365 DataScience Pooling layers with TensorFlow

Importing the relevant packages
import tensorflow as tf

The outlined code below is to show how we can add a pooling Llayer to

a convolutional network,

It does not include any actual data, thus, cannot be trained

You can include any image data you want, after properly preprocessing
it

Tensorflow the process of creation of neural networks to the followin
g steps:

- defining a model variable with the different Llayers

- compiling the model variable and specifying the optimizer and loss
function

- OPTIONAL: defining early stopping callback

- training the model with '.fit()' method

Creating the model
Outlining the model/architecture of our network
model = tf.keras.Sequential([

tf.keras.layers.Conv2D(filters, kernel size, activation='relu', inp
ut_shape=input_shape),

tf.keras.layers.MaxPooling2D(pool size=(2, 2), strides=None, paddin
g="valid'), # Default values

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(classes) # You can apply softmax activation h
ere, see below for comentary

D

As you can see, we can include a pooling layer with the simple Line '
tf.keras. layers.MaxPooling2D'
Pooling Llayers are always included after a convolutional Layer.

Important parameters of Pooling Llayers:
- pool_size: Integer or tuple of 2 integers, window size over which t
o take the maximum.

(2, 2) will take the max value over a 2x2 pooling window.
If only one integer 1is specified,

the same window length will be used for both dimensions.
The most popular size is by far (2,2).

#

- strides: Integer, tuple of 2 integers, or None. Strides values. Spe
cifies how far the pooling window moves for each

pooling step. If None, it will default to pool_size.

#

- padding: One of "valid" or "same" (case-insensitive). "valid" means
no padding.

"same" results 1in padding evenly to the left/right or up/d
own of the input such that output has the same

height/width dimension as the input. Usually, no padding 1i
S necessary.

#

For most problems, the default values are the ones we would Like to u
se,

so often we just write tf.keras.layers.MaxPooling2D()

Finally, the ‘classes' parameter specifies how many classes we have f
or the classification.

Compiling the model
Defining the Lloss function

In general, our model needs to output probabilities of each class,
which can be achieved with a softmax activation in the last dense Llay
er

However, when using the softmax activation, the loss can rarely be un
stable

Thus, 1instead of incorporating the softmax into the model 1itself,
we use a loss calculation that automatically corrects for the missing
softmax

That 1is the reason for 'from_logits=True'
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=Tru

e)

Compiling the model with Adam optimizer and the cathegorical crossent
ropy as a loss function
model.compile(optimizer="adam', loss=loss_fn, metrics=["'accuracy'])

Defining early stopping callback
Defining early stopping to prevent overfitting
early stopping = tf.keras.callbacks.EarlyStopping(
monitor = 'val loss',
mode = 'auto’,
min_delta = 9,
patience = 2,
verbose = 0,
restore_best weights = True

)

Training the model
Train the network
model.fit(

train_data,

epochs = NUM_EPOCHS,

callbacks = [early_stopping],
validation_data = validation_data,

verbose = 2

)

Here, you need to provide train data and validation data, as well as
specify for how many epochs to train.

Start your 365 Journey!

	365 DataScience Pooling layers with TensorFlow
	Creating the model
	Compiling the model
	Defining early stopping callback
	Training the model

