
365 DataScience Tensorboard - Tracking metrics
The outlined code below is to show how you can incorporate Tensorboar
d in order to track different metrics,
It does not include any actual dataset, thus, cannot be trained
You can include any image data you want, after properly preprocessing
it

Importing the relevant packages
import tensorflow as tf
import datetime

Creating and compiling the model
Outlining the model/architecture of our CNN
model = tf.keras.Sequential([

tf.keras.layers.Conv2D(50, 5, activation='relu', input_shape=(28, 2
8, 1)),

tf.keras.layers.MaxPooling2D(pool_size=(2,2)),
tf.keras.layers.Conv2D(50, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(pool_size=(2,2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10)

])

Defining the loss function
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=Tru
e)

Compiling the model with Adam optimizer and the cathegorical crossent
ropy as a loss function
model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy'])

Defining early stopping to prevent overfitting
early_stopping = tf.keras.callbacks.EarlyStopping(

monitor = 'val_loss',
mode = 'auto',
min_delta = 0,
patience = 2,
verbose = 0,
restore_best_weights = True

)

Defining Tensorboard callback
Now, we can define a Tensorboard callback to log the metrics of our t
raining
The metrics that are logged are the loss + everything that is provide
d to the 'metrics' argument in the 'compile' method above

Creating a folder in which the logs will be written
I have added the current date and time to the folder so that one can
understand to which network does the log correspond to
You can name this folder however you'd like, though
log_dir = "logs\\fit\\" + datetime.datetime.now().strftime("%Y%m%d-%H%
M%S")

Defining the tensorboard callback itself, which will be added to the
fit method
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,
histogram_freq=1)

Training the network
Train the network
In order to incorporate the Tensorboard logging capabilities, we need
to add it to the 'callbacks' parameter
Be careful to always write the early stopping callback last, as it so
metimes bugs out if it is not last
model.fit(

train_data,
epochs = NUM_EPOCHS,
callbacks = [tensorboard_callback, early_stopping],
validation_data = validation_data,
verbose = 2

)

Visualizing in Tensorboard
Now, we can run the Tensorboard extension and check all the logs
The logs will be visible in the first tab - scalars

Loading the Tensorboard extension
%load_ext tensorboard
%tensorboard --logdir "logs/fit"

NOTE: On Windows, TensorBoard has trouble starting if the extension h
as been running. So, the first time you start it,
it will run properly. But if you subsequently try to restart it, or o
pen a different directory,
the extension will encounter an error. Luckily, there is a quick work
around. All you need to do
is write 2 commands in the shell. First, open the command prompt, or
‘cmd.exe’. In there,
you need to paste the following 2 lines , one after another:
#
taskkill /im TensorBoard.exe /f
del /q %TMP%\.TensorBoard-info*
#
These will end already active TensorBoard processes and clean the tem
porary data associated with TensorBoard,

so you can run it again. If either of those gives an error, that’s ok
ay: you can ignore it.

Start your 365 Journey!

	365 DataScience Tensorboard - Tracking metrics
	Creating and compiling the model
	Defining Tensorboard callback
	Training the network
	Visualizing in Tensorboard

