
365 DataScience Recursion in Python - the Fibonacci
sequence

Step 1 Create a recursive function
Create a function that would use recursion to calculate the n-th Fibo
nacci number.
Recursion is not very efficient since each call of the function asks
the computer for some memory.
Therefore, calculating big Fibonacci numbers would fill up the memory
very fast.
The iterative method (for-loops, for example) is often significantly
faster.

In this problem, the Fibonacci sequence starts at 0 and the indexing
also starts at 0.
def fib(n):

All recursive functions need a base case. In this problem, we hav
e two of them - checking whether n is 0 or 1.

If n equals either of these numbers, the function will stop calli
ng itself and start computing the

n-th Fibonacci number.
if n == 0:

return 0
elif n == 1:

return 1
else:

When n = 0 (fib(0) = 0) or n = 1 (fib(1) = 1), we cannot take
the sum of the two previous numbers because

fib(0) and fib(1) *are* the first two numbers. However, we ca
n calculate the numbers that sit at positions

n >= 2. In the case of n = 2, we will take the sum of the num
bers at n = 0 and n = 1,

which are 0 and 1, as we have defined in the base cases above.
return fib(n-1) + fib(n-2)

Step 2 Call the function
Return the Fibonacci number with index 20.
fib(20)

Start your 365 Journey!

	365 DataScience Recursion in Python - the Fibonacc
	Step 1 Create a recursive function
	Step 2 Call the function

