365 DataScience Pooling layers with TensorFlow

# Importing the relevant packages
import tensorflow as tf

# The outlined code below is to show how we can add a pooling Llayer to

a convolutional network,

# It does not include any actual data, thus, cannot be trained

# You can include any image data you want, after properly preprocessing
it

# Tensorflow the process of creation of neural networks to the followin
g steps:

# - defining a model variable with the different Llayers

# - compiling the model variable and specifying the optimizer and loss
function

# - OPTIONAL: defining early stopping callback

# - training the model with '.fit()' method

Creating the model
# Outlining the model/architecture of our network
model = tf.keras.Sequential([

tf.keras.layers.Conv2D(filters, kernel size, activation='relu', inp
ut_shape=input_shape),

tf.keras.layers.MaxPooling2D(pool size=(2, 2), strides=None, paddin
g="valid'), # Default values

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(classes) # You can apply softmax activation h
ere, see below for comentary

D

# As you can see, we can include a pooling layer with the simple Line '
tf.keras. layers.MaxPooling2D'
# Pooling Llayers are always included after a convolutional Layer.

# Important parameters of Pooling Llayers:
# - pool_size: Integer or tuple of 2 integers, window size over which t
o take the maximum.

# (2, 2) will take the max value over a 2x2 pooling window.
If only one integer 1is specified,

# the same window length will be used for both dimensions.
The most popular size is by far (2,2).

#

# - strides: Integer, tuple of 2 integers, or None. Strides values. Spe
cifies how far the pooling window moves for each

# pooling step. If None, it will default to pool_size.

#

# - padding: One of "valid" or "same" (case-insensitive). "valid" means
no padding.



# "same" results 1in padding evenly to the left/right or up/d
own of the input such that output has the same

# height/width dimension as the input. Usually, no padding 1i
S necessary.

#

# For most problems, the default values are the ones we would Like to u
se,

# so often we just write tf.keras.layers.MaxPooling2D()

# Finally, the ‘classes' parameter specifies how many classes we have f
or the classification.

Compiling the model
# Defining the Lloss function

# In general, our model needs to output probabilities of each class,
# which can be achieved with a softmax activation in the last dense Llay
er

# However, when using the softmax activation, the loss can rarely be un
stable

# Thus, 1instead of incorporating the softmax into the model 1itself,
# we use a loss calculation that automatically corrects for the missing
softmax

# That 1is the reason for 'from_logits=True'
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=Tru

e)

# Compiling the model with Adam optimizer and the cathegorical crossent
ropy as a loss function
model.compile(optimizer="adam', loss=loss_fn, metrics=["'accuracy'])

Defining early stopping callback
# Defining early stopping to prevent overfitting
early stopping = tf.keras.callbacks.EarlyStopping(
monitor = 'val loss',
mode = 'auto’,
min_delta = 9,
patience = 2,
verbose = 0,
restore_best weights = True

)

Training the model
# Train the network
model.fit(

train_data,

epochs = NUM_EPOCHS,



callbacks = [early_stopping],
validation_data = validation_data,

verbose = 2

)

# Here, you need to provide train data and validation data, as well as
specify for how many epochs to train.
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