the data in their IDS logs.

erformed. Please report any incorrect results at ht

ad_1n] conds

FIGURE 3.31
Nmap SYN Scan with Background Noise.

138

CHAPTER 3 Scanning and enumeration

EPIC FAIL

Sometimes during a penetration test your approach or attack vector may not work out. IP
addresses may change, routes may vary or drop, or tools may stop working without any
warning. Sometimes the test may succeed, but it will give unusual results. Even negative
results may yield positive information, such as the fact that the firewall mimics open ports for
closed ports. Make sure that when you find unusual information, you log it using as much
detail as you would for expected information. The only bad information is not enough

infoRMAYABH this chapter represented just a simple use of the tools to perform an IDS test,

the premise is the same no matter what. Try to overload the network with traffic while
sneaking in your tool “under the radar” to get it past the alerts. If possible, encode any input
you send through a system in a different character set than normal or even UTF-8 to avoid
common ASCII string matches. If that is not an option, closely analyze the specific target you
are assessing. Sometimes specific products have vulnerabilities reported that could allow
you to configure your scanning tool in such a way that it will not trip any sensors when run.

3.5 HANDS-ON CHALLENGE

Throughout this chapter, we’ve studied scanning and enumeration for penetration
testing of target systems. You should now have a good understanding of the
approaches that we take with each as well as the core technologies used for this phase
of penetration testing. In addition, we’ve looked at some tools you can use to perform
these tasks efﬁuent and effec vel astly, we went through four real-world
scenarios where we ould use the tecﬁ Yques and tools to gather data on our targets.

With that in mind, it’s time to try it out in your world. Using a test lab, not a live
production network, try performing some scanning and enumeration using the tools
that we have discussed. This could be your home network or a dedicated lab envi-
ronment depending on the resources that you have available. Again, documentation
is key, so this is what you should be putting together as the results of your testing:

Alistof“live”systemswithinyourtargetenvironment
Theoperatingsystemtypeandversionforeachsystem
Alistofopenportsonthosesystems

The exact service, software, and version for each open port

This documentation should be added to the information you accumulated during

the reconnaissance phase (if you used the same target for these challenges) and will
be used for future penetration testing phases. Cumulatively, you should now have

a list of DNS names, IP addresses, identified “live” or reachable IP addresses, as well
as the details associated with those hosts.

SUMMARY

This chapter has focused on taking the data we gathered during the reconnaissance
phases and expanding on them by using scanning and enumeration. This also covers

Summary 139

the “vitality” phase of reconnaissance. We focused first on our objectives related to
scanning and enumeration. This includes availability of target hosts as well as
gathering details about those hosts and the services offered by them.

We then moved on to the concept of scanning. We talked about the general approach
to scanning and why scanning should be done. We also talked about methods to
ensure that you’re making the most effective use of your time by scanning for the
most common ports first and then expanding your scanning if you have additional
time available. The core technologies used for scanning were our next topic and we
went over these in some detail as those same technologies apply many times over in
penetration testing. We went over a variety of open source tools which are available
to help you in performing those important scanning operations and speeding up your
penetration testing process.

Next we went

Our next topic was discussing the real-world scenarios that could be presented
through a series of case studies. These case studies illustrated real scenarios that you
could run into when doing penetration testing professionally. For each case study, we
examined a method for accomplishing our goals and demonstrated the use of a
number of tools and options for those tools that helped us to get the job done.

Finally, you got to try it yourself through our hands-on challenge and were presented
with a task and appropriate deliverables for demonstrating your ability to use these
techniques and tools.

Now that we’ve finished up with enumeration, we will have a list of targets that we
can use for the next penetration testing stagedvulnerability scanning. We needed to
have knowledge about specific services that are running, versions of those services,
and any host or system fingerprinting that we could determine to successfully move
to this next stage. Moving forward without that information would really hamper our
efforts in exploitation.

