How to Install Spark on Ubuntu

Prerequisites

« An Ubuntu system.
« Access to a terminal or command line.
« A user with sudo or root permissions.

Install Packages Required for Spark

Before downloading and setting up Spark, you need to install necessary
dependencies. This step includes installing the following packages:

« Scala

. Git

Open a terminal window and run the following command to install all two
packages at once (If you install Hadoop first, you don’t need to install JDK this
time:

$ sudo apt install scala git -y

Once the process completes, verify the installed dependencies by running
these commands:

$java -version; Jjavac -version; scala -version; git —--ver
sion

:§$ Jjava -version; javac -version; scala -version; git --version
openjdk version "1.8.0_272"
OpenJDK Runtime Environment (build 1.8.0 272-8u272-b10-0ubuntul~20.10-b10)

Open]DK 64-Bit Server VM (build 25.272-b10, mixed mode)

javac 1.8.0 272

Scala code runner version 2.11.12 -- Copyright 2002-2017, LAMP/EPFL
git version 2.27.0

The output prints the versions if the installation completed successfully for all
packages.

Download and Set Up Spark on Ubuntu

Now, you need to download the version of Spark you want form their
website. We will go for Spark 3.0.1 with Hadoop 3.2 as it is the latest version
at the time of writing this article.

Or, you can go to https://spark.apache.org/downloads.html to choose the
version you want.

S APACHEa

p Qr w Lightning-fast unified analytics engine

Downioad Libraries ~ Documentation ~ Examples Community ~ Developers ~

Download Apache Spark™

1. Choose a Spark release:[3.0.1 (Sep 02 2020) v |

2. Choose a package type: | Pre-built for Apache Hadoop 3.2 and later v |

3. Download Spark: spark-3.0.1-bin-hadoop3.2.1gz
4._ Verify this release using the 3.0.1 signatures, checksums and project release KEYS

Note that, Spark 2.x is pre-built with Scala 2.11 except version 2.4.2, which is pre-built with Scala 2.12. Spark 3.0+ is pre-built with Scala
212

Use the wget command and the direct link to download the Spark archive:

swget https://ftp.wayne.edu/apache/spark/spark-3.0.1/spar
k-3.0.1-bin-hadoop3.2.tgz

When the download completes, you will see the saved message.

p :$ wget https://ftp.wayne.edu/apache/spark/spark-3.0.1/sp
ark-3.0.1-bin-hadoop3.2.tgz

--2020-11-09 20:57:37-- https://ftp.wayne.edu/apache/spark/spark-3.0.1/spark-3
.0.1-bin-hadoop3.2.tgz

Resolving ftp.wayne.edu (ftp.wayne.edu)... 141.217.0.199

onnecting to ftp.wayne.edu (ftp.wayne.edu)|141.217.0.199|:443... connected.
TTP request sent, awaiting response... 200 OK

Length: 224062525 (214M) [application/x-gzip]

Saving to: ‘spark-3.0.1-bin-hadoop3.2.tgz’

spark-3.0.1-bin-had 100%[>] 213.68M 16.9MB/s in 13s

020-11-09 20:57:50 (16.8 MB/s) - “spark-3.0.1-bin-hadoop3.2.tgz’ saved [224062
525/224062525]

Now, extract the saved archive using the tar command:

$tar xvt spark-*

Let the process complete. The output shows the files that are being unpacked
from the archive.

Finally, move the unpacked directory spark-3.0.1-bin-hadoop2.7 to
the opt/spark directory.
Use the mv command to do so:

$sudo mv spark-3.0.1-bin-hadoop2.7 /opt/spark
The terminal returns no response if it successfully moves the directory. If you
mistype the name, you will get a message similar to:

mv: cannot stat 'spark-3.0.l-bin-hadoopZ.7': No such file
or directory.

Configure Spark Environment

Before starting a master server, you need to configure environment variables.

You can add the export paths by editing the .profile file in the editor of your
choice, such as nano or vim.

For example, to use nano, enter:

$nano .profile

When the profile loads, scroll to the bottom of the file.

if [-f "SHOME/.bashrc"]; then
. "SHOME/.bashrc"
fi

[-d "SHOME/bin"] ; then
PATH="SHOME /bin:SPATH"

[-d "SHOME/.local/bin"] ; then
PATH="SHOME/.local/bin:SPATH"

Get Help g Write out @ Where Is gy Cut Text Justify Cur Pos
Exit Wi Read File [\ Replace WY Uncut Text @l To Spell Wl Go To Line

Then, add these three lines:

export SPARK HOME=/opt/spark

export PATH=$PATH:S$SPARK HOME/bin:$SPARK HOME/sbin

export PYSPARK PYTHON=/usr/bin/python3

Exit and save changes when prompted.

When you finish adding the paths, load the .profile file in the command line by
typing:

$source ~/.profile

Start Standalone Spark Master Server

Now that you have completed configuring your environment for Spark, you
can start a master server.

In the terminal, type:

$start-master.sh

To view the Spark Web user interface, open a web browser and enter the
localhost IP address on port 8080.

http://127.0.0.1:8080/

The page shows your Spark URL, status information for workers, hardware
resource utilization, etc.

< c @ © D 127.0.0.1:8080 v @ O n o e

sﬁ‘j‘aiz ... Spark Master at spark://yixi-VirtualBox:7077

URL: spark://yixi-VirtualBox:7077

Alive Workers: 0

Cores in use: 0 Total, 0 Used

Memory in use: 0.0 B Total, 0.0 B Used
Resources in use:

Applications: 0 Running, 0 Completed
Drivers: 0 Bunning, 0 Completed
Status: ALIVE

~ Workers (0)

Worker Id Address State Cores Memory Resources

The URL for Spark Master is the name of your device on port 8080. In our
case, this is yixi-virtualbox:8080. So, there are three possible ways to load
Spark Master’s Web Ul

1. 127.0.0.1:8080

2. localhost:8080

3. yixi-virtualbox:8080

Start Spark Slave Server (Start a Worker Process)

In this single-server, standalone setup, we will start one slave server along
with the master server.

To do so, run the following command in this format:
start-slave.sh spark://master:port

The master in the command can be an IP or hostname.
InoLrcaseitis ubuntul:

$start-slave.sh spark://yixi-virtualbox:7077

: S start-slave.sh spark://yixi-virtualbox:7077

starting org.apache.spark.deploy.worker.Worker, logging to /opt/spark/logs/spark
-hdoop-org.apache.spark.deploy.worker.Worker-1-yixi-vVirtualBox.out

Now that a worker is up and running, if you reload Spark Master’'s Web U,
you should see it on the list:

3.0.1

555,18 Spark Master at spark://yixi-VirtualBox:7077

URL: spark://yixi-VirtualBox:7077

Alive Workers: 1

Cores in use: 1 Total, 0 Used

Memory in use: 2.8 GiB Total, 0.0 B Used
Resources in use:

Applications: 0 Running, 0 Completed
Drivers: 0 Running. 0 Completed

Status: ALIVE

~ Workers (1)

Worker id Address State Cores Memory Resources
worker- 10.0.2.15:36101 ALIVE 1 (0 28GiB (0.0B
20201109221848-10.0.2.15-36101 Used) Used)

Specify Resource Allocation for Workers

The default setting when starting a worker on a machine is to use all available
CPU cores. You can specify the number of cores by passing the -¢ flag to
the start-slave command.

For example, to start a worker and assign only one CPU core to it, enter this
command:

$start-slave.sh -c 1 spark://yixi-virtualbox:7077

Reload Spark Master’'s Web Ul to confirm the worker’s configuration.

~ Workers (1)
Worker Id Address State Cores Memory Resources
10.02.15:36101 ALIVE 1(0 28GiB (008
Used) Used)

Similarly, you can assign a specific amount of memory when starting a
worker. The default setting is to use whatever amount of RAM your machine
has, minus 1GB.

To start a worker and assign it a specific amount of memory, add the -

m option and a number. For gigabytes, use G and for megabytes, use M.

For example, to start a worker with 512MB of memory, enter this command:

$start-slave.sh -m 512M spark://yixi-virtualbox:7077
Reload the Spark Master Web Ul to view the worker’s status and confirm the
configuration.

worker- 10.0.2.15:44119 ALIVE 1 (0 512.0 MiB (0.0 B
20201109222210-10.0.2.15-44119 Used) Used)

Test Spark Shell

After you finish the configuration and start the master and slave server, test if
the Spark shell works.

Load the shell by entering:

$spark-shell

You should get a screen with notifications and Spark information. Scala is the
default interface, so that shell loads when you run spark-shell.

The ending of the output looks like this for the version we are using at the time
of writing this guide:

20/11/09 22:24:48 WARN Utils: Set SPARK _LOCAL_IP if you need to bind to another
address
20/11/069 22:24:49 WARN NativeCodeloader: Unable to load native-hadoop library fo
r your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setlLoglLevel(newlLevel). For SparkR, use setlogleve
1L(newlLevel).
Spark context Web UI available at http://haifeng-vpc.csunet.csuohio.edu:4040
Spark context available as 'sc' (master = local[*], app i1d = local-1604978701909
e
Spark session available as 'spark'.
Welcome to
/D) S ()
25 (% C SR U AR L
R e ey N 7 2 R version 3.0.1
/_1

Using Scala version 2.12.10 (OpenJDK 64-Bit Server VM, Java 1.8.0_272)
Type in expressions to have them evaluated.
Type :help for more information.

Type :q and press Enter to exit Scala.

Test Python in Spark

If you do not want to use the default Scala interface, you can switch to Python.
Make sure you quit Scala and then run this command:
$pyspark

The resulting output looks similar to the previous one. Towards the bottom,
you will see the version of Python.

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".

To adjust logging level use sc.setlLoglevel(newlLevel). For SparkR, use setloglLeve
1(newLevel).

Welcome to

S _/_{_

/
SN e S
/i . I\, /] /_/I\.\ version 3.0.1

Using Python version 3.8.6 (default, Sep 25 2020 09:36:53)
SparkSession available as 'spark'.

To exit this shell, type quit () and hit Enter.

Basic Commands to Start and Stop Master Server and
Workers

Below are the basic commands for starting and stopping the Apache Spark
master server and workers. Since this setup is only for one machine, the
scripts you run default to the localhost.

To start a master server instance on the current machine, run the command
we used earlier in the guide:

$start-master.sh

To stop the master instance started by executing the script above, run:

$ stop-master.sh

To stop arunning worker process, enter this command:

$stop-slave.sh

The Spark Master page, in this case, shows the worker status as DEAD.

~ Workers (2)

Worker Id
worker-20200331183244-10.0.2.15-45371

worker-20200331203427-10.0.2.15-37971

Address
10.0.2.15:45371
10.0.2.15:37971

State
DEAD
ALIVE

Cores
2 (0 Used)
2 (0 Used)

Memory
1024.0 MB (0.0 B Used)
1024.0 MB (0.0 B Used)

Conclusion

This tutorial showed you how to install Spark on an Ubuntu machine, as
well as the necessary dependencies.

The setup in this guide enables you to perform basic tests before you start

configuring a Spark cluster and performing advanced actions.

Reference

https://phoenixnap.com/kb/install-spark-on-ubuntu

