
What is Chatbot?
A chatbot is an intelligent piece of software that is capable of

communicating and performing actions similar to a human. Chatbots are

used a lot in customer interaction, marketing on social network sites and

instantly messaging the client. There are two basic types of chatbot models

based on how they are built; Retrieval based and Generative based models.

1. Retrieval based Chatbots

A retrieval-based chatbot uses predefined input patterns and responses. It

then uses some type of heuristic approach to select the appropriate

response. It is widely used in the industry to make goal-oriented chatbots

where we can customize the tone and flow of the chatbot to drive our

customers with the best experience.

2. Generative based Chatbots

Generative models are not based on some predefined responses.

Technology is evolving rapidly!

Stay updated with DataFlair on WhatsApp!!

They are based on seq 2 seq neural networks. It is the same idea as machine

translation. In machine translation, we translate the source code from one

language to another language but here, we are going to transform input into

an output. It needs a large amount of data and it is based on Deep Neural

networks.

About the Python Project – Chatbot
In this Python project with source code, we are going to build a chatbot

using deep learning techniques. The chatbot will be trained on the dataset

which contains categories (intents), pattern and responses. We use a special

recurrent neural network (LSTM) to classify which category the user’s

message belongs to and then we will give a random response from the list of

responses.

Let’s create a retrieval based chatbot using NLTK, Keras, Python, etc.

Download Chatbot Code & Dataset

https://whatsapp.com/channel/0029Va9NEb7HLHQVx3DGce3A

The dataset we will be using is ‘intents.json’. This is a JSON file that

contains the patterns we need to find and the responses we want to return

to the user.

Please download python chatbot code & dataset from the following link:

Python Chatbot Code & Dataset

Prerequisites
The project requires you to have good knowledge of Python, Keras, and

Natural language processing (NLTK). Along with them, we will use some helping

modules which you can download using the python-pip command.

pip install tensorflow, keras, pickle, nltk

How to Make Chatbot in Python?
Now we are going to build the chatbot using Python but first, let us see the

file structure and the type of files we will be creating:

https://data-flair.training/blogs/download-python-chatbot-data-project-source-code/
https://data-flair.training/blogs/nltk-python-tutorial/

● Intents.json – The data file which has predefined patterns and

responses.

● train_chatbot.py – In this Python file, we wrote a script to build

the model and train our chatbot.

● Words.pkl – This is a pickle file in which we store the words

Python object that contains a list of our vocabulary.

● Classes.pkl – The classes pickle file contains the list of categories.

● Chatbot_model.h5 – This is the trained model that contains

information about the model and has weights of the neurons.

● Chatgui.py – This is the Python script in which we implemented

GUI for our chatbot. Users can easily interact with the bot.

Here are the 5 steps to create a chatbot in Python from scratch:

1. Import and load the data file

2. Preprocess data

3. Create training and testing data

4. Build the model

5. Predict the response

1. Import and load the data file

First, make a file name as train_chatbot.py. We import the necessary

packages for our chatbot and initialize the variables we will use in our

Python project.

The data file is in JSON format so we used the json package to parse the

JSON file into Python.

import nltk

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

import json

import pickle

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, Activation, Dropout

from keras.optimizers import SGD

import random

words=[]

classes = []

documents = []

ignore_words = ['?', '!']

data_file = open('intents.json').read()

intents = json.loads(data_file)

This is how our intents.json file looks like.

2. Preprocess data

When working with text data, we need to perform various preprocessing on

the data before we make a machine learning or a deep learning model.

Based on the requirements we need to apply various operations to

preprocess the data.

Tokenizing is the most basic and first thing you can do on text data.

Tokenizing is the process of breaking the whole text into small parts like

words.

Here we iterate through the patterns and tokenize the sentence using

nltk.word_tokenize() function and append each word in the words list. We

also create a list of classes for our tags.

for intent in intents['intents']:

for pattern in intent['patterns']:

#tokenize each word

w = nltk.word_tokenize(pattern)

words.extend(w)

#add documents in the corpus

documents.append((w, intent['tag']))

add to our classes list

if intent['tag'] not in classes:

classes.append(intent['tag'])

Now we will lemmatize each word and remove duplicate words from the list.

Lemmatizing is the process of converting a word into its lemma form and

then creating a pickle file to store the Python objects which we will use

while predicting.

lemmatize, lower each word and remove duplicates

words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in

ignore_words]

words = sorted(list(set(words)))

sort classes

classes = sorted(list(set(classes)))

documents = combination between patterns and intents

print (len(documents), "documents")

classes = intents

print (len(classes), "classes", classes)

words = all words, vocabulary

print (len(words), "unique lemmatized words", words)

pickle.dump(words,open('words.pkl','wb'))

pickle.dump(classes,open('classes.pkl','wb'))

3. Create training and testing data

Now, we will create the training data in which we will provide the input and

the output. Our input will be the pattern and output will be the class our

input pattern belongs to. But the computer doesn’t understand text so we

will convert text into numbers.

create our training data

training = []

create an empty array for our output

output_empty = [0] * len(classes)

training set, bag of words for each sentence

for doc in documents:

initialize our bag of words

bag = []

list of tokenized words for the pattern

pattern_words = doc[0]

lemmatize each word - create base word, in attempt to represent

related words

pattern_words = [lemmatizer.lemmatize(word.lower()) for word in

pattern_words]

create our bag of words array with 1, if word match found in current

pattern

for w in words:

bag.append(1) if w in pattern_words else bag.append(0)

output is a '0' for each tag and '1' for current tag (for each pattern)

output_row = list(output_empty)

output_row[classes.index(doc[1])] = 1

training.append([bag, output_row])

shuffle our features and turn into np.array

random.shuffle(training)

training = np.array(training)

create train and test lists. X - patterns, Y - intents

train_x = list(training[:,0])

train_y = list(training[:,1])

print("Training data created")

4. Build the model

We have our training data ready, now we will build a deep neural network

that has 3 layers. We use the Keras sequential API for this. After training

the model for 200 epochs, we achieved 100% accuracy on our model. Let us

save the model as ‘chatbot_model.h5’.

Create model - 3 layers. First layer 128 neurons, second layer 64 neurons

and 3rd output layer contains number of neurons

equal to number of intents to predict output intent with softmax

model = Sequential()

model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(64, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(len(train_y[0]), activation='softmax'))

Compile model. Stochastic gradient descent with Nesterov accelerated

gradient gives good results for this model

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(loss='categorical_crossentropy', optimizer=sgd,

metrics=['accuracy'])

#fitting and saving the model

hist = model.fit(np.array(train_x), np.array(train_y), epochs=200,

batch_size=5, verbose=1)

model.save('chatbot_model.h5', hist)

print("model created")

5. Predict the response (Graphical User Interface)

To predict the sentences and get a response from the user to let us create a

new file ‘chatapp.py’.

We will load the trained model and then use a graphical user interface that

will predict the response from the bot. The model will only tell us the class

it belongs to, so we will implement some functions which will identify the

class and then retrieve us a random response from the list of responses.

Again we import the necessary packages and load the ‘words.pkl’ and

‘classes.pkl’ pickle files which we have created when we trained our model:

import nltk

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

import pickle

import numpy as np

from keras.models import load_model

model = load_model('chatbot_model.h5')

import json

import random

intents = json.loads(open('intents.json').read())

words = pickle.load(open('words.pkl','rb'))

classes = pickle.load(open('classes.pkl','rb'))

To predict the class, we will need to provide input in the same way as we

did while training. So we will create some functions that will perform text

preprocessing and then predict the class.

def clean_up_sentence(sentence):

tokenize the pattern - split words into array

sentence_words = nltk.word_tokenize(sentence)

stem each word - create short form for word

sentence_words = [lemmatizer.lemmatize(word.lower()) for word in

sentence_words]

return sentence_words

return bag of words array: 0 or 1 for each word in the bag that exists in

the sentence

def bow(sentence, words, show_details=True):

tokenize the pattern

sentence_words = clean_up_sentence(sentence)

bag of words - matrix of N words, vocabulary matrix

bag = [0]*len(words)

for s in sentence_words:

for i,w in enumerate(words):

if w == s:

assign 1 if current word is in the vocabulary position

bag[i] = 1

if show_details:

print ("found in bag: %s" % w)

return(np.array(bag))

def predict_class(sentence, model):

filter out predictions below a threshold

p = bow(sentence, words,show_details=False)

res = model.predict(np.array([p]))[0]

ERROR_THRESHOLD = 0.25

results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]

sort by strength of probability

results.sort(key=lambda x: x[1], reverse=True)

return_list = []

for r in results:

return_list.append({"intent": classes[r[0]], "probability":

str(r[1])})

return return_list

After predicting the class, we will get a random response from the list of

intents.

def getResponse(ints, intents_json):

tag = ints[0]['intent']

list_of_intents = intents_json['intents']

for i in list_of_intents:

if(i['tag']== tag):

result = random.choice(i['responses'])

break

return result

def chatbot_response(text):

ints = predict_class(text, model)

res = getResponse(ints, intents)

return res

Now we will develop a graphical user interface. Let’s use Tkinter library

which is shipped with tons of useful libraries for GUI. We will take the

input message from the user and then use the helper functions we have

created to get the response from the bot and display it on the GUI. Here is

the full source code for the GUI.

#Creating GUI with tkinter

import tkinter

from tkinter import *

def send():

msg = EntryBox.get("1.0",'end-1c').strip()

EntryBox.delete("0.0",END)

if msg != '':

ChatLog.config(state=NORMAL)

ChatLog.insert(END, "You: " + msg + '\n\n')

ChatLog.config(foreground="#442265", font=("Verdana", 12))

res = chatbot_response(msg)

ChatLog.insert(END, "Bot: " + res + '\n\n')

ChatLog.config(state=DISABLED)

ChatLog.yview(END)

base = Tk()

base.title("Hello")

base.geometry("400x500")

base.resizable(width=FALSE, height=FALSE)

#Create Chat window

ChatLog = Text(base, bd=0, bg="white", height="8", width="50",

font="Arial",)

ChatLog.config(state=DISABLED)

#Bind scrollbar to Chat window

scrollbar = Scrollbar(base, command=ChatLog.yview, cursor="heart")

ChatLog['yscrollcommand'] = scrollbar.set

#Create Button to send message

SendButton = Button(base, font=("Verdana",12,'bold'), text="Send",

width="12", height=5,

bd=0, bg="#32de97",

activebackground="#3c9d9b",fg='#ffffff',

command= send)

#Create the box to enter message

EntryBox = Text(base, bd=0, bg="white",width="29", height="5", font="Arial")

#EntryBox.bind("<Return>", send)

#Place all components on the screen

scrollbar.place(x=376,y=6, height=386)

ChatLog.place(x=6,y=6, height=386, width=370)

EntryBox.place(x=128, y=401, height=90, width=265)

SendButton.place(x=6, y=401, height=90)

base.mainloop()

6. Run the chatbot

To run the chatbot, we have two main files; train_chatbot.py and

chatapp.py.

First, we train the model using the command in the terminal:

python train_chatbot.py

If we don’t see any error during training, we have successfully created the

model. Then to run the app, we run the second file.

python chatgui.py

The program will open up a GUI window within a few seconds. With the

GUI you can easily chat with the bot.

Screenshots:

Summary
In this Python data science project, we understood about chatbots and

implemented a deep learning version of a chatbot in Python which is

accurate. You can customize the data according to business requirements

and train the chatbot with great accuracy. Chatbots are used everywhere

and all businesses are looking forward to implementing bot in their

workflow.

I hope you will practice by customizing your own chatbot using Python and

don’t forget to show us your work. And, if you found the article useful, do

share the project with your friends and colleagues.

	What is Chatbot?
	1. Retrieval based Chatbots
	2. Generative based Chatbots

	About the Python Project – Chatbot
	Download Chatbot Code & Dataset
	Prerequisites
	How to Make Chatbot in Python?
	Summary

